We investigate a periodically driven Haldane model subjected to a two-stage driving scheme in the form of a step function.By using the Floquet theory,we obtain the topological phase diagram of the system.We also find ...We investigate a periodically driven Haldane model subjected to a two-stage driving scheme in the form of a step function.By using the Floquet theory,we obtain the topological phase diagram of the system.We also find that anomalous Floquet topological phases exist in the system.Focusing on examining the quench dynamics among topological phases,we analyze the site distribution of the 0-mode and p-mode edge states in long-period evolution after a quench.The results demonstrate that,under certain conditions,the site distribution of the 0-mode can be confined at the edge even in long-period evolution.Additionally,both the 0-mode and p-mode can recover and become confined at the edge in long-period evolution when the post-quench parameters(T,M_(2) /M_(1))in the phase diagram cross away from the phase boundary (M_(2)/ M_(1))=(6√3t2)/ (M_(1)−1.Furthermore,we conclude that whether the edge state is confined at the edge in the long-period evolution after a quench depends on the similarity of the edge states before and after the quench.Our findings reveal some new characteristics of quench dynamics in a periodically driven system.展开更多
We investigate the Floquet spectrum and excitation properties of a two-ultracold-atom system with periodically driven interaction in a three-dimensional harmonic trap.The interaction between the atoms is changed by va...We investigate the Floquet spectrum and excitation properties of a two-ultracold-atom system with periodically driven interaction in a three-dimensional harmonic trap.The interaction between the atoms is changed by varying the s-wave scattering length in two ways,the cosine and the square-wave modulations.It is found that as the driving frequency increases,the Floquet spectrum exhibits two main features for both modulations,the accumulating and the spreading of the quasienergy levels,which further lead to different dynamical behaviors.The accumulation is associated with collective excitations and the persistent growth of the energy,while the spread indicates that the energy is bounded at all times.The initial scattering length,the driving frequency and amplitude can all significantly change the Floquet spectrum as well as the dynamics.However,the corresponding relation between them is valid universally.Finally,we propose a mechanism for selectively exciting the system to one specific state by using the avoided crossing of two quasienergy levels,which could guide preparation of a desired state in experiments.展开更多
In this paper,we consider entire solutions of higher order homogeneous differential equations with the entire coefficients having the same order,and prove that the entire solutions are of infinite lower order.The prop...In this paper,we consider entire solutions of higher order homogeneous differential equations with the entire coefficients having the same order,and prove that the entire solutions are of infinite lower order.The properties on the radial distribution,the limit direction of the Julia set and the existence of a Baker wandering domain of the entire solutions are also discussed.展开更多
Lee–Yang theory clearly demonstrates where the phase transition of many-body systems occurs and the asymptotic behavior near the phase transition using the partition function under complex parameters. The complex par...Lee–Yang theory clearly demonstrates where the phase transition of many-body systems occurs and the asymptotic behavior near the phase transition using the partition function under complex parameters. The complex parameters make the direct investigation of Lee–Yang theory in practical systems challenging. Here we construct a non-Hermitian quantum system that can correspond to the one-dimensional Ising model with imaginary parameters through the equality of partition functions. By adjusting the non-Hermitian parameter,we successfully obtain the partition function under different imaginary magnetic fields and observe the Lee–Yang zeros. We also observe the critical behavior of free energy in vicinity of Lee–Yang zero that is consistent with theoretical prediction. Our work provides a protocol to study Lee–Yang zeros of the one-dimensional Ising model using a single-qubit non-Hermitian system.展开更多
Coupled phase oscillators usually achieve synchronization as the coupling strength among oscillators is increased beyond a critical value. The stability of synchronous state remains an open issue. In this paper, we st...Coupled phase oscillators usually achieve synchronization as the coupling strength among oscillators is increased beyond a critical value. The stability of synchronous state remains an open issue. In this paper, we study the stability of the synchronous state in coupled phase oscillators. It is found that numerical integration of differential equations of coupled phase oscillators with a finite time step may induce desynchronization at strong couplings. The mechanism behind this instability is that numerical accumulated errors in simulations may trigger the loss of stability of the synchronous state.Desynchronization critical couplings are found to increase and diverge as a power law with decreasing the integral time step. Theoretical analysis supports the local stability of the synchronized state. Globally the emergence of synchronous state depends on the initial conditions. Other metastable ordered states such as twisted states can coexist with the synchronous mode. These twisted states keep locally stable on a sparse network but lose their stability when the network becomes dense.展开更多
