A symbol level secure precoding scheme based on band-region constraint of the eavesdropper’s receiving signal is proposed to enhance the energy efficiency of cell-free multiple-input multiple-output(MIMO)networks in ...A symbol level secure precoding scheme based on band-region constraint of the eavesdropper’s receiving signal is proposed to enhance the energy efficiency of cell-free multiple-input multiple-output(MIMO)networks in the presence of an eavesdropper while guaranteeing the quality of service(QoS)of user and the security of system.Moreover,to lighten its high computational complexity,original problem is divided into several cascade sub-problems firstly,and then those sub-problems are handled by combining Lagrangian dual function and improved Hooke-Jeeves method together.Comparative ex-periment with other secure symbol-level precoding schemes demonstrate that proposed scheme can achieve the lower power consumption with almost same symbol error rate and QoS of user.展开更多
The unique structural features of hard carbon(HC)make it a promising anode candidate for sodium-ion batteries(SIB).However,traditional methods of preparing HC require special equipment,long reaction times,and large en...The unique structural features of hard carbon(HC)make it a promising anode candidate for sodium-ion batteries(SIB).However,traditional methods of preparing HC require special equipment,long reaction times,and large energy consumption,resulting in low throughputs and efficiency.In our contribution,a novel synthesis method is proposed,involving the formation of HC nanosheets(NS-CNs)within minutes by creating an anoxic environment through flame combustion and further introducing sulfur and nitrogen sources to achieve heteroatom doping.The effect of heterogeneous element doping on the microstructure of HC is quantitatively analyzed by high-resolution transmission electron microscopy and image processing technology.Combined with density functional theory calculation,it is verified that the functionalized HC exhibits stronger Na^(+)adsorption ability,electron gain ability,and Na^(+) migration ability.As a result,NS-CNs as SIB anodes provide an ultrahigh reversible capacity of 542.7mAh g^(-1) at 0.1Ag^(-1),and excellent rate performance with a reversible capacity of 236.4mAh g^(-1) at 2Ag^(-1) after 1200 cycles.Furthermore,full cell assembled with NS-CNs as the can present 230mAh g^(-1) at 0.5Ag^(-1) after 150 cycles.Finally,in/ex situ techniques confirm that the excellent sodium storage properties of NS-CNs are due to the construction of abundant active sites based on the novel synthesis method for realizing the reversible adsorption of Na^(+).This work provides a novel strategy to develop novel carbons and gives deep insights for the further investigation of facile preparation methods to develop high-performance carbon anodes for alkali-ion batteries.展开更多
An excellent organolead halide perovskite film is important for the good performance of perovskite solar cells(PSCs).However,defects in perovskite crystals can affect the photovoltaic properties and stability of solar...An excellent organolead halide perovskite film is important for the good performance of perovskite solar cells(PSCs).However,defects in perovskite crystals can affect the photovoltaic properties and stability of solar cells.To solve this problem,this study incorporated a complex of Cd S and Cd(SCN_(2)H_(4))_(2)Cl_(2)into the CH_(3)NH_(3)Pb I_(3)active layer.The effects of different doping concentrations of Cd S and Cd(SCN_(2)H_(4))_(2)Cl_(2)on the performance and stability of PSCs were analyzed.Results showed that doping appropriate incorporation concentrations of Cd S and Cd(SCN_(2)H_(4))_(2)Cl_(2)in CH_(3)NH_(3)Pb I_(3)can improve the performance of the prepared solar cells.In specific,Cd S and Cd(SCN_(2)H_(4))_(2)Cl_(2)can effectively passivate the defects in perovskite crystals,thereby suppressing the charge recombination in PSCs and promoting the charge extraction at the TiO_(2)/perovskite interface.Due to the reduction of perovskite crystal defects and the enhancement of compactness of the Cd S:Cd(SCN_(2)H4)_(2)Cl_(2):CH_(3)NH_(3)Pb I_(3)composite film,the stability of PSCs is significantly improved.展开更多
This paper studies the equilibrium geometries and electronic properties of Ben and BenLi clusters, up to n=15, by using density-functional theory(DFT) at B3LYP/6-31G(d) level. The lowest-energy structures of Ben a...This paper studies the equilibrium geometries and electronic properties of Ben and BenLi clusters, up to n=15, by using density-functional theory(DFT) at B3LYP/6-31G(d) level. The lowest-energy structures of Ben and BenLi clusters were determined. The results indicate that a single lithium impurity enhances the stability and chemical reactivity of the beryllium clusters. It finds that the geometries of the host clusters change significantly after the addition of the lithium atom for n ≥8. The lithium impurity prefers to be on the periphery of beryllium clusters, and occupies vertex sites. Both Be4Li, Be9Li, and Be13Li were found to be particularly stable with higher average binding energy, local peaks of second-order energy difference and fragmentation energies. For all the BenLi clusters studied, we found charge transfers from the Li to Be site and co-existence of covalent and metallic bonding characteristics.展开更多
The ground-state configurations of the Nbn (n = 2-11) clusters are studied through the first-principles calculations. It is found that niobium clusters (n = 2-11) tend to form compact structures with low symmetry....The ground-state configurations of the Nbn (n = 2-11) clusters are studied through the first-principles calculations. It is found that niobium clusters (n = 2-11) tend to form compact structures with low symmetry. The clusters with 4, 8 and 10 atoms axe found to be magic and have relatively large highest occupied-lowest unoccupied molecular orbital (HOMO-LUMO) gaps. The Nbn clusters possess low magnetic moments, which exhibit an odd-even oscillational character. The analyses of calculated electronic density and population of the lowest-energy niobium clusters for n =2, 3, 5, 7, 9, 11 show that the total magnetic moments of Nbn originate mainly from a few Nb atoms with longer spacings between them in most cases, while they are located on two Nb atoms for n = 2, 3, 5. The total magnetic moments come mainly from the 4d local moments but with the exception of the Nb5 cluster.展开更多
