The filtering mechanism of a free output coupler mode-locked laser based on large-mode-area photonic-crystal fibre is analysed. A filtering-soliton mode-locked laser with 495 fs pulse width and 21 nJ pulse energy is a...The filtering mechanism of a free output coupler mode-locked laser based on large-mode-area photonic-crystal fibre is analysed. A filtering-soliton mode-locked laser with 495 fs pulse width and 21 nJ pulse energy is achieved. Another novel cavity configuration is established to eliminate the filtering effect. Pulses, each 457 fs in width and 16.5 nJ in energy, are obtained in a soliton-like regime. Pulses, each 387 fs in width and 15.8 nJ in energy, are also generated in a stretched pulse regime and could be dechirped to 119 fs externally to the cavity.展开更多
It is found that the field of the combined mode of the probe wave and the phase conjugate wave in the process of non-degenerate four-wave mixing exhibits higher-order squeezing to all even orders. The higher-order squ...It is found that the field of the combined mode of the probe wave and the phase conjugate wave in the process of non-degenerate four-wave mixing exhibits higher-order squeezing to all even orders. The higher-order squeezed parameter and squeezed limit due to the modulation frequency are investigated. The smaller the modulation frequency is, the stronger the degree of higher-order squeezing becomes. Furthermore, the hlgher-order uncertainty relations in the process of non-degenerate four-wave mixing are presented for the first time. The product of higher-order noise moments is related to even order number N and the length L of the medium.展开更多
To overcome the low efficiency of conventional confocal Raman spectroscopy,many efforts have been devoted to parallelizing the Raman excitation and acquisition,in which the scattering from multiple foci is projected o...To overcome the low efficiency of conventional confocal Raman spectroscopy,many efforts have been devoted to parallelizing the Raman excitation and acquisition,in which the scattering from multiple foci is projected onto different locations on a spectrometer's CCD,along either its vertical,horizontal dimension,or even both.While the latter projection scheme relieves the limitation on the row numbers of the CCD,the spectra of multiple foci are recorded in one spectral channel,resulting in spectral overlapping.Here,we developed a method under a com-pressive sensing framework to demultiplex the superimposed spectra of multiple cells during their dynamic processes.Unlike the previous methods which ignore the information connection be-tween the spectra of the cells recorded at different time,the proposed method utilizes a prior that a cell's spectra acquired at different time have the same sparsity structure in their principal components.Rather than independently demultiplexing the mixed spectra at the individual time intervals,the method demultiplexes the whole spectral sequence acquired continuously during the dynamic process.By penalizing the sparsity combined from all time intervals,the collaborative optimization of the inversion problem gave more accurate recovery results.The performances of the method were substantiated by a 1D Raman tweezers array,which monitored the germination of multiple bacterial spores.The method can be extended to the monitoring of many living cells randomly scattering on a coverslip,and has a potential to improve the throughput by a few orders.展开更多
Transmission spectra of triangular lattice photonic crystals milled in the top surface of an annealed proton- exchange waveguide are numerically simulated. The effects of the finite depth, conical shape, trapezoidal s...Transmission spectra of triangular lattice photonic crystals milled in the top surface of an annealed proton- exchange waveguide are numerically simulated. The effects of the finite depth, conical shape, trapezoidal shape and hybrid shape of holes are theoretically analyzed. Due to the difficulty of milling high aspect-ratio cylindrical holes in lithium niobate (LiNbO3 ), a compromised solution is proposed to improve the overlap between shallow holes and the waveguide mode, and useful transmission spectra with strong contrast and sharp band edges are achieved.展开更多
In the whole research process of electromagnetic wave,the research of terahertz wave belongs to a blank for a long time,which is the least known and least developed by far.But now,people are trying to make up the blan...In the whole research process of electromagnetic wave,the research of terahertz wave belongs to a blank for a long time,which is the least known and least developed by far.But now,people are trying to make up the blank and develop terahertz better and better.The charm of terahertz wave originates from its multiple attributes,including electromagnetic field attribute,photon attribute and thermal attribute,which also attracts the attention of researchers in different fields and different countries,and also terahertz technology have been rated as one of the top ten technologies to change the future world by the United States.The multiple attributes of terahertz make it have broad application prospects in military and civil fields,such as medical imaging,astronomical observation,6G communication,environmental monitoring and material analysis.It is no exaggeration to say that mastering terahertz technology means mastering the future.However,it is because of the multiple attributes of terahertz that the terahertz wave is difficult to be mastered.Although terahertz has been applied in some fields,controlling terahertz(such as generation and detection)is still an important issue.Nowadays,a variety of terahertz generation and detection technologies have been developed and continuously improved.In this paper,the main terahertz generation and detection technologies(including already practical and developing)are reviewed in terms of scientific and engineering principles,in order to provide a systematic and up-to-date reference for researchers in terahertz field.展开更多
