The surface-enhanced Raman scattering(SERS) optical fiber probes were successfully prepared by self-assembling on polyelectrolyte multilayers. Gold nanorods(Au NRs) were used as SERS enhancement material to give excel...The surface-enhanced Raman scattering(SERS) optical fiber probes were successfully prepared by self-assembling on polyelectrolyte multilayers. Gold nanorods(Au NRs) were used as SERS enhancement material to give excellent biological affinity and stability to the SERS optical fiber probes. Au NRs were synthesized by seed growth method. The synergistic effect between AgNO_(3) and surfactant was investigated, and the highest yield was found when AgNO_(3) was 500 uL. Meanwhile, different SERS optical fiber probes were obtained by selecting silane coupling agent, polyelectrolyte multilayer and graphene oxide(GO) to treat quartz fiber. It was found that the SERS optical fiber probes obtained by the self-assembled on polyelectrolyte multilayers method performed better than those by other methods. In addition, Mapping was combined with finite element simulation to analyze the electromagnetic field distribution at the fiber end face.The electromagnetic field distribution of Au NRs was investigated, the difference of electromagnetic field intensity around the Au NRs with different arrangements was compared, the strongest signal was obtained when the Au NRs were head-to-head. Finally, sensitivity of the optimized SERS optical fiber probes could reach 10^(-9)mol/L, with excellent stability and repeatability.展开更多
Transition metal chalcogenides(TMCs)are recognized as pre-catalysts,and their(oxy)hydroxides derived from electrochemical reconstruction are the active species in the water oxidation.However,understanding the role of ...Transition metal chalcogenides(TMCs)are recognized as pre-catalysts,and their(oxy)hydroxides derived from electrochemical reconstruction are the active species in the water oxidation.However,understanding the role of the residual chalcogen in the reconstructed layer is lacking in detail,and the corresponding catalytic mechanism remains controversial.Here,taking Cu_(1-x)Co_(x)S as a platform,we explore the regulating effect and existence form of the residual S doped into the reconstructive layer for oxygen evolution reaction(OER),where a dual-path OER mechanism is proposed.First-principles calculations and operando~(18)O isotopic labeling experiments jointly reveal that the residual S in the reconstructive layer of Cu_(1-x)Co_(x)S can wisely balance the adsorbate evolution mechanism(AEM)and lattice oxygen oxidation mechanism(LOM)by activating lattice oxygen and optimizing the adsorption/desorption behaviors at metal active sites,rather than change the reaction mechanism from AEM to LOM.Following such a dual-path OER mechanism,Cu_(0.4)Co_(0.6)S-derived Cu_(0.4)Co_(0.6)OSH not only overcomes the restriction of linear scaling relationship in AEM,but also avoids the structural collapse caused by lattice oxygen migration in LOM,so as to greatly reduce the OER potential and improved stability.展开更多
Affected by the Super Typhoon“Mangkhut,”a total of five base towers of a transmission line in the mountainous area of China collapsed.In this paper,a mathematical model is established based on the Shuttle Radar Topo...Affected by the Super Typhoon“Mangkhut,”a total of five base towers of a transmission line in the mountainous area of China collapsed.In this paper,a mathematical model is established based on the Shuttle Radar Topography Mission(SRTM)data near the accident tower.The measured wind speed in the plain area under the mountain is used as the calculation boundary condition.The wind speed at the top of the mountain is calculated by using a numerical simulation method.The design wind speed and calculated wind speed at the tower site are compared,and the influence of wind speed on tower position in this wind disaster accident is analyzed.展开更多
Using the fixed point method, this article proves the Hyers-Ulam-Rassias stability of a generalized Apollonius type quadratic functional equation in Banach spaces. The conditions of these results are demonstrated by t...Using the fixed point method, this article proves the Hyers-Ulam-Rassias stability of a generalized Apollonius type quadratic functional equation in Banach spaces. The conditions of these results are demonstrated by the quadratic functional equation of Apollonius type.展开更多