Using first-principles techniques, we investigate the (001) surfaces of cubic PbHfO3 (PHO) and BaHfO3 (BHO) terminated with both AO (A=Pb and Ba) and HfO2. Surface structure, partial density of states, band st...Using first-principles techniques, we investigate the (001) surfaces of cubic PbHfO3 (PHO) and BaHfO3 (BHO) terminated with both AO (A=Pb and Ba) and HfO2. Surface structure, partial density of states, band structure, and surface energy are obtained. The BaO surface is found to be similar to its counterpart in BHO. For the HfO2-terminated surface of cubic PHO, the largest relaxation appears on the second-layer atoms but not on the first-layer ones. The analysis of the structure relaxation parameters reveals that the rumpling of the (001) surface for PHO is stronger than that for BHO. The surface thermodynamic stability is explored, and it is found that both the PbO- and the BaO-terminated surfaces are more stable than the HfO2-terminated surfaces for PHO and BHO, respectively. The surface energy calculations show that the (001) surface of PHO is more easily constructed than that of BHO.展开更多
Low thermal expansion composites are difficult to obtain by using Al with larger positive thermal expansion coefficient(TEC) and the materials with smaller negative TECs. In this investigation, Y2Mo3O12 with larger ...Low thermal expansion composites are difficult to obtain by using Al with larger positive thermal expansion coefficient(TEC) and the materials with smaller negative TECs. In this investigation, Y2Mo3O12 with larger negative TEC is used to combine with Al to obtain a low thermal expansion composite with high conductivity. The TEC of Al is reduced by 19%for a ratio Al:Y2Mo3O12 of 0.3118. When the mass ratio of Al:Y2Mo3O12 increases to 2.0000, the conductivity of the composite increases so much that a transformation from capacitance to pure resistance appears. The results suggest that Y2Mo3O12 plays a dominant role in the composite for low content of Al(presenting isolate particles), while the content of Al increases enough to contact each other, the composite presents mainly the property of Al. For the effect of high content Al, it is considered that Al is squeezed out of the cermets during the uniaxial pressure process to form a thin layer on the surface.展开更多
We use Au@SiO2 nanoparticles(NPs) to systematically and comprehensively study the relationship between nanostructure and activity for surface-enhanced Raman scattering. Calculation simulation using the finite differ...We use Au@SiO2 nanoparticles(NPs) to systematically and comprehensively study the relationship between nanostructure and activity for surface-enhanced Raman scattering. Calculation simulation using the finite different time domain method verifies the experiment results and further reveals that the particle size and the distance between the NPs play vital roles in the surface-enhanced Raman scattering(SERS). Furthermore, in order to better simulate the real experiment, a Au@SiO2 nanosphere dimer is placed on the silicon substrate and Au substrate, separately. The simulation results show that the large EM field coupling is due to the "hot spots" transferred from the NP–NP gaps to NP–surface of metal gaps,meanwhile, more "hot spots" occur. We also find that the signal intensity strongly depends on the position of the probe molecule. This work provides a better understanding of EM field enhancement.展开更多
Thermoelectric materials have the ability to directly convert heat into electricity,which have been extensively studied for decades to solve global energy shortages and environmental problems.As a medium temperature(4...Thermoelectric materials have the ability to directly convert heat into electricity,which have been extensively studied for decades to solve global energy shortages and environmental problems.As a medium temperature(400-800 K)thermoelectric material,SnTe has attracted extensive attention as a promising substitute for PbTe due to its non-toxic characteristics.In this paper,the research status of SnTe thermoelectric materials is reviewed,and the strategies to improve its performance are summarized and discussed in terms of electrical and thermal transport properties.This comprehensive discussion will provides guidance and inspiration for the research on SnTe.展开更多
We give an analytic quantitative relation between Hardy's non-locality and Bell operator. We find that Hardy's non-locality is a sufficient condition for the violation of Bell inequality, the upper bound of Hardy's...We give an analytic quantitative relation between Hardy's non-locality and Bell operator. We find that Hardy's non-locality is a sufficient condition for the violation of Bell inequality, the upper bound of Hardy's non-locality allowed by information causality just corresponds to Tsirelson bound of Bell inequality and the upper bound of Hardy's non- locality allowed by the principle of no-signaling just corresponds to the algebraic maximum of Bell operator. Then we study the CabeUo's argument of Hardy's non-locality (a generalization of Hardy's argument) and find a similar relation between it and violation of Bell inequality. Finally, we give a simple derivation of the bound of Hardy's non-locality under the constraint of information causality with the aid of the above derived relation between Hardy's non-locality and Bell operator.展开更多