The morphologies of the deposited dots on the 40 nm-thick copper film by the femtosecond laser-induced forward transfer that depend on the irradiated laser fluence have been studied, and the variations of orderliness ...The morphologies of the deposited dots on the 40 nm-thick copper film by the femtosecond laser-induced forward transfer that depend on the irradiated laser fluence have been studied, and the variations of orderliness of the diameter of deposited dots on the quartz substrate and forward ablated dot on the donor substrate with increasing pulse fluence have been obtained experimentally. The experimental results show that a thinner copper film would generate larger-sized ablated dot and deposited dot at the threshold fluence for transfer. By x-ray diffraction measurement, it is demonstrated that the crystal form of the transferred copper films is unaltered and the size of the crystallites is diminished.展开更多
Several indole derivatives with different '3-' substituents have been investigated by terahertz (THz) time-domain spectroscopy. The low-frequency absorption spectra and refractive indices were obtained in the rang...Several indole derivatives with different '3-' substituents have been investigated by terahertz (THz) time-domain spectroscopy. The low-frequency absorption spectra and refractive indices were obtained in the range of 0.2 THz to 2.5 THz (7 cm-1 to 83 cm-1). These derivatives with different substituents present distinct features, which suggests that THz spectroscopy is sensitive to different structures and components of these chemicals. The density functional theory was employed to calculate the low-frequency vibrational properties of indole-3-carboxylic acid and indole-3-propionic acid based on their crystal structures, and the intermolecular interactions were involved. Meanwhile, the temperature dependence of the spectra agreed with the calculated results. The quantitative analysis of a ternary mixture was studied by taking the THz fingerprints into account, and the results demonstrate THz spectroscopy has great potential for the practical applications in biochemistry and pharmaceutics.展开更多
We present a novel and efficient L-band wavelength-tunable Er^3+ doped fiber laser of ring structure. In the cavity two segments of Er^3+ doped fiber and a fiber Bragg grating are used to improve pump efficiency. Tu...We present a novel and efficient L-band wavelength-tunable Er^3+ doped fiber laser of ring structure. In the cavity two segments of Er^3+ doped fiber and a fiber Bragg grating are used to improve pump efficiency. Tunable filters based on fiber loop mirrors are also applied inside the cavity to act as both a wavelength selector and a line-width compressor. Using these techniques, a tunable laser with tuning range up to 42 nm, output power larger than 1 mW, power uniformity controlled within 1.75 dB and side mode suppression ratio about 40 dB is achieved.展开更多
To address the need for the on-site measurement of aging oil, in this paper, we propose an impedance-based microsensor for analyzing the moisture content in engine oil. Using a microfabrication process, we fabricated ...To address the need for the on-site measurement of aging oil, in this paper, we propose an impedance-based microsensor for analyzing the moisture content in engine oil. Using a microfabrication process, we fabricated an interdigitated microelectrode and integrated it with a 3 D-printed microcontainer to produce a microsensor that can detect changes in the permittivity of oil. When the moisture content in oil increases, this sensor can detect the resulting change in the oil impedance, which is related to its permittivity, and then determine the degree to which the oil has aged. The test results show that the proposed microsensor has the advantages of being small and having high sensitivity, good accuracy, and the ability to be combined with hand-held instruments.The proposed method is expected to be used for the rapid, low cost, on-site determination of oil aging.展开更多
In the simulation of Intensity Modulation-Direct Detection WDM Systems,when the dispersion and nonlinear effects play equally important roles,the intensity fluctuation caused by cross-phase modulation may be overestim...In the simulation of Intensity Modulation-Direct Detection WDM Systems,when the dispersion and nonlinear effects play equally important roles,the intensity fluctuation caused by cross-phase modulation may be overestimated as a result of the improper step size.Therefore,the step size in numerical simulation should be selected to suppress false XPM intensity modulation (keep it much less than signal power).According to this criterion,the step size is variable along the fiber.For a WDM system,the step size depends on the channel separation.Different type of transmission fiber has different step size.In the split-step Fourier method,this criterion can reduce simulation time,and when the step size is bigger than 100 meters,the simulation accuracy can also be improved.展开更多