Low-overpotential layered hydroxides(LDHs)with high theoretical capacity are promising electrodes for supercapaterry and oxygen evolution reaction;however,the low electronic conductivity and insufficient active sites ...Low-overpotential layered hydroxides(LDHs)with high theoretical capacity are promising electrodes for supercapaterry and oxygen evolution reaction;however,the low electronic conductivity and insufficient active sites of bulk LDHs increase the internal resistance and reduce the capacity and oxygen-production efficiency of electrodes.Herein,we prepared a polyaniline-coated Ni-Co-layered double hydroxide intercalated with MoO_(4)^(2−)(M-LDH@PANI)composite electrode using a two-step method.As the amount of MoO_(4)^(2−)in the LDH increases,acicular microspheres steadily evolve into flaky microspheres with a high surface area,providing more active electrochemical sites.Moreover,the amorphous PANI coating of M-LDH boosts the electronic conductivity of the composite electrode.Accordingly,the M-LDH@PANI at an appropriate level of MoO_(4)^(2−)exhibits significantly enhanced energy storage and catalytic performance.Experimental analyses and theoretical calculations reveal that a small amount of MoO_(4)^(2−)is conducive to the expansion of LDH interlayer spacing,while an excessive amount of MoO_(4)^(2−)combines with the H atoms of LDH,thus competing with OH^(−),resulting in reduced electrochemical performance.Moreover,M-LDH flaky microspheres can efficiently modulate deprotonation energy,greatly accelerating surface redox reactions.This study provides an explanation for an unconventional mechanism,and a method for the modification of LDH-based materials for anion intercalation.展开更多
We study a non-autonomous ratio-dependent predator-prey model with exploited terms. This model is of periodic coefficients, which incorporates the periodicity of the varying environment. By means of the coincidence de...We study a non-autonomous ratio-dependent predator-prey model with exploited terms. This model is of periodic coefficients, which incorporates the periodicity of the varying environment. By means of the coincidence degree theory, we establish sufficient conditions for the existence of at least four positive periodic solutions of this model.展开更多
The electronic structures of bulk Bi_2Te_3 crystals were investigated by the first-principles calculations.The transport coefficients including Seeback coefficient and power factor were then calculated by the Boltzman...The electronic structures of bulk Bi_2Te_3 crystals were investigated by the first-principles calculations.The transport coefficients including Seeback coefficient and power factor were then calculated by the Boltzmann theory,and further evaluated as a function of chemical potential assuming a rigid band picture.The results suggest that p-type doping in the Bi_2Te_3 compound may be more favorable than n-type doping.From this analysis results,doping effects on a material will exhibit high ZT.Furthermore,we can also find the right doping concentration to produce more efficient materials,and present the "advantage filling element map" in detail.展开更多
The effect of the distribution of organic cations CH3NH3^+(MA^+) on the stability,electronic structures and optical properties of CH3NH3 Pb I3 perovskite have been investigated using the plane-wave ultrasoft pseuu...The effect of the distribution of organic cations CH3NH3^+(MA^+) on the stability,electronic structures and optical properties of CH3NH3 Pb I3 perovskite have been investigated using the plane-wave ultrasoft pseuudopotentials. Generalized gradient approximation and local density approximation are used to optimize the geometries of six models, which are different in the orientation of organic cations. The results show that model C is more stable than others, and the main contribution to the top of valence band is from I 5p states. In the bottom of conduction bands, the main components are Pb 6s states with an overlapping of I 5p states. When the orientation of organic group is transforming, the Pb I6 octahedra will distort and the band structure will alter with it, which affect the generation and migration of photon-generated carriers and optical properties.展开更多
We study the bound states to nonlinear Schrodinger equations with electro magnetic fields ihδψ/δt=(h/i -A(x))^2ψ+V(x)ψ-K(x)|ψ|^p-1ψ=0,on R+ ×R^N. Let G(x)=[V(x)p+1/p-1-N/2][K(x)]-2/p-1 ...We study the bound states to nonlinear Schrodinger equations with electro magnetic fields ihδψ/δt=(h/i -A(x))^2ψ+V(x)ψ-K(x)|ψ|^p-1ψ=0,on R+ ×R^N. Let G(x)=[V(x)p+1/p-1-N/2][K(x)]-2/p-1 and suppose that G(x) has k local minimum points. For h 〉 0 small, we find multi-bump bound states ~bh (x, t) ---- e-iE~/huh (X) with Uh concentrating at the local minimum points of G(x) simultaneously as h ~ O. The potentials V(x) and K(x) are allowed to be either compactly supported or unbounded at infinity.展开更多
