期刊文献+
共找到25篇文章
< 1 2 >
每页显示 20 50 100
Influences of divalent ion substitution on the magnetic and dielectric properties of W-type barium ferrite
1
作者 何诗悦 刘若水 +3 位作者 刘煦婕 叶先平 王利晨 沈保根 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期480-486,共7页
Saturation magnetization,magneto-crystalline anisotropy field,and dielectric properties are closely related to microwave devices applied at different frequencies.For regulating the magnetic and dielectric properties o... Saturation magnetization,magneto-crystalline anisotropy field,and dielectric properties are closely related to microwave devices applied at different frequencies.For regulating the magnetic and dielectric properties of W-type barium ferrites,single-phase BaMe_(2)Fe_(16)O_(27)(Me=Fe,Mn,Zn,Ni,Co) with different Me ions were synthesized by the high-temperature solid-state method.The saturation magnetization(Ms) range from 47.77 emu/g to 95.34 emu/g and the magnetic anisotropy field(H_a) range from 10700.60 Oe(1 Oe=79.5775 A·m^(-1)) to 13739.57 Oe,depending on the type of cation substitution in the hexagonal lattice.The dielectric permittivity and dielectric loss decrease with increasing frequency of the AC electric field in the low-frequency region,while they almost remain constant in the high-frequency region.The charac teristics of easy regulation and preparation make it a potential candidate for use in microwave device applications. 展开更多
关键词 W-type hexaferrite Raman spectra magnetic properties dielectric properties
下载PDF
Synergistic extraction and separation of thorium from rare earths in chloride media using mixture of Cextrant 230 and Cyanex 923
2
作者 Hui Wang Shengting Kuang Wuping Liao 《Journal of Rare Earths》 SCIE EI CAS CSCD 2024年第4期759-767,共9页
In order to lower the usage of expensive Cyanex 923 and increase the extraction capacity of the system of Cextrant 230,the synergistic extraction of thorium from chloride media by a mixture of Cextrant 230 and Cyanex ... In order to lower the usage of expensive Cyanex 923 and increase the extraction capacity of the system of Cextrant 230,the synergistic extraction of thorium from chloride media by a mixture of Cextrant 230 and Cyanex 923 was investigated.The maximum synergistic enhancement coefficient(R)of 1.53 is obtained at 1:1 molar ratio of Cextrant 230/Cyanex 923.The syne rgistic extracted species of Th^(4+)is determined as ThCl_(4)·2Cextrant 230·Cyanex 923.The synergistic extraction of Th^(4+)is an entropy-driven exothermic process.The loading capacity of 0.60 mol/L mixed extractant for thorium is about 17.10 g/L(calculated as ThO_(2)),and the loaded thorium in the organic phase can be effectively stripped by distilled water.For comparison,rare earth cations are barely extracted under the similar conditions,suggesting that the mixtures can be applied to separate thorium from rare earths.A cascade extraction process was developed based on the synergistic extraction system to separate thorium from the hydrochloric acid leaching of bastnaesite.The content of thorium in the leaching solution decreases obviously from 19.90 mg/L to1.4μg/L by 3 stages of extraction,which is superior to sole Cextrant 230 or Cyanex 923.The introduction of Cextrant 230 into the extraction system not only lowers the usage of Cyanex 923 but also enhances the selective extraction of thorium at low acidity,implying that the synergistic extraction system can selectively extract thorium more efficiently and economically than the sole systems. 展开更多
关键词 Synergistic extraction Cextrant 230 Cyanex 923 THORIUM Rare earths
原文传递
Optimization of the grain boundary diffusion process by doping gallium and zirconium in Nd–Fe–B sintered magnets
3
作者 李之藤 徐海波 +5 位作者 刘峰 赖荣舜 武仁杰 李志彬 张洋洋 马强 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第10期649-655,共7页
