Two-dimensional(2D)flume experiments are useful in investigating the performances of floating breakwaters(FBs),including hydrodynamic performances,motion responses,and mooring forces.Designing a reasonable gap between...Two-dimensional(2D)flume experiments are useful in investigating the performances of floating breakwaters(FBs),including hydrodynamic performances,motion responses,and mooring forces.Designing a reasonable gap between the flume wall and the FBs is a critical step in 2D flume tests.However,research on the effect of the gap on the accuracy of 2D FB experimental results is scarce.To address this issue,a numerical wave tank is developed using CFD to estimate the wave-FB interaction of a moored dual-cylindrical FB,and the results are compared to experimental data from a previously published work.There is good agreement between them,indicating that the numerical model is sufficiently accurate.The numerical model is then applied to explore the effect of gap diffraction on the performance of FBs in2D experiments.It was discovered that the nondimensional gap length L_(Gap)/W_(Pool)should be smaller than 7.5%to ensure that the relative error of the transmission coefficient is smaller than 3%.The influence of the gap is also related to the entering wave properties,such as the wave height and period.展开更多
The constant panel method within the framework of potential flow theory in the time domain is developed for solving the hydrodynamic interactions between two parallel ships with forward speed.When solving problems wit...The constant panel method within the framework of potential flow theory in the time domain is developed for solving the hydrodynamic interactions between two parallel ships with forward speed.When solving problems within a time domain framework,the free water surface needs to simultaneously satisfy both the kinematic and dynamic boundary conditions of the free water surface.This provides conditions for adding artificial damping layers.Using the Runge−Kutta method to solve equations related to time.An upwind differential scheme is used in the present method to deal with the convection terms on the free surface to prevent waves upstream.Through the comparison with the available experimental data and other numerical methods,the present method is proved to have good mesh convergence,and satisfactory results can be obtained.The constant panel method is applied to calculate the hydrodynamic interaction responses of two parallel ships advancing in head waves.Numerical simulations are conducted on the effects of forward speed,different longitudinal and lateral distances on the motion response of two modified Wigley ships in head waves.Then further investigations are conducted on the effects of different ship types on the motion response.展开更多
Cryogenic valves play a crucial role in the production and transportation of liquefied natural gas(LNG),and are primarily responsible for efficiently controlling the inflow and outflow of LNG and regulating pressure.H...Cryogenic valves play a crucial role in the production and transportation of liquefied natural gas(LNG),and are primarily responsible for efficiently controlling the inflow and outflow of LNG and regulating pressure.However,due to their operation in low-temperature and high-humidity environments,crucial components such as drip trays are susceptible to frosting,which may lead to LNG leakage,thereby causing severe safety incidents.In this study,the user-defined function(UDF)is employed to redevelop Fluent,which integrates the frost growth model with the Eulerian multiphase flow model,to conduct a quantitative analysis of frosting on drip trays of cryogenic valves.The effects of environmental parameters,such as wind speed,ambient temperature,air humidity,and cold surface temperature on the growth of the frost layer were analyzed.This study reveals a limiting wind speed between 1 m/s and 2 m/s.Upon reaching this limit speed,the growth of the frost layer reaches its maximum,and further increases in the wind speed have no significant effect on the growth of the frost layer.Furthermore,the influence of the change in the flow field on droplet impingement and freezing during the growth of the frost layer is considered through the coupling method of the kinematic characteristics of water droplets and the collection coefficient of water droplets.This study identifies the influence of different parameters on the droplet impact efficiency,leading to the modification of the frost layer on the drip tray.展开更多
The previous study conducted by Li(2022)demonstrates that the Goda graph can be adequately represented by a solitary-wave-like form across the entire range of relative water depth,with the exception of the extremely s...The previous study conducted by Li(2022)demonstrates that the Goda graph can be adequately represented by a solitary-wave-like form across the entire range of relative water depth,with the exception of the extremely shallow zone.However,it remains uncertain whether this form is equally effective when applied to test data generated by irregular waves,as the Goda graph was initially developed based on overtopping data from regular wave tests.Additionally,it is unclear whether this form is suitable for formulating overtopping discharge at composite vertical walls.In order to address these questions,a 2D overtopping experiment was conducted,incorporating both simple and composite types of vertical walls,with various relative water depths across the entire range,excluding the extremely shallow zone.A novel analysis procedure was developed,which proved to be highly productive and can be considered a general method for data fitting.Ultimately,the study yielded two conclusions:(1)the solitary-wave-like form is remarkably effective in formulating overtopping test data generated by irregular waves,regardless of whether the vertical wall is simple or composite,and(2)the resulting formulas exhibit definitely better performance compared with existing formulas.展开更多
To realize the low-resistance shape optimization design of amphibious robots,an efficient optimization design framework is proposed to improve the geometric deformation flexibility and optimization efficiency.In the p...To realize the low-resistance shape optimization design of amphibious robots,an efficient optimization design framework is proposed to improve the geometric deformation flexibility and optimization efficiency.In the proposed framework,the free-form deformation parametric model of the flat slender body is established and an analytical calculation method for the height constraints is derived.CFD method is introduced to carry out the high-precision resistance calculation and a constrained Kriging-based optimization method is built to improve the optimization efficiency by circularly infilling the new sample points which satisfying the constraints.Finally,the shape of an amphibious robot example is optimized to get the low-resistance shape and the results demonstrate that the presented optimization design framework has the advantages of simplicity,flexibility and high efficiency.展开更多