Based on the index-induced mode coupling between the higher-order mode in core and the fundamental mode in cladding tubes,the single-mode operation can be realized in any antiresonant fibers(ARFs)when satisfying that ...Based on the index-induced mode coupling between the higher-order mode in core and the fundamental mode in cladding tubes,the single-mode operation can be realized in any antiresonant fibers(ARFs)when satisfying that the area ratio of cladding tube and core is about 0.46:1,and this area ratio also should be modified according to the shape and the number of cladding tubes.In the ARF with nodal core boundary,the mode in core also can couple with the mode in the wall of core boundary,which can further enhance the suppression of high-order mode.Accordingly,an ARF with conjoint semi-elliptical cladding tubes realizes a loss of higher-order mode larger than 30 dB/m;simultaneously,a loss of fundamental mode loss less than 0.4 dB/m.展开更多
We present a novel cluster-seven-core photonic crystal fiber which possesses high nonlinearity and supports the high-power pumping. Its nonlinearity coefficient and effective mode area are calculated by the full vecto...We present a novel cluster-seven-core photonic crystal fiber which possesses high nonlinearity and supports the high-power pumping. Its nonlinearity coefficient and effective mode area are calculated by the full vector multipole method. Compared with the single core PCF, the cluster-seven-core photonic crystal fiber can support high-power beam transmitting in the core, and simultaneously has high nonlinearity. This kind of photonic crystal fiber can be applied to the photoelectron-device field.展开更多
We have demonstrated passive mode-locking in a diode-end-pumped Nd:YV04 laser using two kinds of semiconductor absorbers whose relaxation region comes from Ino.2sGao.75As grown at low temperature (LT) and GaAs/air ...We have demonstrated passive mode-locking in a diode-end-pumped Nd:YV04 laser using two kinds of semiconductor absorbers whose relaxation region comes from Ino.2sGao.75As grown at low temperature (LT) and GaAs/air interface respectively. Mode-locking, using absorbers of the GaAs/air interface relaxation region, has the characteristics of less Q-switching tendency and higher average output power than that using absorbers of LT In0.25Ga0.75As relaxation region, but is not as stable as the latter.展开更多
Transcranial electrical stimulation(tES)is a non-invasive nerve stimulation technique that modulates changes in neural activities in cerebral cortex through a weak current of specific intensity(and frequency).It has b...Transcranial electrical stimulation(tES)is a non-invasive nerve stimulation technique that modulates changes in neural activities in cerebral cortex through a weak current of specific intensity(and frequency).It has become a valuable tool for the study of human behavior and cognitive neurophysiological processes.As a brain stimulation technology with broad development prospects,it is not mature enough in the field of human auditory research.However,the research on tES has obtained preliminary results in regulating motor ability.This article mainly introduces the effects of tES and auditory steady state response on auditory,and the applications of tES in auditory diseases.By summarizing and discussing tES during auditory processing as comprehensively as possible,the potential application value of tES in the treatment of auditory diseases could be illustrated.展开更多
Enhanced terahertz wave generation via a Stokes cascade process has been demonstrated using picosecond pulse pumped terahertz parametric generation at 1 kHz repetition rate.Clear cascade saturation of terahertz output...Enhanced terahertz wave generation via a Stokes cascade process has been demonstrated using picosecond pulse pumped terahertz parametric generation at 1 kHz repetition rate.Clear cascade saturation of terahertz output was observed,and the corresponding cascade-Stokes spectra were analyzed.The maximum terahertz wave average power was 22μW under a pump power of 30 W,whereas the maximum power conversion efficiency was 8×10^(-7)under a pump power of 21 W.The THz power fluctuation was measured to be about 1%in 20 min.This THz parametric source with a relatively stable output is suitable for a variety of practical applications.展开更多
Solid-state nanopores offer a range of distinct advantages over biological nanopores,such as structural diversity and greater stability and durability;this makes them highly promising for high-resolution nanoparticle ...Solid-state nanopores offer a range of distinct advantages over biological nanopores,such as structural diversity and greater stability and durability;this makes them highly promising for high-resolution nanoparticle sensing.Biological nanopores can exhibit gating characteristics with stress-responsive switches and can demonstrate specificity toward particular molecules.Drawing inspiration from biological nanopores,this paper introduces a novel polymer nanopore with field-effect characteristics,leveraging a conductive polymer in its construction to showcase intriguing gating behavior.Notably,in this device,the polymer layer serves as the gate,enabling precise control over the source–drain current response inside and outside the pore by simply adjusting the gate voltage.This unique feature allows fine-tuning of the nanopore’s sensitivity to nanoparticles of varying sizes and facilitates its operation in multiple modes.Experimental results reveal that the developed polymer nanopore field-effect transistor demonstrates remarkable selectivity in detecting nanoparticles of various sizes under different applied voltages.The proposed single device demonstrates the exceptional ability to detect multiple types of nanoparticle,showcasing its immense potential for a wide range of applications in biological-particle analysis and medical diagnostics.展开更多