As the channel for grain boundary diffusion(GBD)in Nd–Fe–B magnets,grain boundary(GB)phases have a very important effect on GBD.As doping elements that are commonly used to regulate the GB phases in Nd–Fe–B sinter... As the channel for grain boundary diffusion(GBD)in Nd–Fe–B magnets,grain boundary(GB)phases have a very important effect on GBD.As doping elements that are commonly used to regulate the GB phases in Nd–Fe–B sintered magnets,the influences of Ga and Zr on GBD were investigated in this work.The results show that the Zr-doped magnet has the highest coercivity increment(7.97 kOe)by GBD,which is almost twice that of the Ga-doped magnet(4.32 kOe)and the magnet without Ga and Zr(3.24 kOe).Microstructure analysis shows that ZrB_(2)formed in the Zr-doped magnet plays a key role in increasing the diffusion depth.A continuous diffusion channel in the magnet can form because of the presence of ZrB_(2).ZrB_(2)can also increase the defect concentration in GB phases,which can facilitate GBD.Although Ga can also improve the diffusion depth,its effect is not very obvious.The micromagnetic simulation based on the experimental results also proves that the distribution of Tb in the Zr-doped magnet after GBD is beneficial to coercivity.This study reveals that the doping elements Ga and Zr in Nd–Fe–B play an important role in GBD,and could provide a new perspective for researchers to improve the effects of GBD. 展开更多
关键词 Nd–Fe–B sintered magnet ZrB_(2)phase grain boundary diffusion micromagnetic simulation
下载PDF
Structural Determination,Unstable Antiferromagnetism and Transport Properties of Fe-Kagome Y_(0.5)Fe_(3)Sn_(3) Single Crystals
4
作者 刘洋 吕孟 +6 位作者 刘俊艳 张伸 杨金颖 杜志伟 王彬彬 魏红祥 刘恩克 《Chinese Physics Letters》 SCIE EI CAS CSCD 2023年第4期50-55,共6页
Kagome materials have been studied intensively in condensed matter physics.With rich properties,various Kagome materials emerge during this process.Here,we grew single crystals of Y_(0.5)Fe_(3)Sn_(3)and confirmed an Y... Kagome materials have been studied intensively in condensed matter physics.With rich properties,various Kagome materials emerge during this process.Here,we grew single crystals of Y_(0.5)Fe_(3)Sn_(3)and confirmed an YCo_(6)Ge_(6)-type Kagome-lattice structure by detailed crystal structure characterizations.This compound bears an antiferromagnetic ordering at T_(N)= 551 K,and shows a weak ferromagnetism at low temperatures,where an anomalous Hall effect was observed,suggesting the non-zero Berry curvature.With the unstable antiferromagnetic ground state,our systematic investigations make Y_(0.5)Fe_(3)Sn_(3)a potential Kagome compound for Kagome or topological physics. 展开更多
关键词 Crystal structure UNSTABLE
下载PDF
Large reversible cryogenic magnetocaloric effect in rare earth iron carbides of composition RE_(2)FeC_(4)(RE=Ho,Er,and Tm)
5
作者 Jianjian Gong Qi Fu +5 位作者 Hao Sun Lu Tian Xinqiang Gao Zhenxing Li Zhaojun Mo Jun Shen 《Journal of Rare Earths》 SCIE EI CAS CSCD 2023年第12期1996-2001,I0006,共7页
At cryogenic temperatures,the investigations of magnetic phase transition and magnetocaloric effect in RE_(2)FeC_(4)(RE=Ho,Er,and Tm) compounds were performed.Ho_(2)FeC_(4)and Er_(2)FeC_(4)compounds undergo two magnet... At cryogenic temperatures,the investigations of magnetic phase transition and magnetocaloric effect in RE_(2)FeC_(4)(RE=Ho,Er,and Tm) compounds were performed.Ho_(2)FeC_(4)and Er_(2)FeC_(4)compounds undergo two magnetic phase transitions with the temperature decreasing:from paramagnetic(PM) to ferromagnetic(FM) transition at their respective Curie temperature(Tc) and from FM to antiferromagnetic(AFM) or ferrimagnetic(FIM) transition below 2 K.Tm_(2)FeC_(4)compound exhibits only a second-order PM to FM phase transition at TC=K.Large reversible MCE without hysteresis loss is observed in RE_(2)FeC_(4)(RE=Ho,Er,and Tm) compounds.Particularly,the maximum value of magnetic entropy change(-ASM)is 21.62 J/(kg K) under the magnetic field change(Δ_(μ0)H) of 0-5 T for Er_(2)FeC_(4).The Er_(2)FeC_(4)compound presenting excellent magnetocaloric performance makes it a competitive cryogenic magnetic refrigeration material. 展开更多
关键词 RE_(2)FeC_(4)(RE=Ho ER and Tm)compounds Magnetocaloric effect Magnetic phase transition Cryogenic magnetic refrigeration Rare earths
原文传递
Experimental and mathematical modeling of metal spray forming process 被引量:1
6
作者 ZHANG Yin FAN Junfei REN Sanbin 《Baosteel Technical Research》 CAS 2011年第3期9-14,共6页
The metal spray forming process was examined using mathematical simulation and verified through the prototyping evaluation at Baosteel' s test and development facilities. The mathematical model comprised of four sect... The metal spray forming process was examined using mathematical simulation and verified through the prototyping evaluation at Baosteel' s test and development facilities. The mathematical model comprised of four sections, including jet gas flow in the deposition chamber;single droplet behavior along its trajectory path;probability and statistical analysis of droplet mass behavior, and forecast of the shape and temperature distribution of the billet during the spray forming process. 展开更多