The linear and nonlinear characteristics of time-resolved photoluminescence (PL) of n-type bulk semiconductor GaAs modulated with terahertz (THz) pulse are studied by using an ensemble Monte Carlo (EMC) method. ...The linear and nonlinear characteristics of time-resolved photoluminescence (PL) of n-type bulk semiconductor GaAs modulated with terahertz (THz) pulse are studied by using an ensemble Monte Carlo (EMC) method. In this paper the center energy valley (Г valley) electron concentration changes with the pulse delay time, sampling time and the outfield are mainly discussed. The results show that the sampling time and the THz field should exceed certain thresholds to effectively excite photoluminescence quenching (PLQ). Adopting a direct current (DC) field makes the sampling time threshold shortened and the linear range of THz field-modulation PL expanded. Moreover, controlling the sampling time and the outfield intensity can improve the linear quality: with forward time, the larger outfield is used; with backward time, the smaller outfield is used. This study can provide a theoretical basis of THz field linear modulation in a larger range for new light emitting devices.展开更多
The nonlinear radiation responses of two different n-doped bulk semiconductors: indium antimonide(In Sb) and indium arsenide(In As) in an intense terahertz(THz) field are studied by using the method of ensemble Monte ...The nonlinear radiation responses of two different n-doped bulk semiconductors: indium antimonide(In Sb) and indium arsenide(In As) in an intense terahertz(THz) field are studied by using the method of ensemble Monte Carlo(EMC)at room temperature. The results show that the radiations of two materials generate about 2-THz periodic regular spectrum distributions under a high field of 100 k V/cm at 1-THz center frequency. The center frequencies are enhanced to about 7 THz in In Sb, and only 5 THz in In As, respectively. The electron valley occupancy and the percentage of new electrons excited by impact ionization are also calculated. We find that the band nonparabolicity and impact ionization promote the generation of nonlinear high frequency radiation, while intervalley scattering has the opposite effect. Moreover, the impact ionization dominates in In Sb, while impact ionization and intervalley scattering work together in In As. These characteristics have potential applications in up-convension of THz wave and THz nonlinear frequency multiplication field.展开更多
In the present paper, the moment Lyapunov exponent of a codimensional two-bifurcation system is evaluted, which is on a three-dimensional central manifold and subjected to a parametric excitation by the bounded noise....In the present paper, the moment Lyapunov exponent of a codimensional two-bifurcation system is evaluted, which is on a three-dimensional central manifold and subjected to a parametric excitation by the bounded noise. Based on the theory of random dynamics, the eigenvalue problem governing the moment Lyapunov exponent is established. With a singular perturbation method, the explicit asymptotic expressions and numerical results of the second^order weak noise expansions of the moment Lyapunov are obtained in two cases. Then, the effects of the bounded noise and the parameters of the system on the moment Lyapunov exponent and the stability index are investigated. It is found that the stochastic stability of the system can be strengthened by the bounded noise.展开更多
Geometric and electronic structures of three polymorphs of BiPO4(m MBIP, n MBIP and HBIP) have been investigated by the first-principles calculations. The results show that PO4 tetrahedron in n MBIP is distorted mos...Geometric and electronic structures of three polymorphs of BiPO4(m MBIP, n MBIP and HBIP) have been investigated by the first-principles calculations. The results show that PO4 tetrahedron in n MBIP is distorted most, and m MBIP possesses minimum effective mass of carriers in three polymorphs of BiPO4. Further, the leading role of inductive effect of dipole moment or effective mass of carries in the separation of electron-hole pairs is analyzed. Based on the fact that n MBIP has higher photocatalytic activity than m MBIP, it can be inferred that the inductive effect of dipole moment deriving from distorted PO4 tetrahedron is the dominant factor affecting the separation efficiency of carries. The calculated results represent that n MBIP has more appropriate redox potential and narrower band gap than others. These findings may provide meaningful guidance for further understanding on the relationship between unique crystal structure and photocatalytic activity of BiPO4.展开更多