In order to detect and assess the muscle fatigue state with the surface electromyography(sEMG) characteristic parameters,this paper carried out a series of isometric contraction experiments to induce the fatigue on th...In order to detect and assess the muscle fatigue state with the surface electromyography(sEMG) characteristic parameters,this paper carried out a series of isometric contraction experiments to induce the fatigue on the forearm muscles from four subjects,and recorded the sEMG signals of the flexor carpi ulnaris.sEMG's median frequency(MDF) and mean frequency(MF) were extracted by short term Fourier transform(STFT),and the root mean square(RMS) of wavelet coefficients in the frequency band of 5—45 Hz was obtained by continuous wavelet transform(CWT).The results demonstrate that both MDF and MF show downward trends within 1 min; however,RMS shows an upward trend within the same time.The three parameters are closely correlated with absolute values of mean correlation coefficients greater than 0.8.It is suggested that the three parameters above can be used as reliable indicators to evaluate the level of muscle fatigue during isometric contractions.展开更多
Based on the split-step Fourier method and small signal analysis, an improved analytical solution which describes the cross-phase modulation (XPM) intensity is derived. It can suppress the spurious XPM intensity modul...Based on the split-step Fourier method and small signal analysis, an improved analytical solution which describes the cross-phase modulation (XPM) intensity is derived. It can suppress the spurious XPM intensity modulation efficiently in the whole transmission fiber. Thus it is more coincidence with the practical result. Furthermore, it is convenient, because it is independent of channel separation and the dispersion and nonlinear effects interact through the XPM intensity. A criterion of select the step size is described as the derived XPM intensity modulation being taken into account. It is non-uniform distribution and is the function of average signal power <P(z)> (or z). Compared with the conventional split-step method, the simulation accuracy is improved when the step size is determined by the improved XPM intensity.展开更多
A high-sensitive terahertz detector operating at room temperature was demonstrated based on parametric upconversion.A nanosecond 1064-nm Nd:YAG laser was used to pump the parametric up-conversion detector and the upco...A high-sensitive terahertz detector operating at room temperature was demonstrated based on parametric upconversion.A nanosecond 1064-nm Nd:YAG laser was used to pump the parametric up-conversion detector and the upconversion from terahertz wave to NIR laser was realized in a lithium niobate crystal.The minimum detectable terahertz energy of 9 p J was realized with the detection dynamic range of 54 d B,which was three orders of magnitude higher than that of commercial Golay cell.The detectable terahertz frequency range of the detection system was 0.90 Thz–1.83 THz.Besides,the effects of pump energy and effective gain length on the detection sensitivity were studied in experiment.The results showed that higher pump energy and longer effective gain length are helpful for improving the detection sensitivity of parametric up-conversion detector.展开更多
Graphene has been recognized as a promising candidate in developing tunable terahertz(THz)functional devices due to its excellent optical and electronic properties,such as high carrier mobility and tunable conductivit...Graphene has been recognized as a promising candidate in developing tunable terahertz(THz)functional devices due to its excellent optical and electronic properties,such as high carrier mobility and tunable conductivity.Here,we review graphene-based THz modulators we have recently developed.First,the optical properties of graphene are discussed.Then,graphene THz modulators realized by different methods,such as gate voltage,optical pump,and nonlinear response of graphene are presented.Finally,challenges and prospective of graphene THz modulators are also discussed.展开更多
基金Project supported by the National Basic Research Program of China (Grant Nos. 2006CB806002 and 2010CB327604)the National High Technology Research and Development Program of China (Grant No. 2007AA03Z447)+3 种基金the National Natural Science Foundation of China (Grant Nos. 60838004 and 60678012)the Foundation for Key Program of Ministry of Education, China(Grant No. 108032)the Foundation for the Author of National Excellent Doctoral Dissertation of China (Grant No. 2007B34)the Program for New Century Excellent Talents in University of China (Grant No. NCET-07-0597)
文摘The filtering mechanism of a free output coupler mode-locked laser based on large-mode-area photonic-crystal fibre is analysed. A filtering-soliton mode-locked laser with 495 fs pulse width and 21 nJ pulse energy is achieved. Another novel cavity configuration is established to eliminate the filtering effect. Pulses, each 457 fs in width and 16.5 nJ in energy, are obtained in a soliton-like regime. Pulses, each 387 fs in width and 15.8 nJ in energy, are also generated in a stretched pulse regime and could be dechirped to 119 fs externally to the cavity.