Impurity formation energy, electronic structure, and photocatalytic properties of C-, N-, or S-doped BiOCl are investigated by density-functional theory plus U calculations(DFT + U). Results show that the doping effec...Impurity formation energy, electronic structure, and photocatalytic properties of C-, N-, or S-doped BiOCl are investigated by density-functional theory plus U calculations(DFT + U). Results show that the doping effect of S is better than that of C or N on the tunable photocatalytic activities of BiOCl. At low concentration, S-doped BiOCl systems are the most stable under Bi-rich growth conditions because of their lower impurity-formation energy. Compared with the electronic structures of S-doped BiOCl, C-or N-doped BiOCl have relatively deeper impurity energy levels appearing in their band gap(except Bi_(36)O_(35)NCl_(36)), which may act as photogenerated carrier-recombination centers and reduce photocatalytic activity. At high concentration, S is substituted on the O lattice site system, whereas some S 3p states mix with the valence band; this mixture leads to an obvious band-gap decrease and continuum-state formation above the valence-band edge of BiOCl. Such activity is advantageous to photochemical catalysis response. Compared with pure Bi OCl and a low-concentration S-doped system, a high-concentration S-doped system shows an obvious redshift on the absorption edge and has better photocatalytic O_2 evolution performance.展开更多
Some existing image encryption schemes use simple low-dimensional chaotic systems, which makes the algorithms insecure and vulnerable to brute force attacks and cracking. Some algorithms have issues such as weak corre...Some existing image encryption schemes use simple low-dimensional chaotic systems, which makes the algorithms insecure and vulnerable to brute force attacks and cracking. Some algorithms have issues such as weak correlation with plaintext images, poor image reconstruction quality, and low efficiency in transmission and storage. To solve these issues,this paper proposes an optical image encryption algorithm based on a new four-dimensional memristive hyperchaotic system(4D MHS) and compressed sensing(CS). Firstly, this paper proposes a new 4D MHS, which has larger key space, richer dynamic behavior, and more complex hyperchaotic characteristics. The introduction of CS can reduce the image size and the transmission burden of hardware devices. The introduction of double random phase encoding(DRPE) enables this algorithm has the ability of parallel data processing and multi-dimensional coding space, and the hyperchaotic characteristics of 4D MHS make up for the nonlinear deficiency of DRPE. Secondly, a construction method of the deterministic chaotic measurement matrix(DCMM) is proposed. Using DCMM can not only save a lot of transmission bandwidth and storage space, but also ensure good quality of reconstructed images. Thirdly, the confusion method and diffusion method proposed are related to plaintext images, which require both four hyperchaotic sequences of 4D MHS and row and column keys based on plaintext images. The generation process of hyperchaotic sequences is closely related to the hash value of plaintext images. Therefore, this algorithm has high sensitivity to plaintext images. The experimental testing and comparative analysis results show that proposed algorithm has good security and effectiveness.展开更多
In this study,we explore the detectability of heavy Higgs bosons in the pp→bbH/A→bbtt channel at a100 TeV hadron collider within the semi-constrained next-to-minimal supersymmetric standard model.We calculate their ...In this study,we explore the detectability of heavy Higgs bosons in the pp→bbH/A→bbtt channel at a100 TeV hadron collider within the semi-constrained next-to-minimal supersymmetric standard model.We calculate their production cross sections and decay branching ratios and compare them with simulation results from literature.We focus on the heavy doublet-dominated CP-even Higgs H and CP-odd Higgs A,with mass limits set below 10TeV to ensure detectability.At a collider with an integrated luminosity of 3 ab^(-1),the potential for detecting heavy Higgs bosons varies significantly with their mass and tanβ.Heavy Higgs bosons with masses below 2 TeV are within the testable range,while those heavier than 7 TeV are below the exclusion and discovery thresholds,rendering them undetectable.For masses between 2 and 7 TeV,heavy Higgs bosons with tanβ smaller than 20 can be detected,whereas those with tanβ larger than 20 are beyond the current discovery or exclusion capabilities.展开更多
Manipulating magnetic domain structure plays a key role in advanced spintronics devices.Theoretical rationale is that the labyrinthine domain structure,normally appearing in ferromagnetic thin films with strong magnet...Manipulating magnetic domain structure plays a key role in advanced spintronics devices.Theoretical rationale is that the labyrinthine domain structure,normally appearing in ferromagnetic thin films with strong magnetic anisotropy,shows a great potential to increase data storage density for designing magnetic nonvolatile memory and logic devices.However,an electrical control of labyrinthine domain structure remains elusive.Here,we demonstrate the gate-driven evolution of labyrinthine domain structures in an itinerant ferromagnet Cr_(7)Te_(8).By combining electric transport measurements and micromagnetic finite difference simulations,we find that the hysteresis loop of anomalous Hall effect in Cr_(7)Te_(8)samples shows distinct features corresponding to the generation of labyrinthine domain structures.The labyrinthine domain structures are found to be electrically tunable via Li-electrolyte gating,and such gate-driven evolution in Cr_(7)Te_(8)originates from the reduction of the magnetic anisotropic energy with gating,revealed by our micromagnetic simulations.Our results on the gate control of anomalous Hall effect in an itinerant magnetic material provide an opportunity to understand the formation and evolution of labyrinthine domain structures,paving a new route towards electric-field driven spintronics.展开更多