Fiber laser is a fundamental component of laser systems and is of great significance for development of laser technology.Its pulse output can be divided into Q-switched and mode-locked.Achieving ultrashort pulse with ...Fiber laser is a fundamental component of laser systems and is of great significance for development of laser technology.Its pulse output can be divided into Q-switched and mode-locked.Achieving ultrashort pulse with narrower pulse duration and higher power is the focus of current research on mode-locked lasers.As an important component of fiber laser systems,saturable absorber(SA) can modulate losses in the optical cavity and generate pulses,enabling the laser system to achieve pulse output under long-term normal operating conditions better.Therefore,expanding the selection range of materials with better saturable absorption properties to improve the quality of pulse output is an important topic in current research.Here,the second generation topological insulator Bi_(2)Te_(3) single crystal is prepared,and a ring fiber laser system is built with the Bi_(2)Te_(3) SA.The mode-locked pulse with a pulse duration of 288 fs and a signal-to-noise ratio of 80.202 dB is realized.This result verifies that Bi_(2)Te_(3),as a member of topological insulator,has good saturable absorption characteristics,and has broad prospects for the application research in lasers.展开更多
Let f be an entire solution of the Tumura-Clunie type non-linear delay differential equation.We mainly investigate the dynamical properties of Julia sets of f,and the lower bound estimates of the measure of related li...Let f be an entire solution of the Tumura-Clunie type non-linear delay differential equation.We mainly investigate the dynamical properties of Julia sets of f,and the lower bound estimates of the measure of related limiting directions is verified.展开更多
Recent advances in the experimental and theoretical study of dynamics of neuronal electrical firing activities are reviewed. Firstly, some experimental phenomena of neuronal irregular firing patterns, especially chaot...Recent advances in the experimental and theoretical study of dynamics of neuronal electrical firing activities are reviewed. Firstly, some experimental phenomena of neuronal irregular firing patterns, especially chaotic and stochastic firing patterns, are presented, and practical nonlinear time analysis methods are introduced to distinguish deterministic and stochastic mechanism in time series. Secondly, the dynamics of electrical firing activities in a single neuron is concerned, namely, fast-slow dynamics analysis for classification and mechanism of various bursting patterns, one- or two-parameter bifurcation analysis for transitions of firing patterns, and stochastic dynamics of firing activities (stochastic and coherence resonances, integer multiple and other firing patterns induced by noise, etc.). Thirdly, different types of synchronization of coupled neurons with electrical and chemical synapses are discussed. As noise and time delay are inevitable in nervous systems, it is found that noise and time delay may induce or enhance synchronization and change firing patterns of coupled neurons. Noise-induced resonance and spatiotemporal patterns in coupled neuronal networks are also demonstrated. Finally, some prospects are presented for future research. In consequence, the idea and methods of nonlinear dynamics are of great significance in exploration of dynamic processes and physiological functions of nervous systems.展开更多
Gallium oxide(Ga_2O_3), a typical ultra wide bandgap semiconductor, with a bandgap of ~4.9 e V, critical breakdown field of 8 MV/cm, and Baliga's figure of merit of 3444, is promising to be used in high-power and ...Gallium oxide(Ga_2O_3), a typical ultra wide bandgap semiconductor, with a bandgap of ~4.9 e V, critical breakdown field of 8 MV/cm, and Baliga's figure of merit of 3444, is promising to be used in high-power and high-voltage devices.Recently, a keen interest in employing Ga_2O_3 in power devices has been aroused. Many researches have verified that Ga_2O_3 is an ideal candidate for fabricating power devices. In this review, we summarized the recent progress of field-effect transistors(FETs) and Schottky barrier diodes(SBDs) based on Ga_2O_3, which may provide a guideline for Ga_2O_3 to be preferably used in power devices fabrication.展开更多
