期刊文献+
共找到91篇文章
< 1 2 5 >
每页显示 20 50 100
Progress,challenges,and prospects of spent lithium-ion batteries recycling:A review 被引量:1
1
作者 Pengwei Li Shaohua Luo +7 位作者 Lin Zhang Qiuyue Liu Yikai Wang Yicheng Lin Can Xu Jia Guo Peam Cheali Xiaoning Xia 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期144-171,I0005,共29页
The recycling and reutilization of spent lithium-ion batteries(LIBs)have become an important measure to alleviate problems like resource scarcity and environmental pollution.Although some progress has been made,batter... The recycling and reutilization of spent lithium-ion batteries(LIBs)have become an important measure to alleviate problems like resource scarcity and environmental pollution.Although some progress has been made,battery recycling technology still faces challenges in terms of efficiency,effectiveness and environmental sustainability.This review aims to systematically review and analyze the current status of spent LIB recycling,and conduct a detailed comparison and evaluation of different recycling processes.In addition,this review introduces emerging recycling techniques,including deep eutectic solvents,molten salt roasting,and direct regeneration,with the intent of enhancing recycling efficiency and diminishing environmental repercussions.Furthermore,to increase the added value of recycled materials,this review proposes the concept of upgrading recycled materials into high value-added functional materials,such as catalysts,adsorbents,and graphene.Through life cycle assessment,the paper also explores the economic and environmental impacts of current battery recycling and highlights the importance that future recycling technologies should achieve a balance between recycling efficiency,economics and environmental benefits.Finally,this review outlines the opportunities and challenges of recycling key materials for next-generation batteries,and proposes relevant policy recommendations to promote the green and sustainable development of batteries,circular economy,and ecological civilization. 展开更多
关键词 Spent li-ion batteries RECYCLE Direct regeneration High-value conversion Functional materials
下载PDF
Regulating the electrochemical activity of Fe-Mn-Cu-based layer oxides as cathode materials for high-performance Na-ion battery 被引量:1
2
作者 Ting-Ting Wei Xu Liu +2 位作者 Shao-Jie Yang Peng-Fei Wang Ting-Feng Yi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期603-613,I0014,共12页
Fe-Mn based layer oxides cathode materials have attracted widespread attention as a potential candidate for sodium-ion batteries(SIBs)owing to the earth abundance,cost-effectiveness and acceptable specific capacity.Ho... Fe-Mn based layer oxides cathode materials have attracted widespread attention as a potential candidate for sodium-ion batteries(SIBs)owing to the earth abundance,cost-effectiveness and acceptable specific capacity.However,the irreversible phase transition often brings rapid capacity decay,which seriously hinders the practical application in large-scale energy storage.Herein,we design a nickel-doped Na_(0.70)Fe_(0.10)Cu_(0.20)Ni_(0.05)Mn_(0.65)O_(2)(NFCNM-0.05)cathode material of SIBs with activated anionic redox reaction,and then inhibit the harmful phase transition.The ex-situ X-ray diffraction patterns demonstrate the NFCNM-0.05 always keeps the P2 phase during the sodiation/desodiation process,indicating a high structure stability.The ex-situ X-ray photoelectron spectroscopy implies the redox reactions between O2-and O-occur in the charging process,which offers extra specific capacity.Thus,the NFCNM-0.05 electrode delivers a high initial discharge capacity of 148 mA h g-1and remains a prominent cycling stability with an excellent capacity retention of 95.9%after 200 cycles at 1 C.In addition,the electrochemical impedance spectroscopy and galvanostatic intermittent titration technique show the NFCNM-0.05 electrode possesses fast ion diffusion ability,which is beneficial for the enhancement of rate performance.Even at 10 C,the NFCNM-0.05 can offer a reversible discharge capacity of 81 mA h g-1.DFT calculation demonstrates the doping of appropriate amount of Ni ions is benefit for the enhancement of the electrochemical performance of the layer oxides.This work provides an effective strategy to enhance the electrochemical performance of Fe-Mn based cathode materials of SIBs. 展开更多
关键词 Fe-Mn-Cu based oxide Nickel-ion doping Reversible phase transition Cycling stability
下载PDF
First-principles calculations of Ni–(Co)–Mn–Cu–Ti all-d-metal Heusler alloy on martensitic transformation,mechanical and magnetic properties 被引量:1
3