Holographic parameters and photobleaching kinetics of the photopolymers with five different amine photoinitiators are studied. The maximum values of diffraction efficiency, photobleaching coefficient and quantum yield...Holographic parameters and photobleaching kinetics of the photopolymers with five different amine photoinitiators are studied. The maximum values of diffraction efficiency, photobleaching coefficient and quantum yield follow the sequence: Triethanolamine (TEA)〉 Diethanolamine (DEA)〉 Ethanolamine (EA)〉 Triethylamine (TETN)〉 Diethylamine (DETN). The holographic capabilities of photopolymer performances are determined by the number of functional groups in the amine molecular structure. There is an optimum proportion of the photoinitiator, the photosensitizer and the monomer in the test of holographic parameters with different amine concentrations. The maximum diffraction efficiency is 59.26/%, sensitivity is 1.72/times 10^{ - 3}~cm^{2}/mJ, and the maximum refractive modulation index is 4.64/times 10^{ - 4}.展开更多
Using first-principles calculations, this paper systematically investigates the structural, elastic, and electronic properties of ReN4. The calculated positive eigenvalues of the elastic constant matrix show that the ...Using first-principles calculations, this paper systematically investigates the structural, elastic, and electronic properties of ReN4. The calculated positive eigenvalues of the elastic constant matrix show that the orthorhombic Pbca structure of ReN4 is elastically stable. The calculated band structure indicates that ReN4 is metallic. Compared with the synthesized superhard material WB4, it finds that ReN4 exhibits larger bulk and shear moduli as well as a smaller Poisson's ratio. In addition, the elastic constant c44 of ReN4 is larger than all the known 5d transition metal nitrides and borides. This combination of properties makes it an ideal candidate for a superhard material.展开更多
The resistive switching properties in amorphous Pr0.67Sr0.33MnO3 films deposited by pulsed laser deposition are investigated.Reproducible and bipolar counter-8-shape and 8-shape switching behaviours of Au/Pr0.67Sr0.33...The resistive switching properties in amorphous Pr0.67Sr0.33MnO3 films deposited by pulsed laser deposition are investigated.Reproducible and bipolar counter-8-shape and 8-shape switching behaviours of Au/Pr0.67Sr0.33MnO3 /F:SnO2 junctions are obtained at room temperature.Dramatically,the coexistence of two switching polarities could be reversibly adjusted by an applied voltage range.The results allocated those two switching types to areas of different defect densities beneath the same electrode.The migration of oxygen vacancies and the trapping effect of electrons under an applied electric field play an important role.An interface-effect-related resistance switching is proposed in an amorphous Pr0.67Sr0.33MnO3-based memory cell.展开更多
First-principles density functional perturbation calculations are employed to study the dielectric and piezoelectric properties of strained tetragonal PbTiO3. Lattice distortion, static dielectric constant, Born effec...First-principles density functional perturbation calculations are employed to study the dielectric and piezoelectric properties of strained tetragonal PbTiO3. Lattice distortion, static dielectric constant, Born effective charge, zone-centre phonons, and piezoelectric constant are obtained. For the strained tetragonal PbTiO3, we obtain a giant static dielectric constant (3600) under a strain 0. 77%. Moreover, the calculated piezoelectric constant e15 of strained PbTiO3 reaches about 203 C/m^2 which is about 20 times of that of unstrained system. The giant static dielectric constant is mainly due to the softening of the lowest-frequency phonon mode and the reduce of Ti-O bond length. This work demonstrates a route to a giant static dielectrics for electrically microwave and other devices.展开更多
Based on the first-principles calculations, we firstly predict that RuB2 undergoes a phase transition from the orthorhombic phase to the hexagonal phase with a volume collapse of 1% when the applied pressure is 15. 7 ...Based on the first-principles calculations, we firstly predict that RuB2 undergoes a phase transition from the orthorhombic phase to the hexagonal phase with a volume collapse of 1% when the applied pressure is 15. 7 GPa. The values of calculated elastic moduli indicate that RuB2 and RuN2 are low compressibility materials. Based on the calculated electronic density of states and valence charge density distribution, the bonding nature of RuB2 is examined to obtain a deeper insight into the physical origin of the mechanical properties. The metallieity and high elastic moduli of RuB2 and FuN2 suggest that they axe potential hard conductors.展开更多
Stoichiometric Ba(MnxTi(1-x)O3) (BMT) thin films with various values of x were deposited on Si(111) substrates by the sol-gel technique. The influence of Mn content on the optical properties was studied by spe...Stoichiometric Ba(MnxTi(1-x)O3) (BMT) thin films with various values of x were deposited on Si(111) substrates by the sol-gel technique. The influence of Mn content on the optical properties was studied by spectroscopic ellipsometry (SE) in the UV–Vis–NIR region. By fitting the measured ellipsometric parameter (Ψ and Δ) with a four-phase model (air/BMT+voids/BMT/Si(111)), the key optical constants of the thin films have been obtained. It was found that the refractive index n and the extinction coefficient k increase with increasing Mn content due to the increase in the packing density. Furthermore, a strong dependence of the optical band gap Eg on Mn/Ti ratios in the deposited films was observed, and it was inferred that the energy level of conduction bands decreases with increasing Mn content.展开更多
基金the National Natural Science Foundation of China(No.61976080)the Key Research Projects in Henan Province of China(No.231111212500).