Recently, the digital image blind forensics technology has received an increasing attention in academic community. This paper aims at developing a new identification approach based on the statistical noise and exchang...Recently, the digital image blind forensics technology has received an increasing attention in academic community. This paper aims at developing a new identification approach based on the statistical noise and exchangeable image file format (EXIF) information of image for images authen- tication. In particular, the authors can identify whether the current image has been modified or not by utilizing the relevance between noise and EXIF parameters and comparing the real values with the estimated values of the EXIF parameters. Experimental results validate the proposed method. That is, the detecting system can identify the doctored image effectively.展开更多
This paper reports that the designed optical polarization mode dispersion compensator shows a good performance under the real-time variation of differential group delay, state of polarization and principal state of po...This paper reports that the designed optical polarization mode dispersion compensator shows a good performance under the real-time variation of differential group delay, state of polarization and principal state of polarization in a (40×43)-Gb/s dense-wavelength-multiplexing, 1200-km enhanced return-to-zero differential-quadrature-phase-shift- keying (RZ-DQPSK) system. The polarization mode dispersion tolerance of the system is improved by 26 ps using the optical polarization mode dispersion compensator. The short and long time stabilities are tested with the bit error ratio recorded.展开更多
Coupled phase oscillators are adopted as powerful platforms in studying synchrony behaviors emerged in various systems with rhythmic dynamics. Much attention has been focused on coupled time-continuous oscillators des...Coupled phase oscillators are adopted as powerful platforms in studying synchrony behaviors emerged in various systems with rhythmic dynamics. Much attention has been focused on coupled time-continuous oscillators described by differential equations. In this paper, we study the synchronization dynamics of networks of coupled circle maps as the discrete version of the Kuramoto model. Despite of its simplicity in mathematical form, it is found that discreteness may induce many interesting synchronization behaviors. Multiple synchronization and desynchronization transitions of both phases and frequencies are found with varying the coupling among circle-map oscillators. The mechanisms of these transitions are interpreted in terms of the mean-field approach, where collective bifurcation cascades are revealed for coupled circle-map oscillators.展开更多
Solar-blind ultraviolet photodetectors with metal-semiconductor-metal structure were fabricated based onβ-(Al_(0.25)Ga_(0.75))_(2)O_(3)/β-Ga_(2)O_(3) film grown by metal-organic chemical vapor deposition.It was know...Solar-blind ultraviolet photodetectors with metal-semiconductor-metal structure were fabricated based onβ-(Al_(0.25)Ga_(0.75))_(2)O_(3)/β-Ga_(2)O_(3) film grown by metal-organic chemical vapor deposition.It was known that various surface states increase dark current and a large number of defects can hinder the transport of carriers,resulting in low switching ratio and low responsivity of the device.In this work,β-(Al_(0.25)Ga_(0.75))_(2)O_(3) films are used as surface passivation materials.Owning to its wide band gap,we obtain excellent light transmission and high lattice matching withβ-Ga_(2)O_(3).We explore the change and mechanism of the detection performance of theβ-Ga_(2)O_(3) detector afterβ-(Al_(0.25)Ga_(0.75))_(2)O_(3) surface passivation.It is found that under the illumination with 254 nm light at bias 5 V,theβ-(Al_(0.25)Ga_(0.75))_(2)O_(3)/β-Ga_(2)O_(3)photodetectors show dark current of just 18 pA and high current on/off ratio of 2.16×10^(5).The dark current is sharply reduced about 50 times after passivation of theβ-Ga_(2)O_(3) surface,and current on/off ratio increases by approximately 2 times.It is obvious thatβ-Ga_(2)O_(3) detectors withβ-(Al_(0.25)Ga_(0.75))_(2)O_(3) surface passivation can offer superior detector performance.展开更多
The spheroidal wave functions are found to have extensive applications in many branches of physics and mathematics. We use the perturbation method in supersymmetric quantum mechanics to obtain the analytic ground eige...The spheroidal wave functions are found to have extensive applications in many branches of physics and mathematics. We use the perturbation method in supersymmetric quantum mechanics to obtain the analytic ground eigenvalue and the ground eigenfunction of the angular spheroidal wave equation at low frequency in a series form. Using this approach, the numerical determinations of the ground eigenvalue and the ground eigenfunction for small complex frequencies are also obtained.展开更多
We aim to explore all possible scenarios of(1→2)(where one wing is untrusted and the others two wings are trusted)and(2→1)(where two wings are untrusted,and one wing is trusted)genuine tripartite Einstein-Podolsky-R...We aim to explore all possible scenarios of(1→2)(where one wing is untrusted and the others two wings are trusted)and(2→1)(where two wings are untrusted,and one wing is trusted)genuine tripartite Einstein-Podolsky-Rosen(EPR)steering.The generalized Greenberger-Horne-Zeilinger(GHZ)state is shared between three spatially separated parties,Alice,Bob and Charlie.In both(1→2)and(2→1),we discuss the untrusted party and trusted party performing a sequence of unsharp measurements,respectively.For each scenario,we deduce an upper bound on the number of sequential observers who can demonstrate genuine EPR steering through the quantum violation of tripartite steering inequality.The results show that the maximum number of observers for the generalized GHZ states can be the same with that of the maximally GHZ state in a certain range of state parameters.Moreover,both the sharpness parameters range and the state parameters range in the scenario of(1→2)steering are larger than those in the scenario of(2→1)steering.展开更多