关键词 spray forming droplets simulation statistical method BILLET
下载PDF
Microstructure Refinement of Al-5Ti-B Grain Refiner with Electromagnetic Energy
7
作者 闫春雷 麻永林 +2 位作者 HE Shuai XING Shuqing BAO Xinyu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2022年第4期740-745,共6页
The influence of the electromagnetic energy on the microstructure of Al-5Ti-B grain reflner was discussed.In this study,the electromagnetic energy was applied above the liquid phase line temperature.Compared with Al-5... The influence of the electromagnetic energy on the microstructure of Al-5Ti-B grain reflner was discussed.In this study,the electromagnetic energy was applied above the liquid phase line temperature.Compared with Al-5Ti-B without electromagnetic energy applied,the experimental results show that the size of secondary particles is reduced and its size distribution becomes more uniform.Simultaneously,the secondary phase particles are uniformly spread in the matrix response to the electromagnetic energy.Moreover,when adding Al-5Ti-B with electromagnetic energy to the pure aluminum melt,it is clear that the electromagnetic energy has a signiflcantly impact on reflning properties of Al-5Ti-B.The mean size of pure aluminum is reduced by 27.6%in maximum with more uniform size distribution.The change in the microstructure is attributed to the electromagnetic energy changes the melt structure.With the electromagnetic energy entry into the system,the electromagnetic energy reduces the size of atomic clusters and increases the number of atomic clusters,thus the number of nuclei increases. 展开更多
关键词 rectangle pulsed electromagnetic field Al-5Ti-B electromagnetic energy liquid phase line
下载PDF
Magnetic properties and magnetocaloric effects of Tm_(1-x)Er_(x)CuAl(x=0.25,0.5,and 0.75)compounds
8
作者 孙浩 王俊峰 +4 位作者 田路 巩建建 莫兆军 沈俊 沈保根 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第12期504-509,共6页
We investigate the structural,magnetic,and magnetocaloric effects(MCE)of Tm_(1-x)Er_(x)CuAl(x=0.25,0.5,and 0.75)compounds.The compounds undergo a second-order phase transition originating from the ferromagnetic to par... We investigate the structural,magnetic,and magnetocaloric effects(MCE)of Tm_(1-x)Er_(x)CuAl(x=0.25,0.5,and 0.75)compounds.The compounds undergo a second-order phase transition originating from the ferromagnetic to paramagnetic transition around 3.2 K,5 K,and 6 K,respectively.The maximum magnetic entropy changes(-△S_(M)^(max))of Tm_(1-x)Er_(x)CuAl(x=0.25,0.5,and 0.75)are 17.1 J·kg^(-1)·K^(-1),18.1 J·kg^(-1)·K^(-1),and 17.5 J·kg^(-1)·K^(-1)under the magnetic field in the range of 0-2 T,with the corresponding refrigerant capacity(RC)values of 131 J·kg^(-1),136 J·kg^(-1),and 126 J·kg^(-1),respectively.The increase of-△S_(M)^(max)for Tm0.5Er0.5CuAl may be relevant to the change of magnetic moment distribution of Er and stress coming from element substitution.This work provides several compounds that can enrich the family of giant MCE materials in the cryogenic region. 展开更多
关键词 TmCuAl-based alloy magnetic property magnetocaloric effect magnetic refrigeration
下载PDF
Structure, magnetism and magnetocaloric effects in Er_(5)Si_(3)B_(x)(x=0.3,0.6) compounds
9
作者 郝志红 刘辉 张聚国 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第11期575-579,共5页
We investigate the structure, magnetic properties, magnetic phase transitions and magnetocaloric effects(MCEs) of Er5Si3Bx(x=0.3,0.6) compounds. The Er5Si3Bx(x = 0.3, 0.6) compounds crystalize in a Mn5Si3type hexagona... We investigate the structure, magnetic properties, magnetic phase transitions and magnetocaloric effects(MCEs) of Er5Si3Bx(x=0.3,0.6) compounds. The Er5Si3Bx(x = 0.3, 0.6) compounds crystalize in a Mn5Si3type hexagonal structure(space group: P63/cm) and exhibit a successive complicated magnetic phase transition. The extensive magnetic phase transitions contribute to the broad temperature range of MCEs exhibiting in Er_(5)Si_(3)B_(x)(x=0.3,0.6) compounds, with maximum magnetic entropy change(-ΔSM_(max)) and refrigeration capacity of 10.2 J·kg^(-1)·K^(-1), 356.3 J/kg and 11.5 J·kg^(-1)·K^(-1),393.3 J/kg under varying magnetic fields 0–5 T, respectively. Remarkably, the δTFWHMvalues(the temperature range corresponding to 1/2×|-ΔSM_(max)|) of Er5Si3Bx(x=0.3,0.6) compounds were up to 41.8 K and 39.6 K, respectively. Thus, the present work provides a potential magnetic refrigeration material with a broad temperature range MCEs for applications in cryogenic magnetic refrigerators. 展开更多