Bistate plates have found extensive applications in the domains of smart structures and energy harvesting devices.Most bistable curved plates are characterized by a constant thickness profile.Regrettably,due to the in...Bistate plates have found extensive applications in the domains of smart structures and energy harvesting devices.Most bistable curved plates are characterized by a constant thickness profile.Regrettably,due to the inherent complexity of this problem,relatively little attention has been devoted to this area.In this study,we demonstrate how deep learning can facilitate the discovery of novel plate profiles that cater to multiple objectives,including maximizing stiffness,forward snapping force,and backward snapping force.Our proposed approach is distinguished by its efficiency in terms of low computational energy consumption and high effectiveness.It holds promise for future applications in the design and optimization of multistable structures with diverse objectives,addressing the requirements of various fields.展开更多
The application of ultra-high performance concrete(UHPC)as a covering layer for steel bridge decks has gained widespread popularity.By employing a connection without a shear connector between the steel plate and UHPC,...The application of ultra-high performance concrete(UHPC)as a covering layer for steel bridge decks has gained widespread popularity.By employing a connection without a shear connector between the steel plate and UHPC,namely,the sandblasted interface and the epoxy adhesive with sprinkled basalt aggregate interface,the installation cannot only be simplified but also the stress concentration resulting from the welded shear connectors can be eliminated.This study develops constitutive models for these two interfaces without shear connectors,based on the interfacial pull-off and push-out tests.For validation,three-point bending tests on the steel-UHPC composite plates are conducted.The results indicated that the proposed bilinear traction-separation model for the sandblasted interface and the trapezoidal traction-separation model for the epoxy adhesive with sprinkled basalt aggregate interface can generally calibrate the interfacial behavior.However,the utilization of the experimentally determined pure shear strength underestimates the load-carrying capacity of the composite plates in the case of three-point bending tests.By recalling the Mohr-Coulomb criterion,this underestimation is attributed to the enhancement of the interface shear strength by the presence of normal stress.展开更多
Water jet technology is widely used in submerged buried pipes as a non-traditional trenching process,often invol-ving a complex sediment response.An important adjustable and influential engineering variable in this tec...Water jet technology is widely used in submerged buried pipes as a non-traditional trenching process,often invol-ving a complex sediment response.An important adjustable and influential engineering variable in this technol-ogy is represented by the impinging distance.In this study,the FLOW-3D software was used to simulate the jet scouring of sand beds in a submerged environment.In particular,four sets of experimental conditions were con-sidered to discern the relationship between the maximum scour depth and mass and the impinging distance.As shown by the results,a critical impinging distance h0 exists by which the static scour depth can be maximized;the scour mass ratio between dynamic and static conditions decreases as the impinging distance increases.Moreover,the profile contours are similar when the erosion parameter Ec is in the range 0.35<Ec<2.Empirical equations applicable for predicting the jet trenching contour under both dynamic and static scour modes are also provided in this study.展开更多
Scouring experiments were conducted using a three-dimensional laser scanning technology for angles of the jet spanning the interval from 0°to 30°,and the characteristics of the scour hole in equilibrium cond...Scouring experiments were conducted using a three-dimensional laser scanning technology for angles of the jet spanning the interval from 0°to 30°,and the characteristics of the scour hole in equilibrium conditions were investigated accordingly.The results indicate that the optimal scouring effects occur when the jet angle is in the ranges between 15°and 20°.Moreover,the dimensionless profiles of the scour hole exhibit a high degree of similarity at different jet angles.Numerical simulations conducted using the Flow-3D software to investigate the bed shear stress along the jet impingement surface have shown that this stress is influenced by both the resultant force and the jet impingement surface area.It reaches its maximum value when the jet is vertical,decreases rapidly as the jet starts to tilt,then increases slightly,and decreases again significantly when the angle exceeds 20°.展开更多
Geotechnical engineering data are usually small-sample and high-dimensional,which brings a lot of challenges in predictive modeling.This paper uses a typical high-dimensional and small-sample swell pressure(P_(s))data...Geotechnical engineering data are usually small-sample and high-dimensional,which brings a lot of challenges in predictive modeling.This paper uses a typical high-dimensional and small-sample swell pressure(P_(s))dataset to explore the possibility of using multi-algorithm hybrid ensemble and dimensionality reduction methods to mitigate the uncertainty of soil parameter prediction.Based on six machine learning(ML)algorithms,the base learner pool is constructed,and four ensemble methods,Stacking(SG),Blending(BG),Voting regression(VR),and Feature weight linear stacking(FWL),are used for the multi-algorithm ensemble.Furthermore,the importance of permutation is used for feature dimensionality reduction to mitigate the impact of weakly correlated variables on predictive modeling.The results show that the proposed methods are superior to traditional prediction models and base ML models,where FWL is more suitable for modeling with small-sample datasets,and dimensionality reduction can simplify the data structure and reduce the adverse impact of the small-sample effect,which points the way to feature selection for predictive modeling.Based on the ensemble methods,the feature importance of the five primary factors affecting P_(s) is the maximum dry density(31.145%),clay fraction(15.876%),swell percent(15.289%),plasticity index(14%),and optimum moisture content(13.69%),the influence of input parameters on P_(s) is also investigated,in line with the findings of the existing literature.展开更多
The boundary condition is a crucial factor affecting the permeability variation due to suffusion.An experimental investigation on the permeability of gap-graded soil due to horizontal suffusion considering the boundar...The boundary condition is a crucial factor affecting the permeability variation due to suffusion.An experimental investigation on the permeability of gap-graded soil due to horizontal suffusion considering the boundary effect is conducted,where the hydraulic head difference(DH)varies,and the boundary includes non-loss and soil-loss conditions.Soil samples are filled into seven soil storerooms connected in turn.After evaluation,the variation in content of fine sand(ΔR_(f))and the hydraulic conductivity of soils in each storeroom(C_(i))are analyzed.In the non-loss test,the soil sample filling area is divided into runoff,transited,and accumulated areas according to the negative or positive ΔR_(f) values.ΔR_(f) increases from negative to positive along the seepage path,and Ci decreases from runoff area to transited area and then rebounds in accumulated area.In the soil-loss test,all soil sample filling areas belong to the runoff area,where the gentle-loss,strengthened-loss,and alleviated-loss parts are further divided.ΔR_(f) decreases from the gentle-loss part to the strengthened-loss part and then rebounds in the alleviated-loss part,and C_(i) increases and then decreases along the seepage path.The relationship between ΔR_(f) and Ci is different with the boundary condition.Ci exponentially decreases with ΔR_(f) in the non-loss test and increases with ΔR_(f) generally in the soil-loss test.展开更多