作者 Huaxin Qi Jing Bai +7 位作者 Miao Jin Jiaxin Xu Xin Liu Ziqi Guan Jianglong Gu Daoyong Cong Xiang Zhao Liang Zuo 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第5期930-938,共9页
The martensitic transformation,mechanical,and magnetic properties of the Ni_(2)Mn_(1.5-x)Cu_(x)Ti_(0.5) (x=0.125,0.25,0.375,0.5) and Ni_(2-y)Co_(y)Mn_(1.5-x)Cu_(x)Ti_(0.5)[(x=0.125,y=0.125,0.25,0.375,0.5) and (x=0.125... The martensitic transformation,mechanical,and magnetic properties of the Ni_(2)Mn_(1.5-x)Cu_(x)Ti_(0.5) (x=0.125,0.25,0.375,0.5) and Ni_(2-y)Co_(y)Mn_(1.5-x)Cu_(x)Ti_(0.5)[(x=0.125,y=0.125,0.25,0.375,0.5) and (x=0.125,0.25,0.375,y=0.625)]alloys were systematically studied by the first-principles calculations.For the formation energy,the martensite is smaller than the austenite,the Ni–(Co)–Mn–Cu–Ti alloys studied in this work can undergo martensitic transformation.The austenite and non-modulated (NM) martensite always present antiferromagnetic state in the Ni_(2)Mn_(1.5-x)Cu_(x)Ti_(0.5) and Ni_(2-y)Co_(y)Mn_(1.5-x)Cu_(x)Ti_(0.5) (y<0.625) alloys.When y=0.625 in the Ni_(2-y)Co_(y)Mn_(1.5-x)Cu_(x)Ti_(0.5) series,the austenite presents ferromagnetic state while the NM martensite shows antiferromagnetic state.Cu doping can decrease the thermal hysteresis and anisotropy of the Ni–(Co)–Mn–Ti alloy.Increasing Mn and decreasing Ti content can improve the shear resistance and normal stress resistance,but reduce the toughness in the Ni–Mn–Cu–Ti alloy.And the ductility of the Co–Cu co-doping alloy is inferior to that of the Ni–Mn–Cu–Ti and Ni–Co–Mn–Ti alloys.The electronic density of states was studied to reveal the essence of the mechanical and magnetic properties. 展开更多
关键词 Ni–Mn–Ti-based all-d-metal Heusler alloys first-principles calculations mechanical properties martensitic transformation magnetic properties
下载PDF
Review and prospect of NiCo_(2)O_(4)-based composite materials for supercapacitor electrodes 被引量:14
4
作者 Yanmei Li Xiao Han +2 位作者 Tingfeng Yi Yanbing He Xifei Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第4期54-78,共25页
Supercapacitors known as typical electrochemical capacitors have been considered as one of the most promising candidates of energy storage systems owing to their advantages such as high-power density,long life span an... Supercapacitors known as typical electrochemical capacitors have been considered as one of the most promising candidates of energy storage systems owing to their advantages such as high-power density,long life span and lower production cost.The electrode materials play a crucial role on properties of supercapacitors.Hence,many researches have been focused on the development of novel electrode materials for high-performance supercapacitors.NiCo_2O_4as supercapacitor electrode material has drawn more and more attentions in recent years due to its outstanding advantages,such as high theoretical capacity,low cost,natural abundance and easy of synthesis.However,the NiCo_2O_4always suffer from severe capacity deterioration because of the low electrical conductivity and small surface area.Hence,it is necessary to systematically and comprehensively summarize the progress in understanding and modifying NiCo_2O_4-based materials from various aspects.In this review,the structure and synthesis method of NiCo_2O_4-based materials are discussed in detail.And then,the major goal of this review is to highlight new progress in using proposed strategies to improve the cycling stability and rate capacity of NiCo_2O_4-based materials,including synthesis,control of special morphologies and design of composite materials.Finally,an insight into the future research and development of Ni Co_2O_4-based materials for supercapacitors is prospected. 展开更多
关键词 NiCo_(2)O_(4) Electrochemical performance Synthesis Morphology SUPERCAPACITORS
下载PDF
Rational construction and decoration of Li_(5)Cr_(7)Ti_(6)O_(25)@Cnanofibers as stable lithium storage materials 被引量:5
5
作者 Ting-Ting Wei Panpan Peng +3 位作者 Yu-Rui Ji Yan-Rong Zhu Ting-Feng Yi Ying Xie 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第8期400-410,I0011,共12页