关键词 magnetic materials cryogenic magnetic refrigeration magnetic phase transition magnetocaloric effects
下载PDF
Giant low-field cryogenic magnetocaloric effect in polycrystalline LiErF4 compound
10
作者 莫兆军 巩建建 +5 位作者 谢慧财 张磊 付琪 高新强 李振兴 沈俊 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第2期468-472,共5页
Antiferromagnetic LiErF4has attracted extensive attention due to its dipolar interaction domination and quantum fluctuations action. In the present work, the crystal structure, cryogenic magnetic properties, and magne... Antiferromagnetic LiErF4has attracted extensive attention due to its dipolar interaction domination and quantum fluctuations action. In the present work, the crystal structure, cryogenic magnetic properties, and magnetocaloric effect(MCE) of polycrystalline LiErF4compound are investigated. Crystallographic study shows that the compound crystallizes in the tetragonal scheelite structure with I41/a space group. It exhibits an antiferromagnetic(AFM) phase transition around 0.4 K, accompanied by a giant cryogenic MCE. At 1.3 K, the maximum values of magnetic entropy changes are 24.3 J/kg·K,33.1 J/kg·K, and 49.0 J/kg·K under the low magnetic field change of 0–0.6 T, 0–1 T, and 0–2 T, respectively. The giant MCE observed above Néel temperature TNis probably due to the strong quantum fluctuations, which cause a large ratio of the unreleased magnetic entropy existing above the phase transition temperature. The outstanding low-field MCE below 2 K makes the LiErF4compound an attractive candidate for the magnetic refrigeration at the ultra-low temperature. 展开更多
关键词 LiErF4 magnetocaloric effect ultra-low temperature
下载PDF
Direct atomic-level insight into oxygen reduction reaction on size-dependent Pt-based electrocatalysts from density functional theory calculations
11
作者 Fangren Qian Lishan Peng +2 位作者 Yujuan Zhuang Lei Liu Qingjun Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第9期140-146,共7页
Developing novel oxygen reduction reaction(ORR)catalysts with high activity is urgent for proton exchange membrane fuel cells.Herein,we investigated a group of size-dependent Pt-based catalysts as promising ORR cataly... Developing novel oxygen reduction reaction(ORR)catalysts with high activity is urgent for proton exchange membrane fuel cells.Herein,we investigated a group of size-dependent Pt-based catalysts as promising ORR catalysts by density functional theory calculations,ranging from single-atom,nanocluster to bulk Pt catalysts.The results showed that the ORR overpotential of these Pt-based catalysts increased when its size enlarged to the nanoparticle scale or reduced to the single-atom scale,and the Pt_(38)cluster had the lowest ORR overpotential(0.46 V)compared with that of Pt_(111)(0.57 V)and single atom Pt(0.7 V).Moreover,we established a volcano curve relationship between the ORR overpotential and binding energy of O*(ΔE_(O*),confirming the intermediate species anchored on Pt38cluster with suitable binding energy located at top of volcano curve.The interaction between intermediate species and Pt-based catalysts were also investigated by the charge distribution and projected density of state and which further confirmed the results of volcano curve. 展开更多
关键词 Density functional theory(DFT) calculations Pt-based electrocatalysts Oxygen reduction reaction
下载PDF
Effect of cobalt substitution for nickel on microstructural evolution and hydrogen storage properties of La_(0.66)Mg_(0.34)Ni_(3.5-x)Co_(x) alloys
12
作者 Xincong He Huazhou Hu +5 位作者 Ruizhu Tang Wenhao Zhou Houqun Xiao Xiaoxuan Zhang Chuanming Ma Qingjun Chen 《Journal of Rare Earths》 SCIE EI CAS CSCD 2024年第5期930-939,I0004,共11页
