Based on improved immune algorithm, the location of material storage in manufacturing workshop is studied. Intelligent optimization algorithms include particle swarm optimization algorithm, genetic selection algorithm...Based on improved immune algorithm, the location of material storage in manufacturing workshop is studied. Intelligent optimization algorithms include particle swarm optimization algorithm, genetic selection algorithm, simulated annealing algorithm, tabu search algorithm and so on. According to the non-linear constraints, the objective function is established to solve the minimum energy consumption of material distribution. The improved immune algorithm can solve the complex problem of manufacturing workshop, and the material storage location and scheduling scheme can be obtained by combining simulation software. Scheduling optimization involves material warehousing, sorting, loading and unloading, handling and so on. Using the one-to-one accurate distribution principle and MATLAB software to simulate and analyze, the location of material warehousing in manufacturing workshop is determined, and the material distribution and scheduling are studied.展开更多
The accuracy of temperature measurement is often reduced due to random noise in Raman-based distributed temperature sensor (RDTS). A noise reduction method based on a nonlinear filter is thus proposed in this paper. C...The accuracy of temperature measurement is often reduced due to random noise in Raman-based distributed temperature sensor (RDTS). A noise reduction method based on a nonlinear filter is thus proposed in this paper. Compared with the temperature demodulation results of raw signals, the proposed method in this paper can reduce the average maximum deviation of temperature measurement results from 4.1°C to 1.2°C at 40.0°C, 50.0°C and 60.0°C. And the proposed method in this paper can improve the accuracy of temperature measurement of Raman-based distributed temperature sensor better than the commonly used wavelet transform-based method. The advantages of the proposed method in improving the accuracy of temperature measurement for Raman-based distributed temperature sensor are quantitatively reflected in the maximum deviation and root mean square error of temperature measurement results. Therefore, this paper proposes an effective and feasible method to improve the accuracy of temperature measurement results for Raman-based distributed temperature sensor.展开更多
The construction of complex stratigraphic surfaces is widely employed in many fields, such as petroleum exploration, geological modeling, and geological structure analysis. It also serves as an important foundation fo...The construction of complex stratigraphic surfaces is widely employed in many fields, such as petroleum exploration, geological modeling, and geological structure analysis. It also serves as an important foundation for data visualization and visual analysis in these fields. The existing surface construction methods have several deficiencies and face various difficulties, such as the presence of multitype faults and roughness of resulting surfaces. In this paper, a surface modeling method that uses geometric partial differential equations (PDEs) is introduced for the construction of stratigraphic surfaces. It effectively solves the problem of surface roughness caused by the irregularity of stratigraphic data distribution. To cope with the presence of multitype complex faults, a two-way projection algorithm between three- dimensional space and a two-dimensional plane is proposed. Using this algorithm, a unified method based on geometric PDEs is developed for dealing with multitype faults. Moreover, the corresponding geometric PDE is derived, and an algorithm based on an evolutionary solution is developed. The algorithm proposed for constructing spatial surfaces with real data verifies its computational efficiency and its ability to handle irregular data distribution. In particular, it can reconstruct faulty surfaces, especially those with overthrust faults.展开更多
文摘Based on improved immune algorithm, the location of material storage in manufacturing workshop is studied. Intelligent optimization algorithms include particle swarm optimization algorithm, genetic selection algorithm, simulated annealing algorithm, tabu search algorithm and so on. According to the non-linear constraints, the objective function is established to solve the minimum energy consumption of material distribution. The improved immune algorithm can solve the complex problem of manufacturing workshop, and the material storage location and scheduling scheme can be obtained by combining simulation software. Scheduling optimization involves material warehousing, sorting, loading and unloading, handling and so on. Using the one-to-one accurate distribution principle and MATLAB software to simulate and analyze, the location of material warehousing in manufacturing workshop is determined, and the material distribution and scheduling are studied.
文摘The accuracy of temperature measurement is often reduced due to random noise in Raman-based distributed temperature sensor (RDTS). A noise reduction method based on a nonlinear filter is thus proposed in this paper. Compared with the temperature demodulation results of raw signals, the proposed method in this paper can reduce the average maximum deviation of temperature measurement results from 4.1°C to 1.2°C at 40.0°C, 50.0°C and 60.0°C. And the proposed method in this paper can improve the accuracy of temperature measurement of Raman-based distributed temperature sensor better than the commonly used wavelet transform-based method. The advantages of the proposed method in improving the accuracy of temperature measurement for Raman-based distributed temperature sensor are quantitatively reflected in the maximum deviation and root mean square error of temperature measurement results. Therefore, this paper proposes an effective and feasible method to improve the accuracy of temperature measurement results for Raman-based distributed temperature sensor.
基金financially supported by the National Natural Science foundation of China(No.U1562218)
文摘The construction of complex stratigraphic surfaces is widely employed in many fields, such as petroleum exploration, geological modeling, and geological structure analysis. It also serves as an important foundation for data visualization and visual analysis in these fields. The existing surface construction methods have several deficiencies and face various difficulties, such as the presence of multitype faults and roughness of resulting surfaces. In this paper, a surface modeling method that uses geometric partial differential equations (PDEs) is introduced for the construction of stratigraphic surfaces. It effectively solves the problem of surface roughness caused by the irregularity of stratigraphic data distribution. To cope with the presence of multitype complex faults, a two-way projection algorithm between three- dimensional space and a two-dimensional plane is proposed. Using this algorithm, a unified method based on geometric PDEs is developed for dealing with multitype faults. Moreover, the corresponding geometric PDE is derived, and an algorithm based on an evolutionary solution is developed. The algorithm proposed for constructing spatial surfaces with real data verifies its computational efficiency and its ability to handle irregular data distribution. In particular, it can reconstruct faulty surfaces, especially those with overthrust faults.