Deepsea mining has been proposed since the 1960s to alleviate the lack of resources on land.Vertical hydraulic transport of collected ores from the seabed to the sea surface is considered the most promising method for...Deepsea mining has been proposed since the 1960s to alleviate the lack of resources on land.Vertical hydraulic transport of collected ores from the seabed to the sea surface is considered the most promising method for industrial applications.In the present study,an indoor model test of the vertical hydraulic transport of particles was conducted.A noncontact optical method has been proposed to measure the local characteristics of the particles inside a vertical pipe,including the local concentration and particle velocity.The hydraulic gradient of ore transport was evaluated with various particle size distributions,particle densities,feeding concentrations and mixture flow velocities.During transport,the local concentration is larger than the feeding concentration,whereas the particle velocity is less than the mixture velocity.The qualitative effects of the local concentration and local fluid velocity on the particle velocity and slip velocity were investigated.The local fluid velocity contributes significantly to particle velocity and slip velocity,whereas the effect of the local concentration is marginal.A higher feeding concentration and mixture flow velocity result in an increased hydraulic gradient.The effect of the particle size gradation is slight,whereas the particle density plays a crucial role in the transport.展开更多
A numerical study of linear wave scattering over a floating platform has been simulated by an efficient numericalmodel in this letter.The non-hydrostatic model is used to simulate the free surface and the uneven botto...A numerical study of linear wave scattering over a floating platform has been simulated by an efficient numericalmodel in this letter.The non-hydrostatic model is used to simulate the free surface and the uneven bottom.For thesolid body modelling,the immersed boundary method(IBM)is implemented by introducing a virtual boundaryforce into the momentum equations to emulate the boundary conditions.This implementation enhances theability of the model to simulate interactions between waves and floating structures.A numerical case involvingwave interactions with a floating platform is studied to validate the numerical model.By simulating the wavepropagation,the numerical model captures the variation of the wave scattering very well,which verifies theperformance of the numerical model and the robust strategy of the IBM.展开更多
The scattering of normally incident water waves by two surface-piercing inclined perforated barriers in water with a uniform finite depth is investigated within the framework of linear water wave theory.Considering th...The scattering of normally incident water waves by two surface-piercing inclined perforated barriers in water with a uniform finite depth is investigated within the framework of linear water wave theory.Considering that thin barriers are zero-thickness,a novel numerical method involving the the coupling of the dual boundary element method(DBEM)with damping layers is applied.In order to effectively damp out the reflected waves,two damping layers,instead of pseudoboundaries are implemented near the two side boundaries of the computational domain.Thus,the modified linearized free surface boundary conditions are formulated and used for solving both the ordinary boundary integral equation as well as the hypersingular boundary integral equation for degenerate boundaries.The newly developed numerical method is validated against analytical methods using the matched eigenfunction expansion method for the special case of two vertical barriers or the inclined angle to the vertical being zero.The influence of the length of the two damping layers has been discussed.Moreover,these findings are also validated against previous results for several cases.After validation,the numerical results for the reflection coefficient,transmission coefficient and dissipation coefficient are obtained by varying the inclination angle and porosity-effect parameter.The effects of both the inclination angle and the porosity on the amplitudes of wave forces acting on both the front and rear barriers are also investigated.It is found that the effect of the inclination angle mainly shifts the location of the extremal values of the reflection and the transmission coefficients.Additionally,a moderate value of the porosity-parameter is quite effective at dissipating wave energy and mitigating the wave loads on dual barriers.展开更多
Structural Health Monitoring(SHM)systems have become a crucial tool for the operational management of long tunnels.For immersed tunnels exposed to both traffic loads and the effects of the marine environment,efficient...Structural Health Monitoring(SHM)systems have become a crucial tool for the operational management of long tunnels.For immersed tunnels exposed to both traffic loads and the effects of the marine environment,efficiently identifying abnormal conditions from the extensive unannotated SHM data presents a significant challenge.This study proposed amodel-based approach for anomaly detection and conducted validation and comparative analysis of two distinct temporal predictive models using SHM data from a real immersed tunnel.Firstly,a dynamic predictive model-based anomaly detectionmethod is proposed,which utilizes a rolling time window for modeling to achieve dynamic prediction.Leveraging the assumption of temporal data similarity,an interval prediction value deviation was employed to determine the abnormality of the data.Subsequently,dynamic predictive models were constructed based on the Autoregressive Integrated Moving Average(ARIMA)and Long Short-Term Memory(LSTM)models.The hyperparameters of these models were optimized and selected using monitoring data from the immersed tunnel,yielding viable static and dynamic predictive models.Finally,the models were applied within the same segment of SHM data,to validate the effectiveness of the anomaly detection approach based on dynamic predictive modeling.A detailed comparative analysis discusses the discrepancies in temporal anomaly detection between the ARIMA-and LSTM-based models.The results demonstrated that the dynamic predictive modelbased anomaly detection approach was effective for dealing with unannotated SHM data.In a comparison between ARIMA and LSTM,it was found that ARIMA demonstrated higher modeling efficiency,rendering it suitable for short-term predictions.In contrast,the LSTM model exhibited greater capacity to capture long-term performance trends and enhanced early warning capabilities,thereby resulting in superior overall performance.展开更多