Superlattice hydrogen storage alloys offer a compelling advantage with rapid hydriding rate and high storage capacity.However,its practical applications face challenges including complex structure,low dehydriding capa... Superlattice hydrogen storage alloys offer a compelling advantage with rapid hydriding rate and high storage capacity.However,its practical applications face challenges including complex structure,low dehydriding capacity,and cyclic instability.In this work,we successfully prepared La_(0.66)Mg_(0.34)Ni_(3.5-x)Co_(x) superlattice hydrogen storage alloys with enhanced dehydriding capacity and stability by partially substituting Co for Ni.X-ray diffraction(XRD)refinements analysis reveals the presence of(La,Mg)_(3)Ni_(9),(La,Mg)_5Ni_(19),and LaNi_(5) phases within the alloy.Following Co substitution in the La_(0.06)Mg_(0.34)Ni_(3.4)Co_(0.1)alloy,there is a significant increase in content of the(La,Mg)_(3)Ni_(9) phase and a reduction in the hysteresis factor,resulting in an improved reversible hydrogen storage capacity from 1.45 wt%to 1.60 wt%.The dehydriding kinetics of the alloy is controlled by diffusion model with an activation energy of 8.40 kJ/mol.Furthermore,the dehydriding enthalpy value of the Co-substituted alloy decreases from 30.84 to 29.85 kJ/mol.Impressively,the cycling performance of the alloy after Co substitution exhibits excellent stability,with a capacity retention rate of 92.3%after 100 cycles.These findings provide valuable insights for the development of cost-effective hydrogen storage materials. 展开更多
关键词 Superlattice hydrogen storage alloy Co substitution Microstructure Kinetics Thermodynamics Rare earths
原文传递
Efficient Pt/KFI zeolite catalysts for the selective catalytic reduction of NOxby hydrogen
13
作者 Ligang Zhang Yulong Shan +3 位作者 Zidi Yan Zhongqi Liu Yunbo Yu Hong He 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第4期102-111,共10页
Aiming at purification of NO_(x)from hydrogen internal combustion engines(HICEs),the hydrogen selective catalytic reduction(H_(2)-SCR)reaction was investigated over a series of Pt/KFI zeolite catalysts.H_(2)can readil... Aiming at purification of NO_(x)from hydrogen internal combustion engines(HICEs),the hydrogen selective catalytic reduction(H_(2)-SCR)reaction was investigated over a series of Pt/KFI zeolite catalysts.H_(2)can readily reduce NO_(x)to N_(2)and N_(2)O while O_(2)inhibited the deNO_(x)efficiency by consuming the reductant H_(2).The Pt/KFI zeolite catalysts with Pt loading below 0.1wt.% are optimized H_(2)-SCR catalysts due to its suitable operation temperature window since high Pt loading favors the H_(2)-O_(2)reaction which lead to the insufficient of reactants.Compared to metal Pt^(0)species,Pt^(δ+)species showed lower activation energy of H_(2)-SCR reaction and thought to be as reasonable active sites.Further,Eley-Rideal(E-R)reaction mechanism was proposed as evidenced by the reaction orders in kinetic studies.Last,the optimized reactor was designed with hybrid Pt/KFI catalysts with various Pt loading which achieve a high NO_(x)conversion in a wide temperature range. 展开更多
关键词 Pt/KFI zeolite Pt loading H_(2)-SCR Reaction conditions Kinetics studies
原文传递
Design of Ca-type todorokite catalysts with highly active for the selective reduction of NO_(x) by NH_(3) at low temperatures
14
作者 Chuang Chang Zidi Yan +6 位作者 Chunlei Zhang Yanshuang Zhang Miao Jiang Luna Ruan Min Xiao Yunbo Yu Hong He 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第4期697-708,共12页
Ca-type todorokite catalysts were designed and prepared by a simple redox method and applied to the selective reduction of NO_(x) by NH_(3)(NH_(3)-SCR)for the first time.Compared with the Na-type manjiroite prepared b... Ca-type todorokite catalysts were designed and prepared by a simple redox method and applied to the selective reduction of NO_(x) by NH_(3)(NH_(3)-SCR)for the first time.Compared with the Na-type manjiroite prepared by the same method,the todorokite catalysts with different Mn/Ca ratios showed greatly improved catalytic activity for NO_(x) reduction.Among them,Mn8Ca4 catalyst exhibited the best NH_(3)-SCR performance,achieving 90%NO_(x) conversion within temperature range of 70-275℃ and having a high sulphur resistance.Compared to the Na-type manjiroite sample,Ca-type todorokite catalysts possessed an increased size of tunnel,resulting in a larger specific surface area.As increased the amounts of Ca doping,the Na content in Ca-type todorokite catalysts significantly decreased,providing larger