Li_(5)Cr_(7)Ti_(6)O_(25) is regarded as a promising anode material for Li-ion batteries(LIBs)because of its low cost and high theoretical capacity.However,the inherently poor conductivity significantly limits the enha... Li_(5)Cr_(7)Ti_(6)O_(25) is regarded as a promising anode material for Li-ion batteries(LIBs)because of its low cost and high theoretical capacity.However,the inherently poor conductivity significantly limits the enhancement of its rate capability and cycling stability,especially at high current densities.In this work,we construct one-dimensional Li_(5)Cr_(7)Ti_(6)O_(25)/C nanofibers by electrospinning method to enhance the kinetic,which realizes high cycling stability.Carbon coating enhances the structure stability,insertion/extraction reversibility of Li-ions and electrochemical reaction activity,and facilitates the transfer of Li-ions.Benefited from the unique architecture and component,the Li_(5)Cr_(7)Ti_(6)O_(25)/C(6.6 wt%)nanofiber shows an excellent rate capability with a reversible de-lithiation capacity of 370.8,290.6,269.2,254.3 and 244.9 m Ah g^(-1) at 200,300,500,800 and 1000 m A g^(-1),respectively.Even at a higher current density of 1 A g^(-1),Li_(5)Cr_(7)Ti_(6)O_(25)/C(6.6 wt%)nanofiber shows high cycling stability with an initial de-lithiation capacity of 237.8 m Ah g^(-1) and a capacity retention rate of about 84%after 500 cycles.The density functional theory calculation result confirms that the introduction of carbon on the surface of Li_(5)Cr_(7)Ti_(6)O_(25) changes the total density of states of Li_(5)Cr_(7)Ti_(6)O_(25),and thus improves electronic conductivity of the composite,resulting in a good electrochemical performance of Li_(5)Cr_(7)Ti_(6)O_(25)/C nanofibers.Li_(5)Cr_(7)Ti_(6)O_(25)/C nanofibers indicate a great potential as an anode material for the next generation of high-performance LIBs. 展开更多
关键词 Lithium-ion battery Anode Li_(5)Cr_(7)Ti_(6)O_(25) Electrospinning Nanofibers
下载PDF
Understanding of the charge storage mechanism of MnO_(2)-based aqueous zinc-ion batteries:Reaction processes and regulation strategies
6
作者 Nan Zhang Yu-Rui Ji +3 位作者 Jian-Cang Wang Peng-Fei Wang Yan-Rong Zhu Ting-Feng Yi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第7期423-463,I0010,共42页
Though secondary aqueous Zn ion batteries(AZIBs)have been received broad concern in recent years,the development of suitable cathode materials of AZIBs is still a big challenge.The MnO_(2) has been deemed as one of mo... Though secondary aqueous Zn ion batteries(AZIBs)have been received broad concern in recent years,the development of suitable cathode materials of AZIBs is still a big challenge.The MnO_(2) has been deemed as one of most hopeful cathode materials of AZIBs on account of some extraordinary merits,such as richly natural resources,low toxicity,high discharge potential,and large theoretical capacity.However,the crystal structure diversity of MnO_(2) results in an obvious various of charge storage mechanisms,which can cause great differences in electrochemical performance.Furthermore,several challenges,including intrinsic poor conductivity,dissolution of manganese and sluggish ion transport dynamics should be conquered before real practice.This work focuses on the reaction mechanisms and recent progress of MnO_(2)-based materials of AZIBs.In this review,a detailed review of the reaction mechanisms and optimal ways for enhancing electrochemical performance for MnO_(2)-based materials is proposed.At last,a number of viewpoints on challenges,future development direction,and foreground of MnO_(2)-based materials of aqueous zinc ions batteries are put forward.This review clarifies reaction mechanism of MnO_(2)-based materials of AZIBs,and offers a new perspective for the future invention in MnO_(2)-based cathode materials,thus accelerate the extensive development and commercialization practice of aqueous zinc ions batteries. 展开更多
关键词 Aqueous zinc-ion battery MnO_(2) Charge storage mechanism Optimization strategy
下载PDF
Towards high-performance anodes:Design and construction of cobalt-based sulfide materials for sodium-ion batteries 被引量:1
7
作者 Baole Guan Si-Yu Qi +3 位作者 Ying Li Ting Sun Yan-Guo Liu Ting-Feng Yi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第3期680-698,共19页
Sodium-ion batteries are increasingly becoming important in the energy storage field owing to their low cost and high natural abundance of sodium.Cobalt-based sulfide materials have been extensively studied as anode m... Sodium-ion batteries are increasingly becoming important in the energy storage field owing to their low cost and high natural abundance of sodium.Cobalt-based sulfide materials have been extensively studied as anode materials owing to their remarkable Na storage capability.Nevertheless,the application of cobalt-based sulfides is hampered by their serious capacity degradation and unsatisfactory cycling stability due to severe structural changes during cycling.Therefore,it is important to comprehensively summarize advances in the understanding and modification of cobalt-based sulfides from various perspectives.In the present review,recent advances on various cobalt-based sulfides,such as CoS,CoS_(2),Co_(3)S_(4),Co_(9)S_(8),NiCo_(2)S_(4),CUCo_(2)S_(4),and SnCoS_(4),are outlined with particular attention paid to strategies that improve their sodium storage performance.First,the mechanisms of charge storage are introduced.Subsequently,the key barriers to their extensive application and corresponding strategies for designing high-performance cobalt-based sulfide anode materials are discussed.Finally,key developments are summarized and future research directions are proposed based on recent advancements,aiming to offer possible fascinating strategies for the future promotion of cobalt-based sulfides as anode materials applied in sodium-ion batteries. 展开更多
