To achieve real-time control of tokamak plasmas, the equilibrium reconstruction has to be completed sufficiently quickly. For the case of an EAST tokamak experiment, real-time equilibrium reconstruction is generally r...To achieve real-time control of tokamak plasmas, the equilibrium reconstruction has to be completed sufficiently quickly. For the case of an EAST tokamak experiment, real-time equilibrium reconstruction is generally required to provide results within 1ms. A graphic processing unit(GPU) parallel Grad–Shafranov(G-S) solver is developed in P-EFIT code,which is built with the CUDA? architecture to take advantage of massively parallel GPU cores and significantly accelerate the computation. Optimization and implementation of numerical algorithms for a block tri-diagonal linear system are presented. The solver can complete a calculation within 16 μs with 65×65 grid size and 27 μs with 129×129 grid size, and this solver supports that P-EFIT can fulfill the time feasibility for real-time plasma control with both grid sizes.展开更多
Depth estimation of subsurface faults is one of the problems in gravity interpretation. We tried using the support vector classifier (SVC) method in the estimation. Using forward and nonlinear inverse techniques, de...Depth estimation of subsurface faults is one of the problems in gravity interpretation. We tried using the support vector classifier (SVC) method in the estimation. Using forward and nonlinear inverse techniques, detecting the depth of subsurface faults with related error is possible but it is necessary to have an initial guess for the depth and this initial guess usually comes from non-gravity data. We introduce SVC in this paper as one of the tools for estimating the depth of subsurface faults using gravity data. We can suppose that each subsurface fault depth is a class and that SVC is a classification algorithm. To better use the SVC algorithm, we select proper depth estimation features using a proper features selection (FS) algorithm. In this research, we produce a training set consisting of synthetic gravity profiles created by subsurface faults at different depths to train the SVC code to estimate the depth of real subsurface faults. Then we test our trained SVC code by a testing set consisting of other synthetic gravity profiles created by subsurface faults at different depths. We also tested our trained SVC code using real data.展开更多
The ionization time in sequential double ionization with an elliptically polarized laser pulse has been examined theo- retically using a semiclassical method. The significant discrepancy between the ionization time fo...The ionization time in sequential double ionization with an elliptically polarized laser pulse has been examined theo- retically using a semiclassical method. The significant discrepancy between the ionization time for parallel and anti-parallel electron emission is predicted numerically for the first time. The impact of the carrier envelope phase offset is also studied in this work.展开更多
The fusion neutron penumbral imaging system Monte Carlo model was established. The transfer functions of the two discrete units in the neutron source were obtained in two situations: Imaging in geometrical near-optica...The fusion neutron penumbral imaging system Monte Carlo model was established. The transfer functions of the two discrete units in the neutron source were obtained in two situations: Imaging in geometrical near-optical and real situation. The spatial resolutions of the imaging system in two situations were evaluated and compared. The penumbral images of four units in the source were obtained by means of 2-dimensional (2D) convolution and Monte Carlo simulation. The penumbral images were reconstructed with the same method of filter. The same results were confirmed. The encoding essence of penumbral imaging was revealed. With MCNP(Monte Carlo N-particle) simulation, the neutron penumbral images of the large area source (200 μm×200 μm) on scintillation fiber array were obtained. The improved Wiener filter method was used to reconstruct the penumbral image and the source image was obtained. The results agree with the preset neutron source image. The feasibility of the neutron imaging system was verified.展开更多
A variational data assimilation method is proposed to estimate the near-surface soil moisture and surface sensible and latent heat fluxes. The method merges the five parts into a cost function, i.e., the differences o...A variational data assimilation method is proposed to estimate the near-surface soil moisture and surface sensible and latent heat fluxes. The method merges the five parts into a cost function, i.e., the differences of wind, potential temperature, and specific humidity gradient between observations and those computed by the profile method, the difference of latent heat fluxes calculated using the ECMWF land surface evaporation scheme and the profile method, and a weak constraint for surface energy balance. By using an optimal algorithm, the best solutions are found. The method is tested with the data collected at Feixi Station (31.41^oN, 117.08^oE) supported by the China Heavy Rain Experiment and Study (HeRES) during 7-30 June 2001. The results show that estimated near-surface soil moistures can quickly respond to rainfall, and their temporal variation is consistent with that of measurements of average soil moisture over 15-cm top depth with a maximum error less than 0.03 m^3 m^-3. The surface heat fluxes calculated by this method are consistent with those by the Bowen ratio method, but at the same time it can overcome the instability problem occurring in the Bowen ratio method when the latter is about -1. Meanwhile, the variational method is more accurate than the profile method in terms of satisfying the surface energy balance. The sensitivity tests also show that the variational method is the most stable one among the three methods.展开更多
基金supported by the National Magnetic Confinement Fusion Research Program of China(Grant No.2014GB103000)the National Natural Science Foundation of China(Grant No.11575245)the National Natural Science Foundation of China for Youth(Grant No.11205191)
文摘To achieve real-time control of tokamak plasmas, the equilibrium reconstruction has to be completed sufficiently quickly. For the case of an EAST tokamak experiment, real-time equilibrium reconstruction is generally required to provide results within 1ms. A graphic processing unit(GPU) parallel Grad–Shafranov(G-S) solver is developed in P-EFIT code,which is built with the CUDA? architecture to take advantage of massively parallel GPU cores and significantly accelerate the computation. Optimization and implementation of numerical algorithms for a block tri-diagonal linear system are presented. The solver can complete a calculation within 16 μs with 65×65 grid size and 27 μs with 129×129 grid size, and this solver supports that P-EFIT can fulfill the time feasibility for real-time plasma control with both grid sizes.