Duo to fluctuations in atmospheric turbulence and yaw control strategies,wind turbines are often in a yaw state.To predict the far wake velocity field of wind turbines quickly and accurately,a wake velocity model was ...Duo to fluctuations in atmospheric turbulence and yaw control strategies,wind turbines are often in a yaw state.To predict the far wake velocity field of wind turbines quickly and accurately,a wake velocity model was derived based on the method of momentum conservation considering the wake steering of the wind turbine under yaw conditions.To consider the shear effect of the vertical incoming wind direction,a two-dimensional Gaussian distribution function was introduced to model the velocity loss at different axial positions in the far wake region based on the assumption of nonlinear wake expansion.This work also developed a“prediction-correction”method to solve the wake velocity field,and the accuracy of the model results was verified in wake experiments on the Garrad Hassan wind turbine.Moreover,a 33-kW two-blade horizontal axis wind turbine was simulated using this method,and the results were compared with the classical wake model under the same parameters and the computational fluid dynamics(CFD)simulation results.The results show that the nonlinear wake model well reflected the influence of incoming flow shear and yaw wake steering in the wake velocity field.Finally,computation of the wake flow for the Horns Rev offshore wind farm with 80 wind turbines showed an error within 8%compared to the experimental values.The established wake model is less computationally intensive than other methods,has a faster calculation speed,and can be used for engineering calculations of the wake velocity in the far wakefield of wind turbines.展开更多
In this study,the frequency characteristics of the turbulent wind and the effects of wind-wave coupling on the low-and high-frequency responses of semi-submersible floating offshore wind turbines(FOWT)are investigated...In this study,the frequency characteristics of the turbulent wind and the effects of wind-wave coupling on the low-and high-frequency responses of semi-submersible floating offshore wind turbines(FOWT)are investigated.Various wave load components,such as first-order wave loads,combined first-and second-order difference-frequency wave loads,combined first-and second-order sum-frequency wave loads,and first-and complete second-order wave loads are taken into consideration,while different turbulent environments are considered in aerodynamic loads.The com-parison is based on time histories and frequency spectra of platform motions and structural load responses and statistical values.The findings indicate that the second-order difference-frequency wave loads will significantly increase the natural frequency of low-frequency motion in the responses of the platform motion and structure load of the semi-submersible platform,which will cause structural fatigue damage.Under the action of turbulent wind,the influences of second-order wave loads on the platform motion and structural load response cannot be ignored,especially under extreme sea conditions.Therefore,in order to evaluate the dynamic responses of semi-submersible FOWT more accurately,the actual environment should be simulated more realistically.展开更多
Fluid resonance in moonpool formed by twin boxes under wave actions is investigated by using a viscous numerical wave flume with ReNormalization Group(RNG)turbulent model.The accuracy of the numerical model is validat...Fluid resonance in moonpool formed by twin boxes under wave actions is investigated by using a viscous numerical wave flume with ReNormalization Group(RNG)turbulent model.The accuracy of the numerical model is validated by available experimental data.Three types of edge profiles,the sharp edge,concave edge and convex edge are con-sidered.Numerical simulations show that the normalized resonant amplitude in moonpool decreases with the decrease of moonpool opening or increase of incident wave amplitude.The increased reflection coefficients are the major reason for the phenomena,implying less wave energy is able to support the wave resonance in moonpool.With the increase of incident wave height,the energy coefficients increase for convex edges around resonant fre-quency,which are oppositely with those of sharp and concave edges.Various flow patterns of the wave resonance in the vicinity of the moonpool entrance are also identified,which are mainly dependent on the edge profiles.展开更多
In this paper,we focus on the two-dimensional pulsating nanofluid flow through a parallel-plate channel in the presence of a magnetic field.The pulsating flow is produced by an applied pressure gradient that fluctuate...In this paper,we focus on the two-dimensional pulsating nanofluid flow through a parallel-plate channel in the presence of a magnetic field.The pulsating flow is produced by an applied pressure gradient that fluctuates with a small amplitude.A kind of proper transformation is used so that the governing equations describing the momentum and thermal energy are reduced to a set of non-dimensional equations.The analytical expressions of the pulsating velocity,temperature,and Nusselt number of nanofluids are obtained by the perturbation technique.In the present study,the effects of the Cu-H2O and Al_(2)O_(3)-H2O nanofluids on the flow and heat transfer in pulsating flow are compared and analyzed.The results show that the convective heat transfer effect of Cu-H2O nanofluids is better than that of Al_(2)O_(3)-H2O nanofluids.Also,the effects of the Hartmann number and pulsation amplitude on the velocity,temperature,and Nusselt number are examined and discussed in detail.The present work indicates that increasing the Hartmann number and pulsation amplitude can enhance the heat transfer of the pulsating flow.In addition,selecting an optimal pulsation frequency can maximize the convective heat transfer of the pulsating flow.Therefore,improved understanding of these fundamental mechanisms is conducive to the optimal design of thermal systems.展开更多
基金financially supported by China National Funds for Distinguished Young Scientists(Grant No.52025112)the Key Projects of the National Natural Science Foundation of China(Grant No.52331011)。
文摘Two-dimensional(2D)flume experiments are useful in investigating the performances of floating breakwaters(FBs),including hydrodynamic performances,motion responses,and mooring forces.Designing a reasonable gap between the flume wall and the FBs is a critical step in 2D flume tests.However,research on the effect of the gap on the accuracy of 2D FB experimental results is scarce.To address this issue,a numerical wave tank is developed using CFD to estimate the wave-FB interaction of a moored dual-cylindrical FB,and the results are compared to experimental data from a previously published work.There is good agreement between them,indicating that the numerical model is sufficiently accurate.The numerical model is then applied to explore the effect of gap diffraction on the performance of FBs in2D experiments.It was discovered that the nondimensional gap length L_(Gap)/W_(Pool)should be smaller than 7.5%to ensure that the relative error of the transmission coefficient is smaller than 3%.The influence of the gap is also related to the entering wave properties,such as the wave height and period.