文摘A symbol level secure precoding scheme based on band-region constraint of the eavesdropper’s receiving signal is proposed to enhance the energy efficiency of cell-free multiple-input multiple-output(MIMO)networks in the presence of an eavesdropper while guaranteeing the quality of service(QoS)of user and the security of system.Moreover,to lighten its high computational complexity,original problem is divided into several cascade sub-problems firstly,and then those sub-problems are handled by combining Lagrangian dual function and improved Hooke-Jeeves method together.Comparative ex-periment with other secure symbol-level precoding schemes demonstrate that proposed scheme can achieve the lower power consumption with almost same symbol error rate and QoS of user.
基金supported by the National Natural Science Foundation of China (Grant Nos.51872236,52072307)MOE SUTD Kickstarter Innitiative (SKI 2021_02_16).
文摘The unique structural features of hard carbon(HC)make it a promising anode candidate for sodium-ion batteries(SIB).However,traditional methods of preparing HC require special equipment,long reaction times,and large energy consumption,resulting in low throughputs and efficiency.In our contribution,a novel synthesis method is proposed,involving the formation of HC nanosheets(NS-CNs)within minutes by creating an anoxic environment through flame combustion and further introducing sulfur and nitrogen sources to achieve heteroatom doping.The effect of heterogeneous element doping on the microstructure of HC is quantitatively analyzed by high-resolution transmission electron microscopy and image processing technology.Combined with density functional theory calculation,it is verified that the functionalized HC exhibits stronger Na^(+)adsorption ability,electron gain ability,and Na^(+) migration ability.As a result,NS-CNs as SIB anodes provide an ultrahigh reversible capacity of 542.7mAh g^(-1) at 0.1Ag^(-1),and excellent rate performance with a reversible capacity of 236.4mAh g^(-1) at 2Ag^(-1) after 1200 cycles.Furthermore,full cell assembled with NS-CNs as the can present 230mAh g^(-1) at 0.5Ag^(-1) after 150 cycles.Finally,in/ex situ techniques confirm that the excellent sodium storage properties of NS-CNs are due to the construction of abundant active sites based on the novel synthesis method for realizing the reversible adsorption of Na^(+).This work provides a novel strategy to develop novel carbons and gives deep insights for the further investigation of facile preparation methods to develop high-performance carbon anodes for alkali-ion batteries.
基金financially supported by the National Science Foundation for Young Scientists of China(No.61704048)the Program for Science&Technology Innovation Talents in Universities of Henan Province,China(No.19HASTIT049)+1 种基金the Key Research Project of Henan Provincial Higher Education,China(No.19A140007)the Natural Science Foundation for Young Scientists of Henan Province,China(No.202300410060)。
文摘An excellent organolead halide perovskite film is important for the good performance of perovskite solar cells(PSCs).However,defects in perovskite crystals can affect the photovoltaic properties and stability of solar cells.To solve this problem,this study incorporated a complex of Cd S and Cd(SCN_(2)H_(4))_(2)Cl_(2)into the CH_(3)NH_(3)Pb I_(3)active layer.The effects of different doping concentrations of Cd S and Cd(SCN_(2)H_(4))_(2)Cl_(2)on the performance and stability of PSCs were analyzed.Results showed that doping appropriate incorporation concentrations of Cd S and Cd(SCN_(2)H_(4))_(2)Cl_(2)in CH_(3)NH_(3)Pb I_(3)can improve the performance of the prepared solar cells.In specific,Cd S and Cd(SCN_(2)H_(4))_(2)Cl_(2)can effectively passivate the defects in perovskite crystals,thereby suppressing the charge recombination in PSCs and promoting the charge extraction at the TiO_(2)/perovskite interface.Due to the reduction of perovskite crystal defects and the enhancement of compactness of the Cd S:Cd(SCN_(2)H4)_(2)Cl_(2):CH_(3)NH_(3)Pb I_(3)composite film,the stability of PSCs is significantly improved.
基金Project supported by the Xinjiang Normal University Excellent Young Teachers’ Foundation, China (Grant No XJNU0730)Xinjiang Normal University Priority Developing Disciplines’ Foundation
文摘This paper studies the equilibrium geometries and electronic properties of Ben and BenLi clusters, up to n=15, by using density-functional theory(DFT) at B3LYP/6-31G(d) level. The lowest-energy structures of Ben and BenLi clusters were determined. The results indicate that a single lithium impurity enhances the stability and chemical reactivity of the beryllium clusters. It finds that the geometries of the host clusters change significantly after the addition of the lithium atom for n ≥8. The lithium impurity prefers to be on the periphery of beryllium clusters, and occupies vertex sites. Both Be4Li, Be9Li, and Be13Li were found to be particularly stable with higher average binding energy, local peaks of second-order energy difference and fragmentation energies. For all the BenLi clusters studied, we found charge transfers from the Li to Be site and co-existence of covalent and metallic bonding characteristics.