关键词 Cobalt sulfides Sodium-ion battery Anode material NANOENGINEERING
下载PDF
Improving creep strength of the fine-grained heat-affected zone of novel 9Cr martensitic heat-resistant steel via modified thermo-mechanical treatment
8
作者 Jingwen Zhang Liming Yu +6 位作者 Yongchang Liu Ran Ding Chenxi Liu Zongqing Ma Huijun Li Qiuzhi Gao Hui Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期1037-1047,共11页
The infamous type Ⅳ failure within the fine-grained heat-affected zone (FGHAZ) in G115 steel weldments seriously threatens the safe operation of ultra-supercritical (USC) power plants.In this work,the traditional the... The infamous type Ⅳ failure within the fine-grained heat-affected zone (FGHAZ) in G115 steel weldments seriously threatens the safe operation of ultra-supercritical (USC) power plants.In this work,the traditional thermo-mechanical treatment was modified via the replacement of hot-rolling with cold rolling,i.e.,normalizing,cold rolling,and tempering (NCT),which was developed to improve the creep strength of the FGHAZ in G115 steel weldments.The NCT treatment effectively promoted the dissolution of preformed M_(23)C_(6)particles and relieved the boundary segregation of C and Cr during welding thermal cycling,which accelerated the dispersed reprecipitation of M_(23)C_(6) particles within the fresh reaustenitized grains during post-weld heat treatment.In addition,the precipitation of Cu-rich phases and MX particles was promoted evidently due to the deformation-induced dislocations.As a result,the interacting actions between precipitates,dislocations,and boundaries during creep were reinforced considerably.Following this strategy,the creep rupture life of the FGHAZ in G115 steel weldments can be prolonged by 18.6%,which can further push the application of G115 steel in USC power plants. 展开更多
关键词 G115 steel fine-grained heat-affected zone creep strength element segregation nano-sized precipitates
下载PDF
Tuning interface mechanism of FeCo alloy embedded N,S-codoped carbon substrate for rechargeable Zn-air battery
9
作者 Hui Chang Lulu Zhao +4 位作者 Shan Zhao Zong-Lin Liu Peng-Fei Wang Ying Xie Ting-Feng Yi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期400-410,I0010,共12页
The interface mechanism between catalyst and carbon substrate has been the focus of research.In this paper,the FeCo alloy embedded N,S co-doped carbon substrate bifunctional catalyst(FeCo/S-NC)is obtained by a simple ... The interface mechanism between catalyst and carbon substrate has been the focus of research.In this paper,the FeCo alloy embedded N,S co-doped carbon substrate bifunctional catalyst(FeCo/S-NC)is obtained by a simple one-step pyrolysis strategy.The experimental results and density functional theory(DFT)calculation show that the formation of FeCo alloy is conducive to promoting electron transfer,and the introduction of S atom can enhance the interaction between FeCo alloy and carbon substrate,thus inhibiting the migration and agglomeration of particles on the surface of carbon material.The FeCo/SNC catalysts show outstanding performance for oxygen reduction reaction(ORR)and oxygen evolution reaction(OER).FeCo/S-NC shows a high half-wave potential(E_(1/2)=0.8823 V)for ORR and a low overpotential at 10 mA cm^(-2)(E_(j=10)=299 mV)for OER.In addition,compared with Pt/C+RuO_(2) assembled Zn-air battery(ZAB),the FeCo/S-NC assembled ZAB exhibits a larger power density(198.8 mW cm^(-2)),a higher specific capacity(786.1 mA h g_(zn)~(-1)),and ultra-stable cycle performance.These results confirm that the optimized composition and the interfacial interaction between catalyst and carbon substrate synergistically enhance the electrochemical performance. 展开更多
关键词 FeCo alloy N S co-doped carbon DFT calculation Zn-air batteries Interfacial interaction
下载PDF
Boron-doped high-entropy oxide toward high-rate and long-cycle layered cathodes for wide-temperature sodium-ion batteries
10
作者 Yuzhen Dang Zhe Xu +8 位作者 Yurong Wu Runguo Zheng Zhiyuan Wang Xiaopin Lin Yanguo Liu Zheng-Yao Li Kai Sun Dongfeng Chen Dan Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期577-587,I0012,共12页