基金supported by the National Natural Science Foundation of China(Grant Nos.52271278 and 52111530137)the Natural Science Found of Jiangsu Province(Grant No.BK20221389)the Newton Advanced Fellowships(Grant No.NAF\R1\180304)by the Royal Society.
文摘The constant panel method within the framework of potential flow theory in the time domain is developed for solving the hydrodynamic interactions between two parallel ships with forward speed.When solving problems within a time domain framework,the free water surface needs to simultaneously satisfy both the kinematic and dynamic boundary conditions of the free water surface.This provides conditions for adding artificial damping layers.Using the Runge−Kutta method to solve equations related to time.An upwind differential scheme is used in the present method to deal with the convection terms on the free surface to prevent waves upstream.Through the comparison with the available experimental data and other numerical methods,the present method is proved to have good mesh convergence,and satisfactory results can be obtained.The constant panel method is applied to calculate the hydrodynamic interaction responses of two parallel ships advancing in head waves.Numerical simulations are conducted on the effects of forward speed,different longitudinal and lateral distances on the motion response of two modified Wigley ships in head waves.Then further investigations are conducted on the effects of different ship types on the motion response.
基金officially supported by the National Natural Science Foundation of China(Grant Nos.42276225,51879125)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.SJCX23_2208)。
文摘Cryogenic valves play a crucial role in the production and transportation of liquefied natural gas(LNG),and are primarily responsible for efficiently controlling the inflow and outflow of LNG and regulating pressure.However,due to their operation in low-temperature and high-humidity environments,crucial components such as drip trays are susceptible to frosting,which may lead to LNG leakage,thereby causing severe safety incidents.In this study,the user-defined function(UDF)is employed to redevelop Fluent,which integrates the frost growth model with the Eulerian multiphase flow model,to conduct a quantitative analysis of frosting on drip trays of cryogenic valves.The effects of environmental parameters,such as wind speed,ambient temperature,air humidity,and cold surface temperature on the growth of the frost layer were analyzed.This study reveals a limiting wind speed between 1 m/s and 2 m/s.Upon reaching this limit speed,the growth of the frost layer reaches its maximum,and further increases in the wind speed have no significant effect on the growth of the frost layer.Furthermore,the influence of the change in the flow field on droplet impingement and freezing during the growth of the frost layer is considered through the coupling method of the kinematic characteristics of water droplets and the collection coefficient of water droplets.This study identifies the influence of different parameters on the droplet impact efficiency,leading to the modification of the frost layer on the drip tray.
基金financially supported by the National Natural Science Foundation of China(Gramt No.51309122)。
文摘The previous study conducted by Li(2022)demonstrates that the Goda graph can be adequately represented by a solitary-wave-like form across the entire range of relative water depth,with the exception of the extremely shallow zone.However,it remains uncertain whether this form is equally effective when applied to test data generated by irregular waves,as the Goda graph was initially developed based on overtopping data from regular wave tests.Additionally,it is unclear whether this form is suitable for formulating overtopping discharge at composite vertical walls.In order to address these questions,a 2D overtopping experiment was conducted,incorporating both simple and composite types of vertical walls,with various relative water depths across the entire range,excluding the extremely shallow zone.A novel analysis procedure was developed,which proved to be highly productive and can be considered a general method for data fitting.Ultimately,the study yielded two conclusions:(1)the solitary-wave-like form is remarkably effective in formulating overtopping test data generated by irregular waves,regardless of whether the vertical wall is simple or composite,and(2)the resulting formulas exhibit definitely better performance compared with existing formulas.
基金financially supported by the National Natural Science Foundation of China(Grant No.52372356).
文摘To realize the low-resistance shape optimization design of amphibious robots,an efficient optimization design framework is proposed to improve the geometric deformation flexibility and optimization efficiency.In the proposed framework,the free-form deformation parametric model of the flat slender body is established and an analytical calculation method for the height constraints is derived.CFD method is introduced to carry out the high-precision resistance calculation and a constrained Kriging-based optimization method is built to improve the optimization efficiency by circularly infilling the new sample points which satisfying the constraints.Finally,the shape of an amphibious robot example is optimized to get the low-resistance shape and the results demonstrate that the presented optimization design framework has the advantages of simplicity,flexibility and high efficiency.
文摘Bistate plates have found extensive applications in the domains of smart structures and energy harvesting devices.Most bistable curved plates are characterized by a constant thickness profile.Regrettably,due to the inherent complexity of this problem,relatively little attention has been devoted to this area.In this study,we demonstrate how deep learning can facilitate the discovery of novel plate profiles that cater to multiple objectives,including maximizing stiffness,forward snapping force,and backward snapping force.Our proposed approach is distinguished by its efficiency in terms of low computational energy consumption and high effectiveness.It holds promise for future applications in the design and optimization of multistable structures with diverse objectives,addressing the requirements of various fields.
基金supported by the National Natural Science Foundation of China(Grant Nos.52108168&52208398).