文摘It is found that the field of the combined mode of the probe wave and the phase conjugate wave in the process of non-degenerate four-wave mixing exhibits higher-order squeezing to all even orders. The higher-order squeezed parameter and squeezed limit due to the modulation frequency are investigated. The smaller the modulation frequency is, the stronger the degree of higher-order squeezing becomes. Furthermore, the hlgher-order uncertainty relations in the process of non-degenerate four-wave mixing are presented for the first time. The product of higher-order noise moments is related to even order number N and the length L of the medium.
基金This work was supported by the National Key R&D Program of China(2019YFC1605500,2018YFF01011700)the National Natural Science Foundation of China(21973111)+1 种基金Guangxi Natural Science Foundation(2017GXNSFAA198029)Scientific Development Fund of Guangxi Academy of Sciences(2018YFJ 403).
文摘To overcome the low efficiency of conventional confocal Raman spectroscopy,many efforts have been devoted to parallelizing the Raman excitation and acquisition,in which the scattering from multiple foci is projected onto different locations on a spectrometer's CCD,along either its vertical,horizontal dimension,or even both.While the latter projection scheme relieves the limitation on the row numbers of the CCD,the spectra of multiple foci are recorded in one spectral channel,resulting in spectral overlapping.Here,we developed a method under a com-pressive sensing framework to demultiplex the superimposed spectra of multiple cells during their dynamic processes.Unlike the previous methods which ignore the information connection be-tween the spectra of the cells recorded at different time,the proposed method utilizes a prior that a cell's spectra acquired at different time have the same sparsity structure in their principal components.Rather than independently demultiplexing the mixed spectra at the individual time intervals,the method demultiplexes the whole spectral sequence acquired continuously during the dynamic process.By penalizing the sparsity combined from all time intervals,the collaborative optimization of the inversion problem gave more accurate recovery results.The performances of the method were substantiated by a 1D Raman tweezers array,which monitored the germination of multiple bacterial spores.The method can be extended to the monitoring of many living cells randomly scattering on a coverslip,and has a potential to improve the throughput by a few orders.
基金Supported by the National Natural Science Foundation of China under Grant Nos 50872089,61077039 and 61377060the Research Grants Council of the Hong Kong Special Administrative Region of China under Grant No 11211014+1 种基金the Key Program for Research on Fundamental to Application and Leading Technology of Tianjin Science and Technology Commission of China under Grant No 11JCZDJC15500the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No 20100032110052
文摘Transmission spectra of triangular lattice photonic crystals milled in the top surface of an annealed proton- exchange waveguide are numerically simulated. The effects of the finite depth, conical shape, trapezoidal shape and hybrid shape of holes are theoretically analyzed. Due to the difficulty of milling high aspect-ratio cylindrical holes in lithium niobate (LiNbO3 ), a compromised solution is proposed to improve the overlap between shallow holes and the waveguide mode, and useful transmission spectra with strong contrast and sharp band edges are achieved.