基金Project supported by the Program for Science & Technology Innovation Talents in Universities of Henan Province, China (Grant No 2009HASTIT003)the Natural Science Foundation of Henan University, China (Grant Nos 07ZRZD005 and 07YBZR046)the Foundation of Science and Technology Department of Henan Province, China (Grant No 082300410010)
文摘The ground-state configurations of the Nbn (n = 2-11) clusters are studied through the first-principles calculations. It is found that niobium clusters (n = 2-11) tend to form compact structures with low symmetry. The clusters with 4, 8 and 10 atoms axe found to be magic and have relatively large highest occupied-lowest unoccupied molecular orbital (HOMO-LUMO) gaps. The Nbn clusters possess low magnetic moments, which exhibit an odd-even oscillational character. The analyses of calculated electronic density and population of the lowest-energy niobium clusters for n =2, 3, 5, 7, 9, 11 show that the total magnetic moments of Nbn originate mainly from a few Nb atoms with longer spacings between them in most cases, while they are located on two Nb atoms for n = 2, 3, 5. The total magnetic moments come mainly from the 4d local moments but with the exception of the Nb5 cluster.
基金supported by the Natural Science Foundation of Henan University,China (Grant No 07ZRZD005)the Foundation of Science and Technology Department of Henan Province,China (Grant No 082300410010)
文摘Using first-principles techniques, we investigate the (001) surfaces of cubic PbHfO3 (PHO) and BaHfO3 (BHO) terminated with both AO (A=Pb and Ba) and HfO2. Surface structure, partial density of states, band structure, and surface energy are obtained. The BaO surface is found to be similar to its counterpart in BHO. For the HfO2-terminated surface of cubic PHO, the largest relaxation appears on the second-layer atoms but not on the first-layer ones. The analysis of the structure relaxation parameters reveals that the rumpling of the (001) surface for PHO is stronger than that for BHO. The surface thermodynamic stability is explored, and it is found that both the PbO- and the BaO-terminated surfaces are more stable than the HfO2-terminated surfaces for PHO and BHO, respectively. The surface energy calculations show that the (001) surface of PHO is more easily constructed than that of BHO.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10974183 and 11104252)the Doctoral Fund of the Ministry of Education of China(Grant No.20114101110003)+2 种基金the Fund for Science&Technology Innovation Team of Zhengzhou,China(Grant No.112PCXTD337)the Industrial Science and Technology Research Projects of Kaifeng,Henan Province,China(Grant No.1501049)the Key Research Projects of Henan Higher Education Institutions,China(Grant No.18A140014)
文摘Low thermal expansion composites are difficult to obtain by using Al with larger positive thermal expansion coefficient(TEC) and the materials with smaller negative TECs. In this investigation, Y2Mo3O12 with larger negative TEC is used to combine with Al to obtain a low thermal expansion composite with high conductivity. The TEC of Al is reduced by 19%for a ratio Al:Y2Mo3O12 of 0.3118. When the mass ratio of Al:Y2Mo3O12 increases to 2.0000, the conductivity of the composite increases so much that a transformation from capacitance to pure resistance appears. The results suggest that Y2Mo3O12 plays a dominant role in the composite for low content of Al(presenting isolate particles), while the content of Al increases enough to contact each other, the composite presents mainly the property of Al. For the effect of high content Al, it is considered that Al is squeezed out of the cermets during the uniaxial pressure process to form a thin layer on the surface.
基金supported by the National Natural Science Foundation of China(Grant No.61177004)
文摘We use Au@SiO2 nanoparticles(NPs) to systematically and comprehensively study the relationship between nanostructure and activity for surface-enhanced Raman scattering. Calculation simulation using the finite different time domain method verifies the experiment results and further reveals that the particle size and the distance between the NPs play vital roles in the surface-enhanced Raman scattering(SERS). Furthermore, in order to better simulate the real experiment, a Au@SiO2 nanosphere dimer is placed on the silicon substrate and Au substrate, separately. The simulation results show that the large EM field coupling is due to the "hot spots" transferred from the NP–NP gaps to NP–surface of metal gaps,meanwhile, more "hot spots" occur. We also find that the signal intensity strongly depends on the position of the probe molecule. This work provides a better understanding of EM field enhancement.
基金sponsored by the National Natural Science Foundation of China (Grant Nos.U1504511,11674083, and 12005194)。
文摘Thermoelectric materials have the ability to directly convert heat into electricity,which have been extensively studied for decades to solve global energy shortages and environmental problems.As a medium temperature(400-800 K)thermoelectric material,SnTe has attracted extensive attention as a promising substitute for PbTe due to its non-toxic characteristics.In this paper,the research status of SnTe thermoelectric materials is reviewed,and the strategies to improve its performance are summarized and discussed in terms of electrical and thermal transport properties.This comprehensive discussion will provides guidance and inspiration for the research on SnTe.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10947142 and 11005031)
文摘We give an analytic quantitative relation between Hardy's non-locality and Bell operator. We find that Hardy's non-locality is a sufficient condition for the violation of Bell inequality, the upper bound of Hardy's non-locality allowed by information causality just corresponds to Tsirelson bound of Bell inequality and the upper bound of Hardy's non- locality allowed by the principle of no-signaling just corresponds to the algebraic maximum of Bell operator. Then we study the CabeUo's argument of Hardy's non-locality (a generalization of Hardy's argument) and find a similar relation between it and violation of Bell inequality. Finally, we give a simple derivation of the bound of Hardy's non-locality under the constraint of information causality with the aid of the above derived relation between Hardy's non-locality and Bell operator.