Magnetic properties of spin-ladder compounds Sr14(Cu1-yFey)24O41 (0 ≤ y ≤ 0.05) are investigated in the temperature range from 10 to 300 K. The result reveals that all the samples exhibit magnetic crossover beha...Magnetic properties of spin-ladder compounds Sr14(Cu1-yFey)24O41 (0 ≤ y ≤ 0.05) are investigated in the temperature range from 10 to 300 K. The result reveals that all the samples exhibit magnetic crossover behavior in the paramagnetic range, and Fe^3+ doping can efficiently increase the susceptibility due to the large moment of Fe^3+. Both the observations are consistent with our previous investigation on transport behaviors, indicating the strong correlation between the magnetism and transport behaviors. The spin gap is evidenced in all the samples, and strengthens as Fe^3+ doping level increases, which can be associated with the antiferromagnetic interaction between Fe^3+ and Cu cations.展开更多
To elucidate the synergistic effect of dual-atom catalysts(DACs)at the microscopic level,we propose and construct a prototype heteronuclear system,CuNi/TiO_(2),in which the two elements of a pair have significantly di...To elucidate the synergistic effect of dual-atom catalysts(DACs)at the microscopic level,we propose and construct a prototype heteronuclear system,CuNi/TiO_(2),in which the two elements of a pair have significantly different d electron-donating abilities,as a piece in the puzzle.Using density functional theory calculations,we investigate charge-dependent configurations of Cu-Ni dimers anchored on TiO_(2)by the mixing of individual constituent atoms.The d electron-donating ability determines deposition sequence and position of transition metal atoms on oxides,establishing dimer pattern and metal-support interactions.The interaction between Cu and Ni,beyond the coordination environment,predominately contributes to the synergistic effect.A complex adsorption-reduction behavior of H species on CuNi/TiO_(2)is observed.The reaction mechanism and catalytic activity of CuNi/TiO_(2)for hydrogen production are explored.At room temperature and high H coverages,CuNi/TiO_(2)shows better performance and efficiency than Ni1/TiO_(2).Our findings provide a new understanding of the synergistic effect on structure-activity relationships of supported dimers,which would be beneficial in the future design of various DACs or even atomically dispersed metal catalysts.展开更多
Leveraging the extraordinary phenomena of quantum superposition and quantum correlation,quantum computing offers unprecedented potential for addressing challenges beyond the reach of classical computers.This paper tac...Leveraging the extraordinary phenomena of quantum superposition and quantum correlation,quantum computing offers unprecedented potential for addressing challenges beyond the reach of classical computers.This paper tackles two pivotal challenges in the realm of quantum computing:firstly,the development of an effective encoding protocol for translating classical data into quantum states,a critical step for any quantum computation.Different encoding strategies can significantly influence quantum computer performance.Secondly,we address the need to counteract the inevitable noise that can hinder quantum acceleration.Our primary contribution is the introduction of a novel variational data encoding method,grounded in quantum regression algorithm models.By adapting the learning concept from machine learning,we render data encoding a learnable process.This allowed us to study the role of quantum correlation in data encoding.Through numerical simulations of various regression tasks,we demonstrate the efficacy of our variational data encoding,particularly post-learning from instructional data.Moreover,we delve into the role of quantum correlation in enhancing task performance,especially in noisy environments.Our findings underscore the critical role of quantum correlation in not only bolstering performance but also in mitigating noise interference,thus advancing the frontier of quantum computing.展开更多