文摘The application of ultra-high performance concrete(UHPC)as a covering layer for steel bridge decks has gained widespread popularity.By employing a connection without a shear connector between the steel plate and UHPC,namely,the sandblasted interface and the epoxy adhesive with sprinkled basalt aggregate interface,the installation cannot only be simplified but also the stress concentration resulting from the welded shear connectors can be eliminated.This study develops constitutive models for these two interfaces without shear connectors,based on the interfacial pull-off and push-out tests.For validation,three-point bending tests on the steel-UHPC composite plates are conducted.The results indicated that the proposed bilinear traction-separation model for the sandblasted interface and the trapezoidal traction-separation model for the epoxy adhesive with sprinkled basalt aggregate interface can generally calibrate the interfacial behavior.However,the utilization of the experimentally determined pure shear strength underestimates the load-carrying capacity of the composite plates in the case of three-point bending tests.By recalling the Mohr-Coulomb criterion,this underestimation is attributed to the enhancement of the interface shear strength by the presence of normal stress.
基金supported by the Research on the Prediction Mechanism of Corrosion for High Strength Steel in Deep Sea Service Driven by Multi-Scale,High-Dimension and Small-Sample Data(C2301002635)Research on the Influence of Nozzle Structure on the Scouring Effect of Submerged Water Jet(2023R411045)+1 种基金the Zhejiang Ocean University Outstanding Master’s Thesis Cultivation Project(ZJOUYJS20230018)the Scientific Research Project of Zhejiang Graduate Education Society in 2022(2022-021)which was gained by Chen.
文摘Water jet technology is widely used in submerged buried pipes as a non-traditional trenching process,often invol-ving a complex sediment response.An important adjustable and influential engineering variable in this technol-ogy is represented by the impinging distance.In this study,the FLOW-3D software was used to simulate the jet scouring of sand beds in a submerged environment.In particular,four sets of experimental conditions were con-sidered to discern the relationship between the maximum scour depth and mass and the impinging distance.As shown by the results,a critical impinging distance h0 exists by which the static scour depth can be maximized;the scour mass ratio between dynamic and static conditions decreases as the impinging distance increases.Moreover,the profile contours are similar when the erosion parameter Ec is in the range 0.35<Ec<2.Empirical equations applicable for predicting the jet trenching contour under both dynamic and static scour modes are also provided in this study.
基金supported by Research on the Influence of Nozzle Structure on the Scouring Effect of Submerged Water Jet(2023R411045)Design and Control Strategy Research of PEM Fuel Cell Hybrid Propulsion System for Ships(2024R411015)+1 种基金Zhejiang Ocean University Outstanding Master’s Thesis Cultivation Project(ZJOUYJS20230018)General Program of Education Department of Zhejiang Province(Y202250817)which was gained by Chen.
文摘Scouring experiments were conducted using a three-dimensional laser scanning technology for angles of the jet spanning the interval from 0°to 30°,and the characteristics of the scour hole in equilibrium conditions were investigated accordingly.The results indicate that the optimal scouring effects occur when the jet angle is in the ranges between 15°and 20°.Moreover,the dimensionless profiles of the scour hole exhibit a high degree of similarity at different jet angles.Numerical simulations conducted using the Flow-3D software to investigate the bed shear stress along the jet impingement surface have shown that this stress is influenced by both the resultant force and the jet impingement surface area.It reaches its maximum value when the jet is vertical,decreases rapidly as the jet starts to tilt,then increases slightly,and decreases again significantly when the angle exceeds 20°.
基金great gratitude to National Key Research and Development Project(Grant No.2019YFC1509800)for their financial supportNational Nature Science Foundation of China(Grant No.12172211)for their financial support.
文摘Geotechnical engineering data are usually small-sample and high-dimensional,which brings a lot of challenges in predictive modeling.This paper uses a typical high-dimensional and small-sample swell pressure(P_(s))dataset to explore the possibility of using multi-algorithm hybrid ensemble and dimensionality reduction methods to mitigate the uncertainty of soil parameter prediction.Based on six machine learning(ML)algorithms,the base learner pool is constructed,and four ensemble methods,Stacking(SG),Blending(BG),Voting regression(VR),and Feature weight linear stacking(FWL),are used for the multi-algorithm ensemble.Furthermore,the importance of permutation is used for feature dimensionality reduction to mitigate the impact of weakly correlated variables on predictive modeling.The results show that the proposed methods are superior to traditional prediction models and base ML models,where FWL is more suitable for modeling with small-sample datasets,and dimensionality reduction can simplify the data structure and reduce the adverse impact of the small-sample effect,which points the way to feature selection for predictive modeling.Based on the ensemble methods,the feature importance of the five primary factors affecting P_(s) is the maximum dry density(31.145%),clay fraction(15.876%),swell percent(15.289%),plasticity index(14%),and optimum moisture content(13.69%),the influence of input parameters on P_(s) is also investigated,in line with the findings of the existing literature.
基金The research work described herein was funded by the National Nature Science Foundation of China(Grant No.41877213).This financial support is gratefully acknowledged.