A spherical Kadomtsev-Petviashvili (SKP) equation for dust acoustic or ion-acoustic waves is studied. Similarity reductions of the SKP equation are obtained with the one-parameter (ε) Lie group of infinitesimal t...A spherical Kadomtsev-Petviashvili (SKP) equation for dust acoustic or ion-acoustic waves is studied. Similarity reductions of the SKP equation are obtained with the one-parameter (ε) Lie group of infinitesimal transformations and Clarkson-Kruskal direct method, The SKP equation is also solved with a generalized tanh function method.展开更多
In a recent paper[J. Korean. Phys. Soc. 49 (2006) 459], two GHZ-state-based quantum secure direct communication protocols were presented. Here we point out that an eavesdropper can utilize a special property of GHZ ...In a recent paper[J. Korean. Phys. Soc. 49 (2006) 459], two GHZ-state-based quantum secure direct communication protocols were presented. Here we point out that an eavesdropper can utilize a special property of GHZ states, i.e. "correlation-elicitable" to obtain half information of the transmitted secrets without being detected in both protocols. The particular attack strategy is demonstrated in detail. Furthermore, a possible improvement is proposed, which makes the protocols secure against this kind of attack.展开更多
In this paper, the stability and bifurcation behaviors of a predator-prey model with the piecewise constant arguments and time delay are investigated. Technical approach is fully based on Jury criterion and bifurcatio...In this paper, the stability and bifurcation behaviors of a predator-prey model with the piecewise constant arguments and time delay are investigated. Technical approach is fully based on Jury criterion and bifurcation theory. The interesting point is that the model will produce two different branches by limiting branch parameters of different intervals. Besides, image simulation is also given.展开更多
The pre-B?tzinger complex(pre-B?tC) in mammalian brainstem is essential for the generation of respiratory rhythms.Most dynamic studies on the pre-B?tC neuron have been focused on its firing activities modulated by the...The pre-B?tzinger complex(pre-B?tC) in mammalian brainstem is essential for the generation of respiratory rhythms.Most dynamic studies on the pre-B?tC neuron have been focused on its firing activities modulated by the ion conductances rather than that by the electromagnetic radiation or the external forcing current. In this paper, by adding the electromagnetic radiation and external forcing current to Park and Rubin’s model, we mainly investigate the influences of those two factors on the mixed bursting(MB) of single pre-B?tC neuron. First, we explore how the variation of external forcing current affects the MB patterns of the system with non-vanishing magnetic flux. We classify the MB patterns and show their dynamic mechanism through fast-slow decomposition and bifurcation analysis. Then, by modifying the feedback coefficient, we further analyze the sole effect of electromagnetic radiation on the firing activities of the system. Our results may be instructive in understanding the dynamical behavior of pre-B?tC neuron.展开更多
Flexible electronic devices have attracted much attention due to their practical and commercial value. Integration of thin films with soft substrate is an effective way to fabricate flexible electronic devices. Ga_2O_...Flexible electronic devices have attracted much attention due to their practical and commercial value. Integration of thin films with soft substrate is an effective way to fabricate flexible electronic devices. Ga_2O_3 thin films deposited directly on soft substrates would be amorphous mostly. However, the thickness of the thin film obtained by mechanical exfoliation method is difficult to control and the edge of the film is fragile and easy to be damaged. In this work, we fabricated free-standing Ga_2O_3 thin films using the water-soluble perovskite Sr_3Al_2O_6 as a sacrificial buffer layer. The obtained Ga_2O_3 thin films were polycrystalline. The thickness and dimension of the films were controllable. A flexible Ga_2O_3solar-blind UV photodetector was fabricated by transferring the free-standing Ga_2O_3 film on a flexible polyethylene terephthalate substrate. The results displayed that the photoelectric performances of the flexible Ga_2O_3 photodetector were not sensitive to bending of the device. The free-standing Ga_2O_3 thin films synthesized through the method described here can be transferred to any substrates or integrated with other thin films to fabricate electronic devices.展开更多
基金the National Natural Science Foundation of China(Grant No.12004049).