基金This project was supported by the China Postdoctoral Science Foundation,Henan Postdoctoral Science Foundation,NCWU 2017 Annual Teaching Teacher Training Object ProjectKey Research Projects of Higher Education in Henan Province(18B150010)+1 种基金the Key Scientific Research Project of Henan Higher Education(No.17A520011)the Science and Technology Research Project of Henan Province(182102110029)
文摘Impurity formation energy, electronic structure, and photocatalytic properties of C-, N-, or S-doped BiOCl are investigated by density-functional theory plus U calculations(DFT + U). Results show that the doping effect of S is better than that of C or N on the tunable photocatalytic activities of BiOCl. At low concentration, S-doped BiOCl systems are the most stable under Bi-rich growth conditions because of their lower impurity-formation energy. Compared with the electronic structures of S-doped BiOCl, C-or N-doped BiOCl have relatively deeper impurity energy levels appearing in their band gap(except Bi_(36)O_(35)NCl_(36)), which may act as photogenerated carrier-recombination centers and reduce photocatalytic activity. At high concentration, S is substituted on the O lattice site system, whereas some S 3p states mix with the valence band; this mixture leads to an obvious band-gap decrease and continuum-state formation above the valence-band edge of BiOCl. Such activity is advantageous to photochemical catalysis response. Compared with pure Bi OCl and a low-concentration S-doped system, a high-concentration S-doped system shows an obvious redshift on the absorption edge and has better photocatalytic O_2 evolution performance.
文摘Some existing image encryption schemes use simple low-dimensional chaotic systems, which makes the algorithms insecure and vulnerable to brute force attacks and cracking. Some algorithms have issues such as weak correlation with plaintext images, poor image reconstruction quality, and low efficiency in transmission and storage. To solve these issues,this paper proposes an optical image encryption algorithm based on a new four-dimensional memristive hyperchaotic system(4D MHS) and compressed sensing(CS). Firstly, this paper proposes a new 4D MHS, which has larger key space, richer dynamic behavior, and more complex hyperchaotic characteristics. The introduction of CS can reduce the image size and the transmission burden of hardware devices. The introduction of double random phase encoding(DRPE) enables this algorithm has the ability of parallel data processing and multi-dimensional coding space, and the hyperchaotic characteristics of 4D MHS make up for the nonlinear deficiency of DRPE. Secondly, a construction method of the deterministic chaotic measurement matrix(DCMM) is proposed. Using DCMM can not only save a lot of transmission bandwidth and storage space, but also ensure good quality of reconstructed images. Thirdly, the confusion method and diffusion method proposed are related to plaintext images, which require both four hyperchaotic sequences of 4D MHS and row and column keys based on plaintext images. The generation process of hyperchaotic sequences is closely related to the hash value of plaintext images. Therefore, this algorithm has high sensitivity to plaintext images. The experimental testing and comparative analysis results show that proposed algorithm has good security and effectiveness.
基金Supported by the National Natural Science Foundation of China (12275066, 11605123)。
文摘In this study,we explore the detectability of heavy Higgs bosons in the pp→bbH/A→bbtt channel at a100 TeV hadron collider within the semi-constrained next-to-minimal supersymmetric standard model.We calculate their production cross sections and decay branching ratios and compare them with simulation results from literature.We focus on the heavy doublet-dominated CP-even Higgs H and CP-odd Higgs A,with mass limits set below 10TeV to ensure detectability.At a collider with an integrated luminosity of 3 ab^(-1),the potential for detecting heavy Higgs bosons varies significantly with their mass and tanβ.Heavy Higgs bosons with masses below 2 TeV are within the testable range,while those heavier than 7 TeV are below the exclusion and discovery thresholds,rendering them undetectable.For masses between 2 and 7 TeV,heavy Higgs bosons with tanβ smaller than 20 can be detected,whereas those with tanβ larger than 20 are beyond the current discovery or exclusion capabilities.
基金supported by the National Natural Science Foundation of China(Grant Nos.92365203,52072168,51861145201,52302180,and 12204232)the National Key Research and Development Program of China(Grant No.2021YFA1202901)+1 种基金the Science and Technology Development Project of Henan Province(Grant No.242102230140)the China Postdoctoral Science Foundation(Grant No.2024M750775)。
文摘Manipulating magnetic domain structure plays a key role in advanced spintronics devices.Theoretical rationale is that the labyrinthine domain structure,normally appearing in ferromagnetic thin films with strong magnetic anisotropy,shows a great potential to increase data storage density for designing magnetic nonvolatile memory and logic devices.However,an electrical control of labyrinthine domain structure remains elusive.Here,we demonstrate the gate-driven evolution of labyrinthine domain structures in an itinerant ferromagnet Cr_(7)Te_(8).By combining electric transport measurements and micromagnetic finite difference simulations,we find that the hysteresis loop of anomalous Hall effect in Cr_(7)Te_(8)samples shows distinct features corresponding to the generation of labyrinthine domain structures.The labyrinthine domain structures are found to be electrically tunable via Li-electrolyte gating,and such gate-driven evolution in Cr_(7)Te_(8)originates from the reduction of the magnetic anisotropic energy with gating,revealed by our micromagnetic simulations.Our results on the gate control of anomalous Hall effect in an itinerant magnetic material provide an opportunity to understand the formation and evolution of labyrinthine domain structures,paving a new route towards electric-field driven spintronics.