文摘In the whole research process of electromagnetic wave,the research of terahertz wave belongs to a blank for a long time,which is the least known and least developed by far.But now,people are trying to make up the blank and develop terahertz better and better.The charm of terahertz wave originates from its multiple attributes,including electromagnetic field attribute,photon attribute and thermal attribute,which also attracts the attention of researchers in different fields and different countries,and also terahertz technology have been rated as one of the top ten technologies to change the future world by the United States.The multiple attributes of terahertz make it have broad application prospects in military and civil fields,such as medical imaging,astronomical observation,6G communication,environmental monitoring and material analysis.It is no exaggeration to say that mastering terahertz technology means mastering the future.However,it is because of the multiple attributes of terahertz that the terahertz wave is difficult to be mastered.Although terahertz has been applied in some fields,controlling terahertz(such as generation and detection)is still an important issue.Nowadays,a variety of terahertz generation and detection technologies have been developed and continuously improved.In this paper,the main terahertz generation and detection technologies(including already practical and developing)are reviewed in terms of scientific and engineering principles,in order to provide a systematic and up-to-date reference for researchers in terahertz field.
基金Project supported by the Key Grant Project of the Ministry of Education of the People’s Republic of China (Grant No 10410)National Natural Science Fundation of China (Grant No 60572168)Science Research Start-up Fund of Civil Aviation University of China (Grant No qd02x11)
文摘The morphologies of the deposited dots on the 40 nm-thick copper film by the femtosecond laser-induced forward transfer that depend on the irradiated laser fluence have been studied, and the variations of orderliness of the diameter of deposited dots on the quartz substrate and forward ablated dot on the donor substrate with increasing pulse fluence have been obtained experimentally. The experimental results show that a thinner copper film would generate larger-sized ablated dot and deposited dot at the threshold fluence for transfer. By x-ray diffraction measurement, it is demonstrated that the crystal form of the transferred copper films is unaltered and the size of the crystallites is diminished.
基金supported by the National Basic Research Program of China under Grant No.2014CB339806
文摘Several indole derivatives with different '3-' substituents have been investigated by terahertz (THz) time-domain spectroscopy. The low-frequency absorption spectra and refractive indices were obtained in the range of 0.2 THz to 2.5 THz (7 cm-1 to 83 cm-1). These derivatives with different substituents present distinct features, which suggests that THz spectroscopy is sensitive to different structures and components of these chemicals. The density functional theory was employed to calculate the low-frequency vibrational properties of indole-3-carboxylic acid and indole-3-propionic acid based on their crystal structures, and the intermolecular interactions were involved. Meanwhile, the temperature dependence of the spectra agreed with the calculated results. The quantitative analysis of a ternary mixture was studied by taking the THz fingerprints into account, and the results demonstrate THz spectroscopy has great potential for the practical applications in biochemistry and pharmaceutics.
基金This project(2005-28) is supported by Laboratory of Opto-elec-tronics Information Technical Science ,EMC.
文摘We present a novel and efficient L-band wavelength-tunable Er^3+ doped fiber laser of ring structure. In the cavity two segments of Er^3+ doped fiber and a fiber Bragg grating are used to improve pump efficiency. Tunable filters based on fiber loop mirrors are also applied inside the cavity to act as both a wavelength selector and a line-width compressor. Using these techniques, a tunable laser with tuning range up to 42 nm, output power larger than 1 mW, power uniformity controlled within 1.75 dB and side mode suppression ratio about 40 dB is achieved.
基金the financial support provided by the National Natural Science Foundation of China (NSFC No. U1733120, 61601469, 61674114, 61701475, 91743110, 21861132001)National Key R&D Program of China (2017YFF0204604, 2018YFE0118700)+4 种基金Tianjin Applied Basic Research and Advanced Technology (17JCJQJC43600)the 111 Project (B07014)the Initial Scientific Research Fund of State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University (No. Pilq1902)the Foundation for Talent Scientists of Nanchang Institute for Micro-technology of Tianjin Universitythe Open Research Fund of Key Laboratory of MEMS of Ministry of Education, Southeast University。
文摘To address the need for the on-site measurement of aging oil, in this paper, we propose an impedance-based microsensor for analyzing the moisture content in engine oil. Using a microfabrication process, we fabricated an interdigitated microelectrode and integrated it with a 3 D-printed microcontainer to produce a microsensor that can detect changes in the permittivity of oil. When the moisture content in oil increases, this sensor can detect the resulting change in the oil impedance, which is related to its permittivity, and then determine the degree to which the oil has aged. The test results show that the proposed microsensor has the advantages of being small and having high sensitivity, good accuracy, and the ability to be combined with hand-held instruments.The proposed method is expected to be used for the rapid, low cost, on-site determination of oil aging.