amounts of Bronsted acid sites for NH_(3) adsorption to produce NH_(4)^(+).The NH_(4)^(+)species were highly active for reaction with NO+O_(2),playing a determining role in NH_(3)-SCR process at low temperatures.Meanwhile,larger amounts of surface adsorbed oxygen contained over the Ca-doping samples than that over Na-type manjiroite,promoting the oxidation of NO and fast SCR processes.Over the Ca-type todorokite catalysts,furthermore,nitrates produced during the flow of NO+O_(2),were more active for reaction with NH_(3) than that over Na-type manjiroite,benefiting the occurrence of NH_(3)-SCR process.This study provides novel insights into the design of NH_(3)-SCR catalysts with high performance. 展开更多
关键词 NO_(x) NH_(3)-SCR Mn-based oxides Ca-type todorokite Bronsted acid sites
原文传递
Microscale spherical TiO_(2)powder prepared by hydrolysis of TiCl_(4)solution:Synthesis and kinetics
15
作者 Peiyi Yan Ying Zhang Shili Zheng 《Particuology》 SCIE EI CAS CSCD 2024年第1期60-71,共12页
Hydrolysis of TiCl_(4)solution is capable of preparing microscale TiO_(2)particles.This research studied the synthesis of microscale spherical TiO_(2)powders and the hydrolysis kinetics.The effects of the flow field g... Hydrolysis of TiCl_(4)solution is capable of preparing microscale TiO_(2)particles.This research studied the synthesis of microscale spherical TiO_(2)powders and the hydrolysis kinetics.The effects of the flow field generated by different agitators and baffles in the crystallizer,the initial free acid concentration,the initial equivalent TiO_(2)concentration,and the temperature on the hydrolysis progress and powder morphology were systematically studied.The results show that the flow field in a crystallizer can significantly affect the morphology and particle size of the powders,and the axial flow can improve the sphericity of the powders.The increased free HCl and equivalent TiO_(2)concentrations in the pregnant solution inhibit the forward hydrolysis reaction,prolong the time to reach equilibrium,and reduce the yield.An appropriate temperature matching the compositions of the pregnant solution is crucial for the powder morphology and size.Powders with sizes ranging from around 5 um-40μm can be tuned under controlled flow field,solution compositions,and temperature conditions.In addition,the Cheng and Wunderlich modified Avrami equation was used for the crystallization kinetic modeling.The effects of the free HCl concentration,equivalent TiO_(2)concentration,and hydrolysis temperature are reflected in the reaction rate constant and active nuclei reduction index.Increasing the free HCl and equivalent TiO_(2)concentrations will reduce the reaction rate constant and accelerate the deactivation of the active nuclei,thus increasing the final powder size,while increasing the temperature will lead to the opposite results. 展开更多
关键词 TiCl_(4) HYDROLYSIS Microscale TiO_(2) SPHERICAL KINETICS
原文传递
Giant low-field reversible magnetocaloric effect at liquid helium temperature of niobium and iron co-substituted EuTiO_(3) compounds
16
作者 Zhihong Hao Quanyi Liu +2 位作者 Huicai Xie Yan Zhang Zhaojun Mo 《Journal of Rare Earths》 SCIE EI CAS CSCD 2024年第4期710-715,共6页
Giant magnetocaloric effect(MCE)materials in the liquid helium temperature region have attracted a lot of attention in the field of low-temperature magnetic refrigeration(MR).In this study,a series of niobium(Nb)and i... Giant magnetocaloric effect(MCE)materials in the liquid helium temperature region have attracted a lot of attention in the field of low-temperature magnetic refrigeration(MR).In this study,a series of niobium(Nb)and iron(Fe)co-substituted EuTiO_(3) perovskites with cubic structure(space group pm3m)was successfully fabricated,and their magnetic properties as well as cryogenic magnetocaloric effects were investigated in detail.As expected,the introduction of Nb and Fe can significantly modulate the magnetic phase transition and magnetocaloric effect of the EuTiO_(3) compounds.With increasing Fe concentration,two local minima corresponding to the AFM-FM magnetic phase transition near 5.0 K and FM-PM transition near 10 K with no hysteresis in the thermomagnetic curves are observed,which is attributed to an enhancement of FM coupling.At the same time,the gradually widened-ΔSM-T curves and the two peaks with