03-type layered metal oxides hold great promise for sodium-ion batteries cathodes owing to their energy density advantage.However,the severe irreversible phase transition and sluggish Na^(+)diffusion kinetics pose sig... 03-type layered metal oxides hold great promise for sodium-ion batteries cathodes owing to their energy density advantage.However,the severe irreversible phase transition and sluggish Na^(+)diffusion kinetics pose significant challenges to achieve high-performance layered cathodes.Herein,a boron-doped03-type high entropy oxide Na(Fe_(0.2)Co_(0.15)Cu_(0.05)Ni_(0.2)Mn_(0.2)Ti_(0.2))B_(0.02)O_(2)(NFCCNMT-B_(0.02))is designed and the covalent B-O bonds with high entropy configuration ensure a robust layered structure.The obtained cathode NFCCNMT-B_(0.02)exhibits impressive cycling performance(capacity retention of 95%and 82%after100 cycles and 300 cycles at 1 and 10 C,respectively)and outstanding rate capability(capacity of 83 mAh g^(-1)at 10 C).Furthermore,the NFCCNMT-B_(0.02)demonstrates a superior wide-temperature performance,maintaining the same capacity level(113,4 mAh g^(-1)@-20℃,121 mAh g^(-1)@25℃,and 119 mAh g^(-1)@60℃)and superior cycle stability(90%capacity retention after 100 cycles at 1 C at-20℃).The high-entropy configuration design with boron doping strategy contributes to the excellent sodium-ion storage performance.The high-entropy configuration design effectively suppresses irreversible phase transitions accompanied by small volume changes(ΔV=0.65 A3).B ions doping expands the Na layer distance and enlarges the P3 phase region,thereby enhancing Na^(+)diffusion kinetics.This work offers valuable insights into design of high-performance layered cathodes for sodium-ion batteries operating across a wide temperature. 展开更多
关键词 High entropy oxide Born substitution Phase transition Na~+diffusion kinetics Sodium-ion batteries
下载PDF
Correlation between microstructure and mechanical properties of columnar crystals in the directionally solidified Mg-Gd-Y-Er alloy 被引量:3
11
作者 D.R.Fang S.S.Zhao +4 位作者 X.P.Lin T.Chai Y.Kuo H.Sun Y.Dong 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第3期806-818,共13页
The Mg-4.58Gd-0.45Y-0.01 Er alloys with different volume fractions of columnar crystals in hard orientation(orientation factor ofbasal plane slip system is less than 0.2)were prepared by changing the pulling rate to r... The Mg-4.58Gd-0.45Y-0.01 Er alloys with different volume fractions of columnar crystals in hard orientation(orientation factor ofbasal plane slip system is less than 0.2)were prepared by changing the pulling rate to regulate the crystal growth orientation.Tensile tests were performed on the Mg-4.58Gd-0.45Y-0.01 Er alloy at room temperature,and the structure after deformation was investigated by electron backscatter diffraction(EBSD).Subsequently,the strengthening mechanism of columnar crystals in hard orientation was explored.The results show if orientation factors ofbasal plane slip system of columnar crystals are all greater than 0.4(soft orientation),the alloy has low yield strength σ_(s)(64 MPa),but great work hardening ability,and ultimate tensile strength σ_(b) and elongationδare 114 MPa and 37.3%,respectively.If orientation factors ofbasal plane slip system of columnar crystals are all less than 0.2(hard orientation),the alloy has high strength(σ_(s),125 MPa),but poor plasticity(δ,6.32%).If the"hard orientation"and the"soft orientation"columnar crystals are arranged alternately along the direction perpendicular to the crystal growth,the alloy has both superior strength(σ_(s),102 MPa)and excellent plasticity(δ,22.5%)at room temperature.The improved comprehensive mechanical property can be attributed to two factors.On the one hand,the"hard orientation"columnar crystals can prevent the"soft orientation"crystals deforming,so the strength is improved.On the other hand,the"hard orientation"columnar crystals themselves can withstand a certain amount of deformation to retain appropriate plasticity. 展开更多
关键词 Directional solidification Mg-Gd-Y-Er alloy Hard orientation Mechanical prop
下载PDF
Approaching high-performance lithium storage materials by constructing Li_(2)ZnTi_(3)O_(8)@LiAlO_(2) composites 被引量:1
12
作者 Jinpeng Qu Yushen Zhao +2 位作者 Yurui Ji Yanrong Zhu Tingfeng Yi 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第4期611-620,共10页