文摘In the simulation of Intensity Modulation-Direct Detection WDM Systems,when the dispersion and nonlinear effects play equally important roles,the intensity fluctuation caused by cross-phase modulation may be overestimated as a result of the improper step size.Therefore,the step size in numerical simulation should be selected to suppress false XPM intensity modulation (keep it much less than signal power).According to this criterion,the step size is variable along the fiber.For a WDM system,the step size depends on the channel separation.Different type of transmission fiber has different step size.In the split-step Fourier method,this criterion can reduce simulation time,and when the step size is bigger than 100 meters,the simulation accuracy can also be improved.
基金Project supported by the National Natural Science Foundation of China(Grant No.62075159)the National Key Research and Development Program of China(Grant No.2017YFF0104603)+1 种基金the 111 Project of China(Grant No.B17031)the Major Scientific and Technological Innovation Projects of Key Research and Development Plans in Shandong Province,CHina(Grant No.2019JZZY020206)。
文摘Based on the index-induced mode coupling between the higher-order mode in core and the fundamental mode in cladding tubes,the single-mode operation can be realized in any antiresonant fibers(ARFs)when satisfying that the area ratio of cladding tube and core is about 0.46:1,and this area ratio also should be modified according to the shape and the number of cladding tubes.In the ARF with nodal core boundary,the mode in core also can couple with the mode in the wall of core boundary,which can further enhance the suppression of high-order mode.Accordingly,an ARF with conjoint semi-elliptical cladding tubes realizes a loss of higher-order mode larger than 30 dB/m;simultaneously,a loss of fundamental mode loss less than 0.4 dB/m.
基金Supported by the National Basic Research Program of China under Grant Nos 2006CB806002 and 2010CB327604, and the National Natural Science Foundation of China under Grant Nos 60678012 and 60838004, and the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant Nos 20070056083 and 20070056073.
文摘We present a novel cluster-seven-core photonic crystal fiber which possesses high nonlinearity and supports the high-power pumping. Its nonlinearity coefficient and effective mode area are calculated by the full vector multipole method. Compared with the single core PCF, the cluster-seven-core photonic crystal fiber can support high-power beam transmitting in the core, and simultaneously has high nonlinearity. This kind of photonic crystal fiber can be applied to the photoelectron-device field.
文摘We have demonstrated passive mode-locking in a diode-end-pumped Nd:YV04 laser using two kinds of semiconductor absorbers whose relaxation region comes from Ino.2sGao.75As grown at low temperature (LT) and GaAs/air interface respectively. Mode-locking, using absorbers of the GaAs/air interface relaxation region, has the characteristics of less Q-switching tendency and higher average output power than that using absorbers of LT In0.25Ga0.75As relaxation region, but is not as stable as the latter.
文摘Transcranial electrical stimulation(tES)is a non-invasive nerve stimulation technique that modulates changes in neural activities in cerebral cortex through a weak current of specific intensity(and frequency).It has become a valuable tool for the study of human behavior and cognitive neurophysiological processes.As a brain stimulation technology with broad development prospects,it is not mature enough in the field of human auditory research.However,the research on tES has obtained preliminary results in regulating motor ability.This article mainly introduces the effects of tES and auditory steady state response on auditory,and the applications of tES in auditory diseases.By summarizing and discussing tES during auditory processing as comprehensively as possible,the potential application value of tES in the treatment of auditory diseases could be illustrated.
基金funded by the National Natural Science Foundation of China (Grant Nos.U22A20353,U22A20123,62175182,and 62275193)Daheng Atlas (Beijing)Laser Technology Co.Ltd.for their support。
文摘Enhanced terahertz wave generation via a Stokes cascade process has been demonstrated using picosecond pulse pumped terahertz parametric generation at 1 kHz repetition rate.Clear cascade saturation of terahertz output was observed,and the corresponding cascade-Stokes spectra were analyzed.The maximum terahertz wave average power was 22μW under a pump power of 30 W,whereas the maximum power conversion efficiency was 8×10^(-7)under a pump power of 21 W.The THz power fluctuation was measured to be about 1%in 20 min.This THz parametric source with a relatively stable output is suitable for a variety of practical applications.
基金support from the National Natural Science Foundation of China(Grant Nos.U2233206,61674114,and 91743110)the National Key R&D Program of China(Grant No.2021YFC3002204)+1 种基金Tianjin Applied Basic Research and Advanced Technology(Grant No.17JCJQJC43600)the 111 Project(Grant No.B07014).