文摘We investigate a periodically driven Haldane model subjected to a two-stage driving scheme in the form of a step function.By using the Floquet theory,we obtain the topological phase diagram of the system.We also find that anomalous Floquet topological phases exist in the system.Focusing on examining the quench dynamics among topological phases,we analyze the site distribution of the 0-mode and p-mode edge states in long-period evolution after a quench.The results demonstrate that,under certain conditions,the site distribution of the 0-mode can be confined at the edge even in long-period evolution.Additionally,both the 0-mode and p-mode can recover and become confined at the edge in long-period evolution when the post-quench parameters(T,M_(2) /M_(1))in the phase diagram cross away from the phase boundary (M_(2)/ M_(1))=(6√3t2)/ (M_(1)−1.Furthermore,we conclude that whether the edge state is confined at the edge in the long-period evolution after a quench depends on the similarity of the edge states before and after the quench.Our findings reveal some new characteristics of quench dynamics in a periodically driven system.
基金supported by the National Natural Science Foundation of China(Grant No.12004049)the Fund of State Key Laboratory of IPOC(BUPT)(Grant Nos.600119525 and 505019124).
文摘We investigate the Floquet spectrum and excitation properties of a two-ultracold-atom system with periodically driven interaction in a three-dimensional harmonic trap.The interaction between the atoms is changed by varying the s-wave scattering length in two ways,the cosine and the square-wave modulations.It is found that as the driving frequency increases,the Floquet spectrum exhibits two main features for both modulations,the accumulating and the spreading of the quasienergy levels,which further lead to different dynamical behaviors.The accumulation is associated with collective excitations and the persistent growth of the energy,while the spread indicates that the energy is bounded at all times.The initial scattering length,the driving frequency and amplitude can all significantly change the Floquet spectrum as well as the dynamics.However,the corresponding relation between them is valid universally.Finally,we propose a mechanism for selectively exciting the system to one specific state by using the avoided crossing of two quasienergy levels,which could guide preparation of a desired state in experiments.
基金supported partly by the National Natural Science Foundation of China(11926201,12171050)the National Science Foundation of Guangdong Province(2018A030313508)。
文摘In this paper,we consider entire solutions of higher order homogeneous differential equations with the entire coefficients having the same order,and prove that the entire solutions are of infinite lower order.The properties on the radial distribution,the limit direction of the Julia set and the existence of a Baker wandering domain of the entire solutions are also discussed.
基金supported by the National Key R&D Program of China (Grant No. 2021YFB3202800)the National Natural Science Foundation of China (Grant No. 12174373)+2 种基金the Chinese Academy of Sciences (Grant No. GJJSTD20200001)the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302200)Anhui Initiative in Quantum Information Technologies (Grant No. AHY050000)。
文摘Lee–Yang theory clearly demonstrates where the phase transition of many-body systems occurs and the asymptotic behavior near the phase transition using the partition function under complex parameters. The complex parameters make the direct investigation of Lee–Yang theory in practical systems challenging. Here we construct a non-Hermitian quantum system that can correspond to the one-dimensional Ising model with imaginary parameters through the equality of partition functions. By adjusting the non-Hermitian parameter,we successfully obtain the partition function under different imaginary magnetic fields and observe the Lee–Yang zeros. We also observe the critical behavior of free energy in vicinity of Lee–Yang zero that is consistent with theoretical prediction. Our work provides a protocol to study Lee–Yang zeros of the one-dimensional Ising model using a single-qubit non-Hermitian system.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11875135)。
文摘Coupled phase oscillators usually achieve synchronization as the coupling strength among oscillators is increased beyond a critical value. The stability of synchronous state remains an open issue. In this paper, we study the stability of the synchronous state in coupled phase oscillators. It is found that numerical integration of differential equations of coupled phase oscillators with a finite time step may induce desynchronization at strong couplings. The mechanism behind this instability is that numerical accumulated errors in simulations may trigger the loss of stability of the synchronous state.Desynchronization critical couplings are found to increase and diverge as a power law with decreasing the integral time step. Theoretical analysis supports the local stability of the synchronized state. Globally the emergence of synchronous state depends on the initial conditions. Other metastable ordered states such as twisted states can coexist with the synchronous mode. These twisted states keep locally stable on a sparse network but lose their stability when the network becomes dense.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFB4601101)the Beijing Natural Science Foundation(Grant No.JQ21019)the National Natural Science Foundation of China(Grant Nos.11975001,12075034,and 12261131495)。