a broad shoulder lead to considerable refrigeration capacity(RC).With the field change ofΔH=2 T,the calculated values of-ΔS_(M)^(max) for the EuTi_(0.9375-x)Nb_(0.0625)Fe_(x)O_(3)(x=0.075,0.1,0.125,0.15)compounds are 24.2,17.6,14.5 and 14.0 J/(kg·K),respectively.The corresponding RC values were calculated to be 144.6,138.3,151.2 and 159 J/kg,respectively.Especially,the values of-ΔS_(M)^(max) for EuTi_(0.8625)Nb_(0.0625)Fe_(0.075)O_(3) are 8.6 and 15.1 J/(kg·K)under low field changes of 0.5 and 1 T,respectively.The giant low-field reversible magnetocaloric effect makes them attractive candidates for magnetic refrigeration in the liquid helium temperature region. 展开更多
关键词 Magnetocaloric effect Refrigeration capacity Magnetic entropy change RAREEARTHS
原文传递
Magnetic properties and magnetocaloric effect in RE_(55)Co_(30)Al_(10)Si_(5)(RE=Er and Tm)amorphous ribbons
17
作者 孙浩 王俊峰 +4 位作者 田路 巩建建 莫兆军 沈俊 沈保根 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第11期560-565,共6页
The magnetic and magnetocaloric effects(MCE)of the amorphous RE_(55)Co_(30)Al_(10)Si_(5)(RE=Er and Tm)ribbons were systematically investigated in this paper.Compounds with R=Er and Tm undergo a second-order magnetic p... The magnetic and magnetocaloric effects(MCE)of the amorphous RE_(55)Co_(30)Al_(10)Si_(5)(RE=Er and Tm)ribbons were systematically investigated in this paper.Compounds with R=Er and Tm undergo a second-order magnetic phase transition from ferromagnetic(FM)to paramagnetic(PM)around Curie temperature T_(C)~9.3 K and 3 K,respectively.For Er_(55)Co_(30)Al_(10)Si_(5) compound,an obvious magnetic hysteresis and thermal hysteresis were observed at low field below 6 K,possibly due to spin-glass behavior.Under the field change of 0 T–5 T,the maximum values of magnetic entropy change(-△S_(M)^(max))reach as high as 15.6 J/kg·K and 15.7 J/kg·K for Er_(55)Co_(30)Al_(10)Si_(5) and Tm_(55)Co_(30)Al_(10)Si_(5) compounds,corresponding refrigerant capacity(RC)values are estimated as 303 J/kg and 189 J/kg,respectively.The large MCE makes amorphous RE_(55)Co_(30)Al_(10)Si_(5)(RE=Er and Tm)alloys become very attractive magnetic refrigeration materials in the low-temperature region. 展开更多
关键词 magnetocaloric effect AMORPHOUS magnetic refrigeration magnetic property
下载PDF
Enhanced carbon capture with motif-rich amino acid loaded defective robust metal-organic frameworks
18
作者 Qi-Ye Ju Jia-Jia Zheng +6 位作者 Li Xu Hai-Yan Jiang Zi-Qian Xue Lu Bai Yang-Yang Guo Ming-Shui Yao Ting-Yu Zhu 《Nano Research》 SCIE EI CSCD 2024年第3期2004-2010,共7页
The use of metal-organic frameworks(MOFs)as solid adsorption materials for carbon capture is promising,but achieving efficient and reversible adsorption with a balance of capacity and selectivity for carbon dioxide(CO... The use of metal-organic frameworks(MOFs)as solid adsorption materials for carbon capture is promising,but achieving efficient and reversible adsorption with a balance of capacity and selectivity for carbon dioxide(CO_(2))over N_(2) remains a challenge.To take full advantage of the strong channel traffic and robustness of MOFs with relatively small pores,it is highly necessary to employ a defect-engineering strategy to construct a broader channel structure that can facilitate the loading of functional motif-rich amino acids(AAs).This strategy can greatly enhance the CO_(2) adsorption performance of MOF.In this study,motif-rich amino acids are loaded into the defective and robust porous frameworks via combined defect-engineering and post-synthetic methods.The defective Zr/Hf-MOF-808s modified with AAs,especially for the 18 mol%4-nitroisophthalic acid,generated defective products allowing for the loading of L-serine(L-Ser).This modification resulted in a significant improvement in both the adsorption capacity(248%improvement at 298 K,100 kPa)and the selectivity of CO_(2)/N_(2) using the ideal adsorbed solution theory(IAST),with the selectivity increasing to 120.55 and 38.27 at 15 and 100 kPa,respectively,while maintaining good cycling performance.Density functional theory(DFT)simulation,CO_(2) temperature-programmed desorption(CO_(2)-TPD),and in situ Fourier transform infrared spectroscopy(FTIR)were further employed to have a better understanding of the enhanced CO_(2) adsorption capacity.Interestingly,unlike the AAs loaded pristine MOF-808s that showed the best CO_(2) adsorption capacity with the loading of short and small glycine(Gly),the broadened channel size in our work enables the loading of functional motif-rich L-serine,which brings more active binding sites,improving CO_(2) adsorption. 展开更多