As a key building block of the biological cortex,synapses are powerful information processing units that enable highly complex nonlinear computations.The realization of artificial synapses with similar capabilities ha...As a key building block of the biological cortex,synapses are powerful information processing units that enable highly complex nonlinear computations.The realization of artificial synapses with similar capabilities has important implications for building intelligent,neuromorphic systems.Here,we demonstrate an artificial synapse based on NbO_(x) nonvolatile memristor to mimic multifunctional bionic applications such as nociceptor and associative learning.Combined experimental characterization with COMSOL simulation,the traditional resistance switching characteristics,which are the decisive factor for the synapse properties are in-depth analyzed.It can be proposed that the I-V characteristics of Pt/NbO_(x)/TiN memristor are governed by core-shell filaments consisting of the shell region of sub-stoichiometric Nb_(2)O_(5-δ)and the core of NbO_(2).On the basis of the core-shell filament model,it can be reasonably explained that Ohmic conduction and Poole-Frenkel conduction take turns to dominate the current flowing in the memristive device,leading to the zigzag evolution of current during the operation process of NbO_(x)-based device.The simulations of synaptic plasticity,including long-term potentiation/depression(LTP/LTD),paired-pulse facilitation(PPF),and spike-timing-dependent plasticity(STDP),exhibiting that the NbO_(x) can be utilized for an artificial synapse.Furthermore,bionic functions such as hyperalgesia and allodynia of a nociceptor and a series of associative learning behaviors in Pavlovian dog experiment are mimicked,illustrating that the Pt/NbO_(x)/TiN have great potential for highly simplified artificial neural network applications.展开更多
Let X and Y be two pointed metric spaces.In this article,we give a generalization of the Cheng-Dong-Zhang theorem for coarse Lipschitz embeddings as follows:If f:X→Y is a standard coarse Lipschitz embedding,then for ...Let X and Y be two pointed metric spaces.In this article,we give a generalization of the Cheng-Dong-Zhang theorem for coarse Lipschitz embeddings as follows:If f:X→Y is a standard coarse Lipschitz embedding,then for each x^(*)∈Lip_(0)(X)there existα,γ>0 depending only on f and Q_(x)*∈Lip_(0)(Y)with‖Q_(x)*‖_(Lip)≤α‖x^(*)‖_(Lip)such that|Q_(x)*f(x)-x^(*)(x)|≤γ‖x^(*)‖_(Lip),for all x∈X.Coarse stability for a pair of metric spaces is studied.This can be considered as a coarse version of Qian Problem.As an application,we give candidate negative answers to a 58-year old problem by Lindenstrauss asking whether every Banach space is a Lipschitz retract of its bidual.Indeed,we show that X is not a Lipschitz retract of its bidual if X is a universally left-coarsely stable space but not an absolute cardinality-Lipschitz retract.If there exists a universally right-coarsely stable Banach space with the RNP but not isomorphic to any Hilbert space,then the problem also has a negative answer for a separable space.展开更多
The profiles of aerosol extinction,backscatter coefficient,and lidar ratio in the lower troposphere over Wuhan are measured by a multi-channel Raman/Mie lidar.Using the lidar ratio retrieved by Raman scattering princi...The profiles of aerosol extinction,backscatter coefficient,and lidar ratio in the lower troposphere over Wuhan are measured by a multi-channel Raman/Mie lidar.Using the lidar ratio retrieved by Raman scattering principle,the profiles of aerosol extinction and backscatter coefficients are also retrieved by Mie scattering signals,without a prior assumption about their relation in the traditional pure Mie signals data analyses.The observations by both Raman and Mie are in good agreement with each other.The high coherence shows that the system is reliable,and the Mie and Raman channels are in good adjustment and have the same field of view.展开更多
Although the empirical mode decomposition (EMD) method is an effective tool for noise reduction in lidar signals, evaluating the effectiveness of the denoising method is difficult. A dual-field-of-view lidar for obs...Although the empirical mode decomposition (EMD) method is an effective tool for noise reduction in lidar signals, evaluating the effectiveness of the denoising method is difficult. A dual-field-of-view lidar for observing atmospheric aerosols is described. The backscattering signals obtained from two channels have different signal-to-noise ratios (SNRs). The performance of noise reduction can be investigated by comparing the high SNR signal and the denoised low SNR signal without a simulation experiment. With this approach, the signal and noise are extracted to one intrinsic mode function (IMF) by the EMD- based denoising; thus, the threshold method is applied to the IMFs. Experimental results show that the improved threshold method can effectively perform noise reduction while preserving useful sudden-change information.展开更多
