The extraction of entity relationship triples is very important to build a knowledge graph(KG),meanwhile,various entity relationship extraction algorithms are mostly based on data-driven,especially for the current pop...The extraction of entity relationship triples is very important to build a knowledge graph(KG),meanwhile,various entity relationship extraction algorithms are mostly based on data-driven,especially for the current popular deep learning algorithms.Therefore,obtaining a large number of accurate triples is the key to build a good KG as well as train a good entity relationship extraction algorithm.Because of business requirements,this KG’s application field is determined and the experts’opinions also must be satisfied.Considering these factors we adopt the top-down method which refers to determining the data schema firstly,then filling the specific data according to the schema.The design of data schema is the top-level design of KG,and determining the data schema according to the characteristics of KG is equivalent to determining the scope of data’s collection and the mode of data’s organization.This method is generally suitable for the construction of domain KG.This article proposes a fast and efficient method to extract the topdown type KG’s triples in social media with the help of structured data in the information box on the right side of the related encyclopedia webpage.At the same time,based on the obtained triples,a data labeling method is proposed to obtain sufficiently high-quality training data,using in various Natural Language Processing(NLP)information extraction algorithms’training.展开更多
Accurate prediction of future events brings great benefits and reduces losses for society in many domains,such as civil unrest,pandemics,and crimes.Knowledge graph is a general language for describing and modeling com...Accurate prediction of future events brings great benefits and reduces losses for society in many domains,such as civil unrest,pandemics,and crimes.Knowledge graph is a general language for describing and modeling complex systems.Different types of events continually occur,which are often related to historical and concurrent events.In this paper,we formalize the future event prediction as a temporal knowledge graph reasoning problem.Most existing studies either conduct reasoning on static knowledge graphs or assume knowledges graphs of all timestamps are available during the training process.As a result,they cannot effectively reason over temporal knowledge graphs and predict events happening in the future.To address this problem,some recent works learn to infer future events based on historical eventbased temporal knowledge graphs.However,these methods do not comprehensively consider the latent patterns and influences behind historical events and concurrent events simultaneously.This paper proposes a new graph representation learning model,namely Recurrent Event Graph ATtention Network(RE-GAT),based on a novel historical and concurrent events attention-aware mechanism by modeling the event knowledge graph sequence recurrently.More specifically,our RE-GAT uses an attention-based historical events embedding module to encode past events,and employs an attention-based concurrent events embedding module to model the associations of events at the same timestamp.A translation-based decoder module and a learning objective are developed to optimize the embeddings of entities and relations.We evaluate our proposed method on four benchmark datasets.Extensive experimental results demonstrate the superiority of our RE-GAT model comparing to various base-lines,which proves that our method can more accurately predict what events are going to happen.展开更多
文摘The extraction of entity relationship triples is very important to build a knowledge graph(KG),meanwhile,various entity relationship extraction algorithms are mostly based on data-driven,especially for the current popular deep learning algorithms.Therefore,obtaining a large number of accurate triples is the key to build a good KG as well as train a good entity relationship extraction algorithm.Because of business requirements,this KG’s application field is determined and the experts’opinions also must be satisfied.Considering these factors we adopt the top-down method which refers to determining the data schema firstly,then filling the specific data according to the schema.The design of data schema is the top-level design of KG,and determining the data schema according to the characteristics of KG is equivalent to determining the scope of data’s collection and the mode of data’s organization.This method is generally suitable for the construction of domain KG.This article proposes a fast and efficient method to extract the topdown type KG’s triples in social media with the help of structured data in the information box on the right side of the related encyclopedia webpage.At the same time,based on the obtained triples,a data labeling method is proposed to obtain sufficiently high-quality training data,using in various Natural Language Processing(NLP)information extraction algorithms’training.
基金supported by the National Natural Science Foundation of China under grants U19B2044National Key Research and Development Program of China(2021YFC3300500).
文摘Accurate prediction of future events brings great benefits and reduces losses for society in many domains,such as civil unrest,pandemics,and crimes.Knowledge graph is a general language for describing and modeling complex systems.Different types of events continually occur,which are often related to historical and concurrent events.In this paper,we formalize the future event prediction as a temporal knowledge graph reasoning problem.Most existing studies either conduct reasoning on static knowledge graphs or assume knowledges graphs of all timestamps are available during the training process.As a result,they cannot effectively reason over temporal knowledge graphs and predict events happening in the future.To address this problem,some recent works learn to infer future events based on historical eventbased temporal knowledge graphs.However,these methods do not comprehensively consider the latent patterns and influences behind historical events and concurrent events simultaneously.This paper proposes a new graph representation learning model,namely Recurrent Event Graph ATtention Network(RE-GAT),based on a novel historical and concurrent events attention-aware mechanism by modeling the event knowledge graph sequence recurrently.More specifically,our RE-GAT uses an attention-based historical events embedding module to encode past events,and employs an attention-based concurrent events embedding module to model the associations of events at the same timestamp.A translation-based decoder module and a learning objective are developed to optimize the embeddings of entities and relations.We evaluate our proposed method on four benchmark datasets.Extensive experimental results demonstrate the superiority of our RE-GAT model comparing to various base-lines,which proves that our method can more accurately predict what events are going to happen.