The Li_(2)ZnTi_(3)O_(8)@Li AlO_(2)was synthesized by a facile high-temperature solid-state route.The LiAlO_(2)modification does not alter the morphology and particle size of Li_(2)Zn Ti_(3)O_(8)(LZTO).The LiAlO_(2)mod... The Li_(2)ZnTi_(3)O_(8)@Li AlO_(2)was synthesized by a facile high-temperature solid-state route.The LiAlO_(2)modification does not alter the morphology and particle size of Li_(2)Zn Ti_(3)O_(8)(LZTO).The LiAlO_(2)modification improves the structure stability,intercalation/deintercalation reversibility of lithium-ions,and electrochemical reaction activity of Li_(2)Zn Ti_(3)O_(8),and promotes the transfer of lithium ions.Benefited from the unique component,Li_(2)Zn Ti_(3)O_(8)@Li AlO_(2)(8wt%) shows a good rate performance with charge capacities of 203.9,194.8,187.4,180.6,and177.1 mAh·g^(-1)at 0.5,1,2,3,and 5 C,respectively.Nevertheless,pure LZTO only delivers charge capacities of 134.5,109.7,89.4,79.9,and 72.9 mAh·g^(-1)at the corresponding rates.Even at large charge–discharge rate,the Li_(2)Zn Ti_(3)O_(8)@Li AlO_(2)(8wt%) composite indicates a good cycle performance with a high reversible charge/discharge capacity of 263.5/265.8 mAh·g^(-1)at 5 C after 150 cycles.The introduction of LiAlO_(2)on the surface of Li_(2)Zn Ti_(3)O_(8)enhances electronic conductivity of the composite,resulting in the good electrochemical performance of Li_(2)Zn Ti_(3)O_(8)@Li AlO_(2)composite.Li_(2)Zn Ti_(3)O_(8)@LiAlO_(2)(8wt%) composite shows a good potential as an anode material for the next generation of high-performance Li-ion batteries. 展开更多
关键词 lithium-ion battery ANODE Li_(2)ZnTi_(3)O_(8) LiAlO_(2) lithium storage performance
下载PDF
First-principles calculations of electronic and magnetic properties of CeN:The LDA +U method
13
作者 郝爱民 白静 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第10期460-462,共3页
Electronic and magnetic properties of CeN are investigated using first-principles calculations based on density func- tional theory (DFT) with the LDA + U method. Our results show that CeN is a half-metal. The majo... Electronic and magnetic properties of CeN are investigated using first-principles calculations based on density func- tional theory (DFT) with the LDA + U method. Our results show that CeN is a half-metal. The majority-spin electron band structure has metallic intersections, whereas the minority-spin electron band structure has a semiconducting gap straddling the Fermi level. A small indirect energy gap occurs between X and W. The calculated magnetic moment is 0.99 μb per unit cell. 展开更多
关键词 first-principles calculations strongly correlated system electronic structure magnetic properties
下载PDF
Dependence of Estimating Whitecap Coverage on Currents and Swells
14
作者 LIU Min YANG Bailin +1 位作者 JIA Nan ZOU Zhongshui 《Journal of Ocean University of China》 SCIE CAS CSCD 2021年第3期512-520,共9页
The shipboard measurements of whitecap coverage(W)and the meteorological and oceanographic information from two cruises in the South China Sea and Western Pacific are explored for estimating W.This study aims at evalu... The shipboard measurements of whitecap coverage(W)and the meteorological and oceanographic information from two cruises in the South China Sea and Western Pacific are explored for estimating W.This study aims at evaluating how to im-prove the parameterizations of W while considering the effects of currents and swells on wave breaking.Currents indeed affect W in a way that winds with following currents can decrease W,whereas winds with opposing currents can increase W.Then,10-m wind speed over sea surface(U_(10))is calibrated by subtracting the current velocity from U_(10) when the propagating directions of winds and currents are aligned.By contrast,when the direction is opposite,U_(10) is calibrated by adding the parallel velocity com-ponent of the opposing current to U_(10).The power fits of W dependence on the U_(10)-related parameters of U_(10),friction velocity,wind sea Reynolds number in terms of this calibrated-U_(10) obtain better results than those directly fitted to U_(10).Different from the effect of currents on W,wind blowing along the crest line of swells may contribute to the increase in W.The conclusions suggest that U_(10) should be calibrated first before parameterizing W in areas with a strong current or some swell-dominant areas. 展开更多
关键词 whitecap coverage CURRENTS friction velocity wind sea Reynolds number swells
下载PDF
Effects of pressure and/or magnetism on superconductivity of δ-MoN single crystal
15
作者 苗博童 王善民 +7 位作者 孔盼盼 金美玲 冯少敏 张思佳 郝爱民 于晓辉 靳常青 赵予生 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第1期474-476,共3页
Effects of pressure and/or magnetism on the critical superconducting temperature(Tc) of δ-Mo N single crystal were investigated using a Maglab system. The δ-Mo N single crystal was synthesized at extreme condition... Effects of pressure and/or magnetism on the critical superconducting temperature(Tc) of δ-Mo N single crystal were investigated using a Maglab system. The δ-Mo N single crystal was synthesized at extreme conditions of high pressure and high temperature. The carrier density of δ-Mo N single crystal as a function of applied pressure was determined using Hall coefficient measurement. 展开更多