基金Funded by National Natural Science Foundation of China (Nos.51372179, 51772224)the Open Projects Foundation of Yangtze Optical Fiber and Cable Joint Stock Limited Company (YOFC)(No.SKLD1705)。
文摘The surface-enhanced Raman scattering(SERS) optical fiber probes were successfully prepared by self-assembling on polyelectrolyte multilayers. Gold nanorods(Au NRs) were used as SERS enhancement material to give excellent biological affinity and stability to the SERS optical fiber probes. Au NRs were synthesized by seed growth method. The synergistic effect between AgNO_(3) and surfactant was investigated, and the highest yield was found when AgNO_(3) was 500 uL. Meanwhile, different SERS optical fiber probes were obtained by selecting silane coupling agent, polyelectrolyte multilayer and graphene oxide(GO) to treat quartz fiber. It was found that the SERS optical fiber probes obtained by the self-assembled on polyelectrolyte multilayers method performed better than those by other methods. In addition, Mapping was combined with finite element simulation to analyze the electromagnetic field distribution at the fiber end face.The electromagnetic field distribution of Au NRs was investigated, the difference of electromagnetic field intensity around the Au NRs with different arrangements was compared, the strongest signal was obtained when the Au NRs were head-to-head. Finally, sensitivity of the optimized SERS optical fiber probes could reach 10^(-9)mol/L, with excellent stability and repeatability.
基金supported by the Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202200550)the Natural Science Foundation Joint Fund for Innovation and Development of Chongqing Municipal Education Commission(CSTB2022NSCQ-LZX0077)+4 种基金the National Natural Science Foundation of China(No.52100065)the Science and Technology Research Program of Natural Science Foundation of Chongqing(cstc2021ycjh-bgzxm0037)the Science and Technology Research Program of Chongqing Municipal Education Commission(KJZD-M202200503)the Chongqing Innovation Research Group Project(No.CXQT21015)the Doctor Start/Talent Introduction Program of Chongqing Normal University(No.02060404/2020009000321)。
文摘Transition metal chalcogenides(TMCs)are recognized as pre-catalysts,and their(oxy)hydroxides derived from electrochemical reconstruction are the active species in the water oxidation.However,understanding the role of the residual chalcogen in the reconstructed layer is lacking in detail,and the corresponding catalytic mechanism remains controversial.Here,taking Cu_(1-x)Co_(x)S as a platform,we explore the regulating effect and existence form of the residual S doped into the reconstructive layer for oxygen evolution reaction(OER),where a dual-path OER mechanism is proposed.First-principles calculations and operando~(18)O isotopic labeling experiments jointly reveal that the residual S in the reconstructive layer of Cu_(1-x)Co_(x)S can wisely balance the adsorbate evolution mechanism(AEM)and lattice oxygen oxidation mechanism(LOM)by activating lattice oxygen and optimizing the adsorption/desorption behaviors at metal active sites,rather than change the reaction mechanism from AEM to LOM.Following such a dual-path OER mechanism,Cu_(0.4)Co_(0.6)S-derived Cu_(0.4)Co_(0.6)OSH not only overcomes the restriction of linear scaling relationship in AEM,but also avoids the structural collapse caused by lattice oxygen migration in LOM,so as to greatly reduce the OER potential and improved stability.
基金CRSRI Open Research Program(Project No.CKWV2014202/KY).
文摘Affected by the Super Typhoon“Mangkhut,”a total of five base towers of a transmission line in the mountainous area of China collapsed.In this paper,a mathematical model is established based on the Shuttle Radar Topography Mission(SRTM)data near the accident tower.The measured wind speed in the plain area under the mountain is used as the calculation boundary condition.The wind speed at the top of the mountain is calculated by using a numerical simulation method.The design wind speed and calculated wind speed at the tower site are compared,and the influence of wind speed on tower position in this wind disaster accident is analyzed.