文摘Fiber laser is a fundamental component of laser systems and is of great significance for development of laser technology.Its pulse output can be divided into Q-switched and mode-locked.Achieving ultrashort pulse with narrower pulse duration and higher power is the focus of current research on mode-locked lasers.As an important component of fiber laser systems,saturable absorber(SA) can modulate losses in the optical cavity and generate pulses,enabling the laser system to achieve pulse output under long-term normal operating conditions better.Therefore,expanding the selection range of materials with better saturable absorption properties to improve the quality of pulse output is an important topic in current research.Here,the second generation topological insulator Bi_(2)Te_(3) single crystal is prepared,and a ring fiber laser system is built with the Bi_(2)Te_(3) SA.The mode-locked pulse with a pulse duration of 288 fs and a signal-to-noise ratio of 80.202 dB is realized.This result verifies that Bi_(2)Te_(3),as a member of topological insulator,has good saturable absorption characteristics,and has broad prospects for the application research in lasers.
基金supported by the National Natural Science Foundation of China(12171050,12071047)the Fundamental Research Funds for the Central Universities(500421126)。
文摘Let f be an entire solution of the Tumura-Clunie type non-linear delay differential equation.We mainly investigate the dynamical properties of Julia sets of f,and the lower bound estimates of the measure of related limiting directions is verified.
基金the National Natural Science Foundation of China (10432010,10702002,10772101,10802012)the National High Technology Research and Development Program (2007AA02Z310)
文摘Recent advances in the experimental and theoretical study of dynamics of neuronal electrical firing activities are reviewed. Firstly, some experimental phenomena of neuronal irregular firing patterns, especially chaotic and stochastic firing patterns, are presented, and practical nonlinear time analysis methods are introduced to distinguish deterministic and stochastic mechanism in time series. Secondly, the dynamics of electrical firing activities in a single neuron is concerned, namely, fast-slow dynamics analysis for classification and mechanism of various bursting patterns, one- or two-parameter bifurcation analysis for transitions of firing patterns, and stochastic dynamics of firing activities (stochastic and coherence resonances, integer multiple and other firing patterns induced by noise, etc.). Thirdly, different types of synchronization of coupled neurons with electrical and chemical synapses are discussed. As noise and time delay are inevitable in nervous systems, it is found that noise and time delay may induce or enhance synchronization and change firing patterns of coupled neurons. Noise-induced resonance and spatiotemporal patterns in coupled neuronal networks are also demonstrated. Finally, some prospects are presented for future research. In consequence, the idea and methods of nonlinear dynamics are of great significance in exploration of dynamic processes and physiological functions of nervous systems.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61774019,51572033,and 51572241)the Beijing Municipal Commission of Science and Technology,China(Grant No.SX2018-04)
文摘Gallium oxide(Ga_2O_3), a typical ultra wide bandgap semiconductor, with a bandgap of ~4.9 e V, critical breakdown field of 8 MV/cm, and Baliga's figure of merit of 3444, is promising to be used in high-power and high-voltage devices.Recently, a keen interest in employing Ga_2O_3 in power devices has been aroused. Many researches have verified that Ga_2O_3 is an ideal candidate for fabricating power devices. In this review, we summarized the recent progress of field-effect transistors(FETs) and Schottky barrier diodes(SBDs) based on Ga_2O_3, which may provide a guideline for Ga_2O_3 to be preferably used in power devices fabrication.
基金supported by the National Natural Science Foundation of China under Grant Nos.61370195and 11101048Beijing Natural Science Foundation under Grant No.4132060the National Cryptography Development Foundation of China under Grant No.MMJJ201201002
文摘Recently, the digital image blind forensics technology has received an increasing attention in academic community. This paper aims at developing a new identification approach based on the statistical noise and exchangeable image file format (EXIF) information of image for images authen- tication. In particular, the authors can identify whether the current image has been modified or not by utilizing the relevance between noise and EXIF parameters and comparing the real values with the estimated values of the EXIF parameters. Experimental results validate the proposed method. That is, the detecting system can identify the doctored image effectively.