关键词 carbon capture and storage metal-organic framework(MOF) amino acids(AAs) defect-engineering motif-rich
原文传递
Hydrogen storage properties of mechanically milled La_2Mg_(17-x)wt.%Ni(x=0,50,100,150 and 200) composites 被引量:1
19
作者 李霞 赵栋梁 +3 位作者 张羊换 许剑轶 张国芳 张胤 《Journal of Rare Earths》 SCIE EI CAS CSCD 2013年第7期694-700,共7页
Melting method was used to obtain La2Mg17 alloy, and then Ni powder was added by mechanical alloying method. The kinetics of hydriding process and electrochemical properties of La2Mg17-X wt.%Ni (x=0, 50, 100, 150, 20... Melting method was used to obtain La2Mg17 alloy, and then Ni powder was added by mechanical alloying method. The kinetics of hydriding process and electrochemical properties of La2Mg17-X wt.%Ni (x=0, 50, 100, 150, 200) composites were investigated. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses showed that the crystal structure of composite alloy gradually transformed into amorphous phase by the effect of ball milling and Ni powders. The research of hydrogen absorption properties found that La2Mg17-50 wt.%Ni reached the highest hydrogen absorption than other alloys with more addition of Ni content, reached to 5.796 wt.% at 3 MPa, and up to 5.229 wt.% merely in 2 min, which revealed that the amorphous phase reduced the H occupation of the lattice clearance, resulting in the decline of hydrogen absorption capacity. The electrochemical tests indicated that the maximum discharge capacity increased to 353.1 mAh/g at 30 ℃, however, the cycle stability decreased considerably./~ series of ki- netic measurements demonstrated that the controlling steps of electrochemical process of La2Mg17-x wt.%Ni alloys transferred from hydrogen diffusion on alloy bulk (x=50, 100) to hydrogen diffusion on both alloy bulk and surface (x=150, 200). 展开更多
关键词 hydrogen storage materials ball-milling electrochemical properties AMORPHOUS rare earths
原文传递
Tumor microenvironment-responsive modular integrated nanocomposites for magnetically targeted and photothermal enhanced catalytic therapy 被引量:2
20
作者 Yuan Liang Yilin Liu +2 位作者 Pengpeng Lei Zhen Zhang Hongjie Zhang 《Nano Research》 SCIE EI CSCD 2023年第7期9826-9834,共9页
Achieving efficient integration of cancer diagnosis and therapy is of great significance to human health,but the construction of a multifunctional intelligent therapy system still faces great challenges.In this study,... Achieving efficient integration of cancer diagnosis and therapy is of great significance to human health,but the construction of a multifunctional intelligent therapy system still faces great challenges.In this study,we report an integrated multifunctional nanocomposite constructed by a simple modular assembly technology.The nanocomposites are composed of three different nanomaterials:Fe_(3)O_(4),Au,and NaErF_(4):0.5%Tm@NaYF_(4)upconversion nanoparticles(UCNPs).In this design,Fe_(3)O_(4)nanoparticles have nanozyme effect of peroxidase-like activity,which can react with H_(2)O_(2)in the tumor microenvironment to generate hydroxyl radicals.Because of its magnetic properties,it can help the nanocomposites to aggregate under the induction of magnetic fields.Au nanoparticles exhibit nanozyme effect of glucose oxidase-like activity.It can catalyze the conversion of glucose to gluconic acid and H_(2)O_(2).Ingeniously,the generated H_(2)O_(2)provides a source of reactants for the reaction of the Fe_(3)O_(4)nanozyme.In addition,the photothermal effect of Au nanoparticles under 808 nm irradiation further enhanced the nanozyme activity of Fe_(3)O_(4)and Au nanoparticles.Besides,UCNPs can emit near-infrared(NIR)-II fluorescence under 808 nm irradiation,which can provide imaging-guided during cancer treatment.Then,the nanocomposites were further modified by poly(vinylpyrrolidone)(PVP)to obtain UCNPs/Au/Fe_(3)O_(4)-PVP with good biocompatibility and high-efficiency cancer treatment ability. 展开更多
关键词 modular integrated magnetic induction photothermal effect near-infrared(NIR)-II imaging nanozyme catalyzed reactions
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部