基金supported by the Natural Science Foundation of Henan University, China (Grant No. 06ZDZR002)
文摘Holographic parameters and photobleaching kinetics of the photopolymers with five different amine photoinitiators are studied. The maximum values of diffraction efficiency, photobleaching coefficient and quantum yield follow the sequence: Triethanolamine (TEA)〉 Diethanolamine (DEA)〉 Ethanolamine (EA)〉 Triethylamine (TETN)〉 Diethylamine (DETN). The holographic capabilities of photopolymer performances are determined by the number of functional groups in the amine molecular structure. There is an optimum proportion of the photoinitiator, the photosensitizer and the monomer in the test of holographic parameters with different amine concentrations. The maximum diffraction efficiency is 59.26/%, sensitivity is 1.72/times 10^{ - 3}~cm^{2}/mJ, and the maximum refractive modulation index is 4.64/times 10^{ - 4}.
基金Project supported by the Program for Science and Technology Innovation Talents in Universities of Henan Province, China(Grant No. 2009HASTIT003)the Foundation of Science and Technology Department of Henan Province, China (Grant No.082300410010)Scientific Research Foundation for the Returned Overseas Chinese Scholars, Ministry of Education of China
文摘Using first-principles calculations, this paper systematically investigates the structural, elastic, and electronic properties of ReN4. The calculated positive eigenvalues of the elastic constant matrix show that the orthorhombic Pbca structure of ReN4 is elastically stable. The calculated band structure indicates that ReN4 is metallic. Compared with the synthesized superhard material WB4, it finds that ReN4 exhibits larger bulk and shear moduli as well as a smaller Poisson's ratio. In addition, the elastic constant c44 of ReN4 is larger than all the known 5d transition metal nitrides and borides. This combination of properties makes it an ideal candidate for a superhard material.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60976016)the Program for Innovative Research Team in Science and Technology in University of Henan Province (IRTSTUHN),China (Grant No. 2012IRTSTHN004)the Foundation Co-established by the Province and the Ministry in Henan University,China (Grant No. SBGJ090503)
文摘The resistive switching properties in amorphous Pr0.67Sr0.33MnO3 films deposited by pulsed laser deposition are investigated.Reproducible and bipolar counter-8-shape and 8-shape switching behaviours of Au/Pr0.67Sr0.33MnO3 /F:SnO2 junctions are obtained at room temperature.Dramatically,the coexistence of two switching polarities could be reversibly adjusted by an applied voltage range.The results allocated those two switching types to areas of different defect densities beneath the same electrode.The migration of oxygen vacancies and the trapping effect of electrons under an applied electric field play an important role.An interface-effect-related resistance switching is proposed in an amorphous Pr0.67Sr0.33MnO3-based memory cell.
基金Supported by the Programme for Science and Technology Innovation Talents in Universities of Henan Province under Grant No 2009HASTIT003, the Natural Science Foundation of Henan University under Grant No 07ZRZD005, and the Foundation of Science and Technology Department of Henan Province under Grant No 082300410010.
文摘First-principles density functional perturbation calculations are employed to study the dielectric and piezoelectric properties of strained tetragonal PbTiO3. Lattice distortion, static dielectric constant, Born effective charge, zone-centre phonons, and piezoelectric constant are obtained. For the strained tetragonal PbTiO3, we obtain a giant static dielectric constant (3600) under a strain 0. 77%. Moreover, the calculated piezoelectric constant e15 of strained PbTiO3 reaches about 203 C/m^2 which is about 20 times of that of unstrained system. The giant static dielectric constant is mainly due to the softening of the lowest-frequency phonon mode and the reduce of Ti-O bond length. This work demonstrates a route to a giant static dielectrics for electrically microwave and other devices.
基金Supported by the Programme for Science and Technology Innovation Talents in Universities of Henan Province under Grant No 2009HASTIT003, the Natural Science Foundation of Henan University under Cant Nos 07ZRZD005 and 07YBZR046, and the Foundation of Science and Technology Department of Henan Province under Grant No 082300410010.
文摘Based on the first-principles calculations, we firstly predict that RuB2 undergoes a phase transition from the orthorhombic phase to the hexagonal phase with a volume collapse of 1% when the applied pressure is 15. 7 GPa. The values of calculated elastic moduli indicate that RuB2 and RuN2 are low compressibility materials. Based on the calculated electronic density of states and valence charge density distribution, the bonding nature of RuB2 is examined to obtain a deeper insight into the physical origin of the mechanical properties. The metallieity and high elastic moduli of RuB2 and FuN2 suggest that they axe potential hard conductors.
基金Project supported by the National Natural Science Foundation of China(Grant No.60976016)the Postdoctoral Science Foundation of China(Grant No.2012M511250)the Foundation Co-established by Henan Province and the Ministry of Henan University,China(Grant No.SBGJ090503)
文摘Stoichiometric Ba(MnxTi(1-x)O3) (BMT) thin films with various values of x were deposited on Si(111) substrates by the sol-gel technique. The influence of Mn content on the optical properties was studied by spectroscopic ellipsometry (SE) in the UV–Vis–NIR region. By fitting the measured ellipsometric parameter (Ψ and Δ) with a four-phase model (air/BMT+voids/BMT/Si(111)), the key optical constants of the thin films have been obtained. It was found that the refractive index n and the extinction coefficient k increase with increasing Mn content due to the increase in the packing density. Furthermore, a strong dependence of the optical band gap Eg on Mn/Ti ratios in the deposited films was observed, and it was inferred that the energy level of conduction bands decreases with increasing Mn content.