基金Project supported by the Huawei Technology Project (Grant No.YBON2008014)the National "863" High Technology Projects (Grant No.2009AA01Z224)
文摘This paper reports that the designed optical polarization mode dispersion compensator shows a good performance under the real-time variation of differential group delay, state of polarization and principal state of polarization in a (40×43)-Gb/s dense-wavelength-multiplexing, 1200-km enhanced return-to-zero differential-quadrature-phase-shift- keying (RZ-DQPSK) system. The polarization mode dispersion tolerance of the system is improved by 26 ps using the optical polarization mode dispersion compensator. The short and long time stabilities are tested with the bit error ratio recorded.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11875135)。
文摘Coupled phase oscillators are adopted as powerful platforms in studying synchrony behaviors emerged in various systems with rhythmic dynamics. Much attention has been focused on coupled time-continuous oscillators described by differential equations. In this paper, we study the synchronization dynamics of networks of coupled circle maps as the discrete version of the Kuramoto model. Despite of its simplicity in mathematical form, it is found that discreteness may induce many interesting synchronization behaviors. Multiple synchronization and desynchronization transitions of both phases and frequencies are found with varying the coupling among circle-map oscillators. The mechanisms of these transitions are interpreted in terms of the mean-field approach, where collective bifurcation cascades are revealed for coupled circle-map oscillators.
基金Project supported by China Postdoctoral Science Foundation (Grant No.042600055)Research on Frontiers of Materials Science,Beijing Municipal Science and Technology Commission (Grant No.Z181100004418006)。
文摘Solar-blind ultraviolet photodetectors with metal-semiconductor-metal structure were fabricated based onβ-(Al_(0.25)Ga_(0.75))_(2)O_(3)/β-Ga_(2)O_(3) film grown by metal-organic chemical vapor deposition.It was known that various surface states increase dark current and a large number of defects can hinder the transport of carriers,resulting in low switching ratio and low responsivity of the device.In this work,β-(Al_(0.25)Ga_(0.75))_(2)O_(3) films are used as surface passivation materials.Owning to its wide band gap,we obtain excellent light transmission and high lattice matching withβ-Ga_(2)O_(3).We explore the change and mechanism of the detection performance of theβ-Ga_(2)O_(3) detector afterβ-(Al_(0.25)Ga_(0.75))_(2)O_(3) surface passivation.It is found that under the illumination with 254 nm light at bias 5 V,theβ-(Al_(0.25)Ga_(0.75))_(2)O_(3)/β-Ga_(2)O_(3)photodetectors show dark current of just 18 pA and high current on/off ratio of 2.16×10^(5).The dark current is sharply reduced about 50 times after passivation of theβ-Ga_(2)O_(3) surface,and current on/off ratio increases by approximately 2 times.It is obvious thatβ-Ga_(2)O_(3) detectors withβ-(Al_(0.25)Ga_(0.75))_(2)O_(3) surface passivation can offer superior detector performance.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10875018 and 10773002)
文摘The spheroidal wave functions are found to have extensive applications in many branches of physics and mathematics. We use the perturbation method in supersymmetric quantum mechanics to obtain the analytic ground eigenvalue and the ground eigenfunction of the angular spheroidal wave equation at low frequency in a series form. Using this approach, the numerical determinations of the ground eigenvalue and the ground eigenfunction for small complex frequencies are also obtained.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62171056 and 61973021)Henan Key Laboratory of Network Cryptography Technology(Grant No.LNCT2022-A03)。
文摘We aim to explore all possible scenarios of(1→2)(where one wing is untrusted and the others two wings are trusted)and(2→1)(where two wings are untrusted,and one wing is trusted)genuine tripartite Einstein-Podolsky-Rosen(EPR)steering.The generalized Greenberger-Horne-Zeilinger(GHZ)state is shared between three spatially separated parties,Alice,Bob and Charlie.In both(1→2)and(2→1),we discuss the untrusted party and trusted party performing a sequence of unsharp measurements,respectively.For each scenario,we deduce an upper bound on the number of sequential observers who can demonstrate genuine EPR steering through the quantum violation of tripartite steering inequality.The results show that the maximum number of observers for the generalized GHZ states can be the same with that of the maximally GHZ state in a certain range of state parameters.Moreover,both the sharpness parameters range and the state parameters range in the scenario of(1→2)steering are larger than those in the scenario of(2→1)steering.