文摘Using the fixed point method, this article proves the Hyers-Ulam-Rassias stability of a generalized Apollonius type quadratic functional equation in Banach spaces. The conditions of these results are demonstrated by the quadratic functional equation of Apollonius type.
文摘Low-overpotential layered hydroxides(LDHs)with high theoretical capacity are promising electrodes for supercapaterry and oxygen evolution reaction;however,the low electronic conductivity and insufficient active sites of bulk LDHs increase the internal resistance and reduce the capacity and oxygen-production efficiency of electrodes.Herein,we prepared a polyaniline-coated Ni-Co-layered double hydroxide intercalated with MoO_(4)^(2−)(M-LDH@PANI)composite electrode using a two-step method.As the amount of MoO_(4)^(2−)in the LDH increases,acicular microspheres steadily evolve into flaky microspheres with a high surface area,providing more active electrochemical sites.Moreover,the amorphous PANI coating of M-LDH boosts the electronic conductivity of the composite electrode.Accordingly,the M-LDH@PANI at an appropriate level of MoO_(4)^(2−)exhibits significantly enhanced energy storage and catalytic performance.Experimental analyses and theoretical calculations reveal that a small amount of MoO_(4)^(2−)is conducive to the expansion of LDH interlayer spacing,while an excessive amount of MoO_(4)^(2−)combines with the H atoms of LDH,thus competing with OH^(−),resulting in reduced electrochemical performance.Moreover,M-LDH flaky microspheres can efficiently modulate deprotonation energy,greatly accelerating surface redox reactions.This study provides an explanation for an unconventional mechanism,and a method for the modification of LDH-based materials for anion intercalation.
基金Supported by the China Postdoctoral Science Foundation (20060400267)
文摘We study a non-autonomous ratio-dependent predator-prey model with exploited terms. This model is of periodic coefficients, which incorporates the periodicity of the varying environment. By means of the coincidence degree theory, we establish sufficient conditions for the existence of at least four positive periodic solutions of this model.
基金Funded by National Natural Science Foundation of China(Nos.81371973 and 11304090)Wuhan Municipal Health and Family Planning Commission Foundation of China(No.WX15C10)
文摘The electronic structures of bulk Bi_2Te_3 crystals were investigated by the first-principles calculations.The transport coefficients including Seeback coefficient and power factor were then calculated by the Boltzmann theory,and further evaluated as a function of chemical potential assuming a rigid band picture.The results suggest that p-type doping in the Bi_2Te_3 compound may be more favorable than n-type doping.From this analysis results,doping effects on a material will exhibit high ZT.Furthermore,we can also find the right doping concentration to produce more efficient materials,and present the "advantage filling element map" in detail.
基金Supported by the program for National Natural Science Foundation of China(51102150,51472081)Foundation of Hubei University of Technology for High-level Talents(GCRC13014)Development Founds of Hubei Collaborative Innovation Center(HBSKFZD2014003,HBSKFZD2014011,HBSKFZD2015004)
文摘The effect of the distribution of organic cations CH3NH3^+(MA^+) on the stability,electronic structures and optical properties of CH3NH3 Pb I3 perovskite have been investigated using the plane-wave ultrasoft pseuudopotentials. Generalized gradient approximation and local density approximation are used to optimize the geometries of six models, which are different in the orientation of organic cations. The results show that model C is more stable than others, and the main contribution to the top of valence band is from I 5p states. In the bottom of conduction bands, the main components are Pb 6s states with an overlapping of I 5p states. When the orientation of organic group is transforming, the Pb I6 octahedra will distort and the band structure will alter with it, which affect the generation and migration of photon-generated carriers and optical properties.