文摘Solid-state nanopores offer a range of distinct advantages over biological nanopores,such as structural diversity and greater stability and durability;this makes them highly promising for high-resolution nanoparticle sensing.Biological nanopores can exhibit gating characteristics with stress-responsive switches and can demonstrate specificity toward particular molecules.Drawing inspiration from biological nanopores,this paper introduces a novel polymer nanopore with field-effect characteristics,leveraging a conductive polymer in its construction to showcase intriguing gating behavior.Notably,in this device,the polymer layer serves as the gate,enabling precise control over the source–drain current response inside and outside the pore by simply adjusting the gate voltage.This unique feature allows fine-tuning of the nanopore’s sensitivity to nanoparticles of varying sizes and facilitates its operation in multiple modes.Experimental results reveal that the developed polymer nanopore field-effect transistor demonstrates remarkable selectivity in detecting nanoparticles of various sizes under different applied voltages.The proposed single device demonstrates the exceptional ability to detect multiple types of nanoparticle,showcasing its immense potential for a wide range of applications in biological-particle analysis and medical diagnostics.
基金Supported by the National Natural Science Foundation of China(No.81222021 and No.31011130042)the National Key Technology R&D Program of the Ministry of Science and Technology of China(No.2012BAI34B02)
文摘In order to detect and assess the muscle fatigue state with the surface electromyography(sEMG) characteristic parameters,this paper carried out a series of isometric contraction experiments to induce the fatigue on the forearm muscles from four subjects,and recorded the sEMG signals of the flexor carpi ulnaris.sEMG's median frequency(MDF) and mean frequency(MF) were extracted by short term Fourier transform(STFT),and the root mean square(RMS) of wavelet coefficients in the frequency band of 5—45 Hz was obtained by continuous wavelet transform(CWT).The results demonstrate that both MDF and MF show downward trends within 1 min; however,RMS shows an upward trend within the same time.The three parameters are closely correlated with absolute values of mean correlation coefficients greater than 0.8.It is suggested that the three parameters above can be used as reliable indicators to evaluate the level of muscle fatigue during isometric contractions.
基金This work was supported by the National Natural Science Foundation of China (No. 60278001)the Science & Technology Cooperation Foundation of Nakai University, the Ministry of Education.
文摘Based on the split-step Fourier method and small signal analysis, an improved analytical solution which describes the cross-phase modulation (XPM) intensity is derived. It can suppress the spurious XPM intensity modulation efficiently in the whole transmission fiber. Thus it is more coincidence with the practical result. Furthermore, it is convenient, because it is independent of channel separation and the dispersion and nonlinear effects interact through the XPM intensity. A criterion of select the step size is described as the derived XPM intensity modulation being taken into account. It is non-uniform distribution and is the function of average signal power <P(z)> (or z). Compared with the conventional split-step method, the simulation accuracy is improved when the step size is determined by the improved XPM intensity.
基金supported by the National Natural Science Foundation of China(Grant Nos.U1837202,61775160,61771332,62011540006,and 62175182)。
文摘A high-sensitive terahertz detector operating at room temperature was demonstrated based on parametric upconversion.A nanosecond 1064-nm Nd:YAG laser was used to pump the parametric up-conversion detector and the upconversion from terahertz wave to NIR laser was realized in a lithium niobate crystal.The minimum detectable terahertz energy of 9 p J was realized with the detection dynamic range of 54 d B,which was three orders of magnitude higher than that of commercial Golay cell.The detectable terahertz frequency range of the detection system was 0.90 Thz–1.83 THz.Besides,the effects of pump energy and effective gain length on the detection sensitivity were studied in experiment.The results showed that higher pump energy and longer effective gain length are helpful for improving the detection sensitivity of parametric up-conversion detector.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFA0701004)the National Natural Science Founda-tion of China(Grant Nos.61675145,61722509,61735012,and 61420106006).
文摘Graphene has been recognized as a promising candidate in developing tunable terahertz(THz)functional devices due to its excellent optical and electronic properties,such as high carrier mobility and tunable conductivity.Here,we review graphene-based THz modulators we have recently developed.First,the optical properties of graphene are discussed.Then,graphene THz modulators realized by different methods,such as gate voltage,optical pump,and nonlinear response of graphene are presented.Finally,challenges and prospective of graphene THz modulators are also discussed.