关键词 effect of pressure effect of magnetism SUPERCONDUCTIVITY Hall effect
下载PDF
Shape Control,Crystalline Conversion and Pseudocapacitance Properties of Mn3O4:Effects of Yb3+Doping
16
作者 尤俊华 郭耀祖 +2 位作者 赵耀 倪志远 郭瑞 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2018年第9期1440-1445,共6页
We report a facile method for the synthesis of manganese oxide(Mn3O4) nanorods via the direct reaction of MnCl2 and H2 O2 by doping Yb3+ ions at room temperature and air atmosphere. The Mn3O4:Yb3+ samples were ch... We report a facile method for the synthesis of manganese oxide(Mn3O4) nanorods via the direct reaction of MnCl2 and H2 O2 by doping Yb3+ ions at room temperature and air atmosphere. The Mn3O4:Yb3+ samples were characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM), cyclic voltammetry(CVs), electrochemical impedance spectroscopy(EIS), and charging-discharging test(CD). The results show that trace Yb3+ doping(6 at%) could effectively induce crystalline transformation of Mn3O4 from cubic system(space group Fd-3 m) to tetragonal system(space group I41/amd) and incite the morphology changing from irregular particles to uniform nanorods. When Yb3+ doping amount is 3%, the capacitance of Mn3O4 reaches the maximum, 246 F/g, which is related to the morphology change and the corresponding decrease of impedance. 展开更多
关键词 MN3O4 Yb^3+ shape control crystalline conversion PSEUDOCAPACITOR
下载PDF
Improving the stability,lithium diffusion dynamics,and specific capacity of SrLi_(2)Ti_(6)O_(14)via ZrO_(2)coating
17
作者 Hong-Li Ding Hai-Tao Yu +4 位作者 Xiao-dong Wang Chen-Feng Guo Bing Zheng Ying Xie Ting-Feng Yi 《Green Energy & Environment》 SCIE EI CSCD 2022年第1期53-65,共13页
SrLi_(2)Ti_(6)O_(14)(SLTO)coated with different amount of ZrO_(2)was successfully prepared.The as-obtained composites are stacked by a series of particles with a pure phase structure and a good crystallinity.Furthermo... SrLi_(2)Ti_(6)O_(14)(SLTO)coated with different amount of ZrO_(2)was successfully prepared.The as-obtained composites are stacked by a series of particles with a pure phase structure and a good crystallinity.Furthermore,ZrO_(2)coating not only enhances the structural stability of the materials but also facilitates the diffusion of lithium through the SEI film.As a result,the redox polarization was reduced,and the reversibility of the electrochemical reaction was enhanced.Particularly,SLTO-ZrO_(2)-2 sample delivers a high initial lithiation capacity of 283.6 mA h g^(-1),and the values maintain at 251.7,228.0,207.4,175.3,and 147.7 mA h g^(-1)at the current densities of 0.13,0.26,0.54,1.31,and 2.62 A g^(-1),respectively.Our experiment also confirmed that SLTO materials coated with ZrO_(2)are suitable for high power density applications,and the lithiation specific energy efficiency of SLTO-ZrO_(2)-2 is 200%as high as that of pure SLTO at a power density of 1257 W kg^(-1). 展开更多
关键词 SrLi_(2)Ti_(6)O_(14) ZrO_(2)coating Structural stability Anode material Electrochemical performance
下载PDF
Defect Engineering of Disordered Carbon Anodes with Ultra-High Heteroatom Doping Through a Supermolecule-Mediated Strategy for Potassium-Ion Hybrid Capacitors
18
作者 Lei Zhao Shirong Sun +7 位作者 Jinxin Lin Lei Zhong Liheng Chen Jing Guo Jian Yin Husam N.Alshareef Xueqing Qiu Wenli Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第3期248-265,共18页
Amorphous carbons are promising anodes for high-rate potassium-ion batteries.Most low-temperature annealed amorphous carbons display unsatisfactory capacities.Heteroatom-induced defect engineering of amorphous carbons... Amorphous carbons are promising anodes for high-rate potassium-ion batteries.Most low-temperature annealed amorphous carbons display unsatisfactory capacities.Heteroatom-induced defect engineering of amorphous carbons could enhance their reversible capacities.Nevertheless,most lignocellulose biomasses lack heteroatoms,making it a challenge to design highly heteroatom-doped carbons(>10 at%).Herein,we report a new preparation strategy for amorphous carbon anodes.Nitrogen/sulfur co-doped lignin-derived porous carbons(NSLPC)with ultra-high nitrogen doping levels(21.6 at%of N and 0.8 at%of S)from renewable lignin biomacromolecule precursors were prepared through a supramolecule-mediated pyrolysis strategy.This supermolecule/lignin composite decomposes forming a covalently bonded graphitic carbon/amorphous carbon intermediate product,which induces the formation of high heteroatom doping in the obtained NSLPC.This unique pyrolysis chemistry and high heteroatom doping of NSLPC enable abundant defective active sites for the adsorption of K+and improved kinetics.The NSLPC anode delivered a high reversible capacity of 419 mAh g^(-1)and superior cycling stability(capacity retention of 96.6%at 1 A g^(-1)for 1000 cycles).Potassiumion hybrid capacitors assembled by NSLPC anode exhibited excellent cycling stability(91%capacity retention for 2000 cycles)and a high energy density of 71 Wh kg^(-1)at a power density of 92 W kg^(-1). 展开更多