文摘The boundary condition is a crucial factor affecting the permeability variation due to suffusion.An experimental investigation on the permeability of gap-graded soil due to horizontal suffusion considering the boundary effect is conducted,where the hydraulic head difference(DH)varies,and the boundary includes non-loss and soil-loss conditions.Soil samples are filled into seven soil storerooms connected in turn.After evaluation,the variation in content of fine sand(ΔR_(f))and the hydraulic conductivity of soils in each storeroom(C_(i))are analyzed.In the non-loss test,the soil sample filling area is divided into runoff,transited,and accumulated areas according to the negative or positive ΔR_(f) values.ΔR_(f) increases from negative to positive along the seepage path,and Ci decreases from runoff area to transited area and then rebounds in accumulated area.In the soil-loss test,all soil sample filling areas belong to the runoff area,where the gentle-loss,strengthened-loss,and alleviated-loss parts are further divided.ΔR_(f) decreases from the gentle-loss part to the strengthened-loss part and then rebounds in the alleviated-loss part,and C_(i) increases and then decreases along the seepage path.The relationship between ΔR_(f) and Ci is different with the boundary condition.Ci exponentially decreases with ΔR_(f) in the non-loss test and increases with ΔR_(f) generally in the soil-loss test.
基金financially supported by the Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City(Grant No.520LH052)the National Natural Science Foundation of China(Grant No.51909164).
文摘Deepsea mining has been proposed since the 1960s to alleviate the lack of resources on land.Vertical hydraulic transport of collected ores from the seabed to the sea surface is considered the most promising method for industrial applications.In the present study,an indoor model test of the vertical hydraulic transport of particles was conducted.A noncontact optical method has been proposed to measure the local characteristics of the particles inside a vertical pipe,including the local concentration and particle velocity.The hydraulic gradient of ore transport was evaluated with various particle size distributions,particle densities,feeding concentrations and mixture flow velocities.During transport,the local concentration is larger than the feeding concentration,whereas the particle velocity is less than the mixture velocity.The qualitative effects of the local concentration and local fluid velocity on the particle velocity and slip velocity were investigated.The local fluid velocity contributes significantly to particle velocity and slip velocity,whereas the effect of the local concentration is marginal.A higher feeding concentration and mixture flow velocity result in an increased hydraulic gradient.The effect of the particle size gradation is slight,whereas the particle density plays a crucial role in the transport.
基金supported by Shanghai 2021“Science and Technology Innovation Action Plan”:Scientific and Technological Projects for Social Development(Grant No.21DZ1202701).
文摘A numerical study of linear wave scattering over a floating platform has been simulated by an efficient numericalmodel in this letter.The non-hydrostatic model is used to simulate the free surface and the uneven bottom.For thesolid body modelling,the immersed boundary method(IBM)is implemented by introducing a virtual boundaryforce into the momentum equations to emulate the boundary conditions.This implementation enhances theability of the model to simulate interactions between waves and floating structures.A numerical case involvingwave interactions with a floating platform is studied to validate the numerical model.By simulating the wavepropagation,the numerical model captures the variation of the wave scattering very well,which verifies theperformance of the numerical model and the robust strategy of the IBM.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51809209 and 11702244)the Open Fund of Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province(Grant No.2021SS04).
文摘The scattering of normally incident water waves by two surface-piercing inclined perforated barriers in water with a uniform finite depth is investigated within the framework of linear water wave theory.Considering that thin barriers are zero-thickness,a novel numerical method involving the the coupling of the dual boundary element method(DBEM)with damping layers is applied.In order to effectively damp out the reflected waves,two damping layers,instead of pseudoboundaries are implemented near the two side boundaries of the computational domain.Thus,the modified linearized free surface boundary conditions are formulated and used for solving both the ordinary boundary integral equation as well as the hypersingular boundary integral equation for degenerate boundaries.The newly developed numerical method is validated against analytical methods using the matched eigenfunction expansion method for the special case of two vertical barriers or the inclined angle to the vertical being zero.The influence of the length of the two damping layers has been discussed.Moreover,these findings are also validated against previous results for several cases.After validation,the numerical results for the reflection coefficient,transmission coefficient and dissipation coefficient are obtained by varying the inclination angle and porosity-effect parameter.The effects of both the inclination angle and the porosity on the amplitudes of wave forces acting on both the front and rear barriers are also investigated.It is found that the effect of the inclination angle mainly shifts the location of the extremal values of the reflection and the transmission coefficients.Additionally,a moderate value of the porosity-parameter is quite effective at dissipating wave energy and mitigating the wave loads on dual barriers.
基金supported by the Research and Development Center of Transport Industry of New Generation of Artificial Intelligence Technology(Grant No.202202H)the National Key R&D Program of China(Grant No.2019YFB1600702)the National Natural Science Foundation of China(Grant Nos.51978600&51808336).
文摘Structural Health Monitoring(SHM)systems have become a crucial tool for the operational management of long tunnels.For immersed tunnels exposed to both traffic loads and the effects of the marine environment,efficiently identifying abnormal conditions from the extensive unannotated SHM data presents a significant challenge.This study proposed amodel-based approach for anomaly detection and conducted validation and comparative analysis of two distinct temporal predictive models using SHM data from a real immersed tunnel.Firstly,a dynamic predictive model-based anomaly detectionmethod is proposed,which utilizes a rolling time window for modeling to achieve dynamic prediction.Leveraging the assumption of temporal data similarity,an interval prediction value deviation was employed to determine the abnormality of the data.Subsequently,dynamic predictive models were constructed based on the Autoregressive Integrated Moving Average(ARIMA)and Long Short-Term Memory(LSTM)models.The hyperparameters of these models were optimized and selected using monitoring data from the immersed tunnel,yielding viable static and dynamic predictive models.Finally,the models were applied within the same segment of SHM data,to validate the effectiveness of the anomaly detection approach based on dynamic predictive modeling.A detailed comparative analysis discusses the discrepancies in temporal anomaly detection between the ARIMA-and LSTM-based models.The results demonstrated that the dynamic predictive modelbased anomaly detection approach was effective for dealing with unannotated SHM data.In a comparison between ARIMA and LSTM,it was found that ARIMA demonstrated higher modeling efficiency,rendering it suitable for short-term predictions.In contrast,the LSTM model exhibited greater capacity to capture long-term performance trends and enhanced early warning capabilities,thereby resulting in superior overall performance.