基金The project supported by the Tian Yuan Fund for Mathematics under Grand No 10426007, the Key Project of the Ministry of Education under Grant No. 106033, and National Science Foundation of China under.Grants Nos, 60372095 and 10272017. YTG would like to acknowledge the Cheung Kong Scholars Programme of the Ministry of Educ'atlon of China and Li Ka Shing Foundation of Hong Kong
文摘A spherical Kadomtsev-Petviashvili (SKP) equation for dust acoustic or ion-acoustic waves is studied. Similarity reductions of the SKP equation are obtained with the one-parameter (ε) Lie group of infinitesimal transformations and Clarkson-Kruskal direct method, The SKP equation is also solved with a generalized tanh function method.
基金Supported by the National Natural Science Foundation of China under Grant Nos 60873191, 60903152 and 60821001, the Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP) under Grant No 200800131016, Beijing Nova Program (No 2008B51), Key Project of the Ministry of Education of China (No 109014), Beijing Natural Science Foundation under Grant No 4072020, National Laboratory for Modern Communications Science Foundation of China under Grant No 9140C1101010601
文摘In a recent paper[J. Korean. Phys. Soc. 49 (2006) 459], two GHZ-state-based quantum secure direct communication protocols were presented. Here we point out that an eavesdropper can utilize a special property of GHZ states, i.e. "correlation-elicitable" to obtain half information of the transmitted secrets without being detected in both protocols. The particular attack strategy is demonstrated in detail. Furthermore, a possible improvement is proposed, which makes the protocols secure against this kind of attack.
基金supported by Beijing Higher Education Young Elite Teacher(YETP0458)
文摘In this paper, the stability and bifurcation behaviors of a predator-prey model with the piecewise constant arguments and time delay are investigated. Technical approach is fully based on Jury criterion and bifurcation theory. The interesting point is that the model will produce two different branches by limiting branch parameters of different intervals. Besides, image simulation is also given.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11772069 and 11872003)
文摘The pre-B?tzinger complex(pre-B?tC) in mammalian brainstem is essential for the generation of respiratory rhythms.Most dynamic studies on the pre-B?tC neuron have been focused on its firing activities modulated by the ion conductances rather than that by the electromagnetic radiation or the external forcing current. In this paper, by adding the electromagnetic radiation and external forcing current to Park and Rubin’s model, we mainly investigate the influences of those two factors on the mixed bursting(MB) of single pre-B?tC neuron. First, we explore how the variation of external forcing current affects the MB patterns of the system with non-vanishing magnetic flux. We classify the MB patterns and show their dynamic mechanism through fast-slow decomposition and bifurcation analysis. Then, by modifying the feedback coefficient, we further analyze the sole effect of electromagnetic radiation on the firing activities of the system. Our results may be instructive in understanding the dynamical behavior of pre-B?tC neuron.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51572033,51572241,61774019,61704153,and 11404029)the Fund of State Key Laboratory of IPOC(BUPT)+1 种基金the Open Fund of IPOC(BUPT)Beijing Municipal Commission of Science and Technology,China(Grant No.SX2018-04)
文摘Flexible electronic devices have attracted much attention due to their practical and commercial value. Integration of thin films with soft substrate is an effective way to fabricate flexible electronic devices. Ga_2O_3 thin films deposited directly on soft substrates would be amorphous mostly. However, the thickness of the thin film obtained by mechanical exfoliation method is difficult to control and the edge of the film is fragile and easy to be damaged. In this work, we fabricated free-standing Ga_2O_3 thin films using the water-soluble perovskite Sr_3Al_2O_6 as a sacrificial buffer layer. The obtained Ga_2O_3 thin films were polycrystalline. The thickness and dimension of the films were controllable. A flexible Ga_2O_3solar-blind UV photodetector was fabricated by transferring the free-standing Ga_2O_3 film on a flexible polyethylene terephthalate substrate. The results displayed that the photoelectric performances of the flexible Ga_2O_3 photodetector were not sensitive to bending of the device. The free-standing Ga_2O_3 thin films synthesized through the method described here can be transferred to any substrates or integrated with other thin films to fabricate electronic devices.