关键词 Defect HETEROATOM Active sites SUPRAMOLECULE Potassium-ion hybrid capacitors
下载PDF
Boosting overall saline water splitting by constructing a strain-engineered high-entropy electrocatalyst
19
作者 Ateer Bao Yaohang Gu +6 位作者 Yuxuan Zhang Bowen Zhang Juncheng Wu Bo Ni Xiaoyan Zhang Haijun Pan Xiwei Qi 《Carbon Energy》 SCIE EI CAS CSCD 2024年第2期154-166,共13页
High-entropy materials(HEMs),which are newly manufactured compounds that contain five or more metal cations,can be a platform with desired properties,including improved electrocatalytic performance owing to the inhere... High-entropy materials(HEMs),which are newly manufactured compounds that contain five or more metal cations,can be a platform with desired properties,including improved electrocatalytic performance owing to the inherent complexity.Here,a strain engineering methodology is proposed to design transition-metal-based HEM by Li manipulation(LiTM)with tunable lattice strain,thus tailoring the electronic structure and boosting electrocatalytic performance.As confirmed by the experiments and calculation results,tensile strain in the LiTM after Li manipulation can optimize the d-band center and increase the electrical conductivity.Accordingly,the asprepared LiTM-25 demonstrates optimized oxygen evolution reaction and hydrogen evolution reaction activity in alkaline saline water,requiring ultralow overpotentials of 265 and 42 mV at 10 mA cm−2,respectively.More strikingly,LiTM-25 retains 94.6%activity after 80 h of a durability test when assembled as an anion-exchange membrane water electrolyzer.Finally,in order to show the general efficacy of strain engineering,we incorporate Li into electrocatalysts with higher entropies as well. 展开更多
关键词 d-band center electrical conductivity high-entropy electrocatalyst lattice-strain engineering saline/alkaline water splitting
下载PDF
Manipulation of magnetocaloric and elastocaloric effects in Ni-Mn-In alloys by lattice volume and magnetic variation:Effect of Co and Fe co-doping
20
作者 Xinzeng Liang Chi Zhang +5 位作者 Jing Bai Jianglong Gu Yudong Zhang Claude Esling Xiang Zhao Liang Zuo 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第5期156-165,共10页
The effects of Co and Fe co-doping Ni-Mn-In alloy on the phase stability,lattice parameters,mag-netic properties,and electronic structures are systematically investigated by using the first-principles calculations.Res... The effects of Co and Fe co-doping Ni-Mn-In alloy on the phase stability,lattice parameters,mag-netic properties,and electronic structures are systematically investigated by using the first-principles calculations.Results indicate that Fe atoms replace the excess Mn2 atoms by direct and indirect coex-istence(Fe→Mn 2 and Fe→In→Mn2);Co substitutes the Ni atoms by direct substitution(Co→Ni)for the Ni-Mn-In alloy.The austenites all exhibit the ferromagnetic(FM)state for the studied composi-tions.The NM martensites are in the ferrimagnetic(FIM-1)state for the Ni_(2)Mn_(1.5)In_(0.5),Ni_(2)Mn_(1.25)In_(0.5)Fe 0.25,Ni_(1.75)Mn_(1.5)In_(0.5)Co_(0.25),and Ni_(1.75)Mn_(1.25)In_(0.5)Co_(0.25)Fe 0.25 alloys,while the other compositions are in the FM state.The phase stability of austenite and martensite decreases with increasing Co and Fe co-doping.A magnetic-structural coupling transition occurs at x<0.25 and y<0.25.The Ni_(1.91)Mn_(1.5)In_(0.5)Co_(0.08)and Ni_(1.91)Mn_(1.42)In_(0.5)Co_(0.08)Fe_(0.08)alloys exhibit an A→6M→NM transformation,accompanied by a magnetic transition.When Co and Fe are co-doped,the hybridization strength between Co and Fe is greater than that between Co/Fe and Mn.The enhancement of magnetocaloric and elastocaloric effects is favored by larger magnetization difference(△M)and lattice volume change(△V/V_(0)).Based on the calculated phase stability,magneto-structure coupling,△V/V 0 and c/a ratio,one can predict that the Ni_(2)-x Mn_(1.5)-y In_(0.5)Co x Fe y alloy with Co content 0≤x≤0.25 and Fe content 0≤y≤0.05 is predicted to have good magneto-controlled functional behavior. 展开更多
关键词 Ni-Mn-In-Co-Fe Phase stability Magnetocaloric effect Elastocaloric effect
原文传递
上一页 1 2 5 下一页 到第
使用帮助 返回顶部