基金Supported by the Key R&D Program of Shandong Province,China(No.2023ZLYS01)the National Key R&D Program of China(No.2022YFC3104200)+2 种基金the National Natural Science Foundation of China(No.12302301)the China Postdoctoral Science Foundation(No.2023M742229)the Zhejiang Provincial Natural Science Foundation(ZJNSF)(No.LQ22F030002)。
文摘Duo to fluctuations in atmospheric turbulence and yaw control strategies,wind turbines are often in a yaw state.To predict the far wake velocity field of wind turbines quickly and accurately,a wake velocity model was derived based on the method of momentum conservation considering the wake steering of the wind turbine under yaw conditions.To consider the shear effect of the vertical incoming wind direction,a two-dimensional Gaussian distribution function was introduced to model the velocity loss at different axial positions in the far wake region based on the assumption of nonlinear wake expansion.This work also developed a“prediction-correction”method to solve the wake velocity field,and the accuracy of the model results was verified in wake experiments on the Garrad Hassan wind turbine.Moreover,a 33-kW two-blade horizontal axis wind turbine was simulated using this method,and the results were compared with the classical wake model under the same parameters and the computational fluid dynamics(CFD)simulation results.The results show that the nonlinear wake model well reflected the influence of incoming flow shear and yaw wake steering in the wake velocity field.Finally,computation of the wake flow for the Horns Rev offshore wind farm with 80 wind turbines showed an error within 8%compared to the experimental values.The established wake model is less computationally intensive than other methods,has a faster calculation speed,and can be used for engineering calculations of the wake velocity in the far wakefield of wind turbines.
基金Supported by the Key R&D Program of Shandong Province,China(No.2023ZLYS01)the National Key R&D Program of China(No.2022YFC3104200)+1 种基金the National Natural Science Foundation of China(No.12302301)the Zhejiang Provincial Natural Science Foundation(ZJNSF)(No.LQ22F030002)。
基金supported by the Natural Science Foundation of Zhejiang Province(Grant No.LHZ21E090003)the National Nature Science Foundation of China(Grant No.52171279)+1 种基金Zhoushan Science&Technology Project(Grant No.2021C21002)supported by CNPq(Conselho Nacional de Desenvolvimento Científico e Tecnológico,Grant No.301474/2017-6).
文摘In this study,the frequency characteristics of the turbulent wind and the effects of wind-wave coupling on the low-and high-frequency responses of semi-submersible floating offshore wind turbines(FOWT)are investigated.Various wave load components,such as first-order wave loads,combined first-and second-order difference-frequency wave loads,combined first-and second-order sum-frequency wave loads,and first-and complete second-order wave loads are taken into consideration,while different turbulent environments are considered in aerodynamic loads.The com-parison is based on time histories and frequency spectra of platform motions and structural load responses and statistical values.The findings indicate that the second-order difference-frequency wave loads will significantly increase the natural frequency of low-frequency motion in the responses of the platform motion and structure load of the semi-submersible platform,which will cause structural fatigue damage.Under the action of turbulent wind,the influences of second-order wave loads on the platform motion and structural load response cannot be ignored,especially under extreme sea conditions.Therefore,in order to evaluate the dynamic responses of semi-submersible FOWT more accurately,the actual environment should be simulated more realistically.
基金supported by the National Natural Science Foundation of China(Grant Nos.52171250,52371277,and 51909027).
文摘Fluid resonance in moonpool formed by twin boxes under wave actions is investigated by using a viscous numerical wave flume with ReNormalization Group(RNG)turbulent model.The accuracy of the numerical model is validated by available experimental data.Three types of edge profiles,the sharp edge,concave edge and convex edge are con-sidered.Numerical simulations show that the normalized resonant amplitude in moonpool decreases with the decrease of moonpool opening or increase of incident wave amplitude.The increased reflection coefficients are the major reason for the phenomena,implying less wave energy is able to support the wave resonance in moonpool.With the increase of incident wave height,the energy coefficients increase for convex edges around resonant fre-quency,which are oppositely with those of sharp and concave edges.Various flow patterns of the wave resonance in the vicinity of the moonpool entrance are also identified,which are mainly dependent on the edge profiles.
基金Project supported by the China Postdoctoral Science Foundation(No.2018M631909)the Doctor of Entrepreneurship and Innovation Project of Jiangsu Province(No.JSSCBS20221300)。
文摘In this paper,we focus on the two-dimensional pulsating nanofluid flow through a parallel-plate channel in the presence of a magnetic field.The pulsating flow is produced by an applied pressure gradient that fluctuates with a small amplitude.A kind of proper transformation is used so that the governing equations describing the momentum and thermal energy are reduced to a set of non-dimensional equations.The analytical expressions of the pulsating velocity,temperature,and Nusselt number of nanofluids are obtained by the perturbation technique.In the present study,the effects of the Cu-H2O and Al_(2)O_(3)-H2O nanofluids on the flow and heat transfer in pulsating flow are compared and analyzed.The results show that the convective heat transfer effect of Cu-H2O nanofluids is better than that of Al_(2)O_(3)-H2O nanofluids.Also,the effects of the Hartmann number and pulsation amplitude on the velocity,temperature,and Nusselt number are examined and discussed in detail.The present work indicates that increasing the Hartmann number and pulsation amplitude can enhance the heat transfer of the pulsating flow.In addition,selecting an optimal pulsation frequency can maximize the convective heat transfer of the pulsating flow.Therefore,improved understanding of these fundamental mechanisms is conducive to the optimal design of thermal systems.