文摘Depth estimation of subsurface faults is one of the problems in gravity interpretation. We tried using the support vector classifier (SVC) method in the estimation. Using forward and nonlinear inverse techniques, detecting the depth of subsurface faults with related error is possible but it is necessary to have an initial guess for the depth and this initial guess usually comes from non-gravity data. We introduce SVC in this paper as one of the tools for estimating the depth of subsurface faults using gravity data. We can suppose that each subsurface fault depth is a class and that SVC is a classification algorithm. To better use the SVC algorithm, we select proper depth estimation features using a proper features selection (FS) algorithm. In this research, we produce a training set consisting of synthetic gravity profiles created by subsurface faults at different depths to train the SVC code to estimate the depth of real subsurface faults. Then we test our trained SVC code by a testing set consisting of other synthetic gravity profiles created by subsurface faults at different depths. We also tested our trained SVC code using real data.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11135002, 11075069, 91026021, 11075068, and 10975065)the Fundamental Research Funds for the Central Universities of China (Grant No. lzujbky-2010-k08)the Scholarship Award for Excellent Doctoral Student granted by Ministry of Education
文摘The ionization time in sequential double ionization with an elliptically polarized laser pulse has been examined theo- retically using a semiclassical method. The significant discrepancy between the ionization time for parallel and anti-parallel electron emission is predicted numerically for the first time. The impact of the carrier envelope phase offset is also studied in this work.
基金Supported by the NSAF Joint Fund set up by NSFC and CAEP (Grant No. 10576022)
文摘The fusion neutron penumbral imaging system Monte Carlo model was established. The transfer functions of the two discrete units in the neutron source were obtained in two situations: Imaging in geometrical near-optical and real situation. The spatial resolutions of the imaging system in two situations were evaluated and compared. The penumbral images of four units in the source were obtained by means of 2-dimensional (2D) convolution and Monte Carlo simulation. The penumbral images were reconstructed with the same method of filter. The same results were confirmed. The encoding essence of penumbral imaging was revealed. With MCNP(Monte Carlo N-particle) simulation, the neutron penumbral images of the large area source (200 μm×200 μm) on scintillation fiber array were obtained. The improved Wiener filter method was used to reconstruct the penumbral image and the source image was obtained. The results agree with the preset neutron source image. The feasibility of the neutron imaging system was verified.
基金Supported by the National Natural Science Foundation of China under Grant Nos.40475012 and 40775065.
文摘A variational data assimilation method is proposed to estimate the near-surface soil moisture and surface sensible and latent heat fluxes. The method merges the five parts into a cost function, i.e., the differences of wind, potential temperature, and specific humidity gradient between observations and those computed by the profile method, the difference of latent heat fluxes calculated using the ECMWF land surface evaporation scheme and the profile method, and a weak constraint for surface energy balance. By using an optimal algorithm, the best solutions are found. The method is tested with the data collected at Feixi Station (31.41^oN, 117.08^oE) supported by the China Heavy Rain Experiment and Study (HeRES) during 7-30 June 2001. The results show that estimated near-surface soil moistures can quickly respond to rainfall, and their temporal variation is consistent with that of measurements of average soil moisture over 15-cm top depth with a maximum error less than 0.03 m^3 m^-3. The surface heat fluxes calculated by this method are consistent with those by the Bowen ratio method, but at the same time it can overcome the instability problem occurring in the Bowen ratio method when the latter is about -1. Meanwhile, the variational method is more accurate than the profile method in terms of satisfying the surface energy balance. The sensitivity tests also show that the variational method is the most stable one among the three methods.