基金supported by National Natural Science Foundation of China(11201132)Scientific Research Foundation for Ph.D of Hubei University of Technology(BSQD12065)the Scientific Research Project of Education Department of Hubei Province(Q20151401)
文摘We study the bound states to nonlinear Schrodinger equations with electro magnetic fields ihδψ/δt=(h/i -A(x))^2ψ+V(x)ψ-K(x)|ψ|^p-1ψ=0,on R+ ×R^N. Let G(x)=[V(x)p+1/p-1-N/2][K(x)]-2/p-1 and suppose that G(x) has k local minimum points. For h 〉 0 small, we find multi-bump bound states ~bh (x, t) ---- e-iE~/huh (X) with Uh concentrating at the local minimum points of G(x) simultaneously as h ~ O. The potentials V(x) and K(x) are allowed to be either compactly supported or unbounded at infinity.
基金supported by the National Natural Science Foundation of China(Grant Nos.11574105,61475054,61405063,and 61177095)the Hubei Science and Technology Agency Project,China(Grant No.2015BCE052)the Fundamental Research Funds for the Central Universities,China(Grant No.2017KFYXJJ029)
文摘The linear and nonlinear characteristics of time-resolved photoluminescence (PL) of n-type bulk semiconductor GaAs modulated with terahertz (THz) pulse are studied by using an ensemble Monte Carlo (EMC) method. In this paper the center energy valley (Г valley) electron concentration changes with the pulse delay time, sampling time and the outfield are mainly discussed. The results show that the sampling time and the THz field should exceed certain thresholds to effectively excite photoluminescence quenching (PLQ). Adopting a direct current (DC) field makes the sampling time threshold shortened and the linear range of THz field-modulation PL expanded. Moreover, controlling the sampling time and the outfield intensity can improve the linear quality: with forward time, the larger outfield is used; with backward time, the smaller outfield is used. This study can provide a theoretical basis of THz field linear modulation in a larger range for new light emitting devices.
基金supported by the National Natural Science Foundation of China(Grant Nos.11574105,61177095,61405063,and 61475054)the Natural Science Foundation of Hubei Province,China(Grant Nos.2012FFA074 and 2013BAA002)+1 种基金the Wuhan Municipal Applied Basic Research Project,China(Grant No.20140101010009)the Fundamental Research Funds for the Central Universities,China(Grant Nos.2013KXYQ004 and 2014ZZGH021)
文摘The nonlinear radiation responses of two different n-doped bulk semiconductors: indium antimonide(In Sb) and indium arsenide(In As) in an intense terahertz(THz) field are studied by using the method of ensemble Monte Carlo(EMC)at room temperature. The results show that the radiations of two materials generate about 2-THz periodic regular spectrum distributions under a high field of 100 k V/cm at 1-THz center frequency. The center frequencies are enhanced to about 7 THz in In Sb, and only 5 THz in In As, respectively. The electron valley occupancy and the percentage of new electrons excited by impact ionization are also calculated. We find that the band nonparabolicity and impact ionization promote the generation of nonlinear high frequency radiation, while intervalley scattering has the opposite effect. Moreover, the impact ionization dominates in In Sb, while impact ionization and intervalley scattering work together in In As. These characteristics have potential applications in up-convension of THz wave and THz nonlinear frequency multiplication field.
基金Project supported by the National Natural Science Foundation of China (Nos. 11072107 and 91016022)the Research Fund for the Doctoral Program of Higher Education of China(No. 20093218110003)
文摘In the present paper, the moment Lyapunov exponent of a codimensional two-bifurcation system is evaluted, which is on a three-dimensional central manifold and subjected to a parametric excitation by the bounded noise. Based on the theory of random dynamics, the eigenvalue problem governing the moment Lyapunov exponent is established. With a singular perturbation method, the explicit asymptotic expressions and numerical results of the second^order weak noise expansions of the moment Lyapunov are obtained in two cases. Then, the effects of the bounded noise and the parameters of the system on the moment Lyapunov exponent and the stability index are investigated. It is found that the stochastic stability of the system can be strengthened by the bounded noise.
基金supported by the National Natural Science Foundation of China(51472081,51102150)the Development Funds of Hubei Collaborative Innovation Center(HBSKFMS2014003,HBSKFMS2014011)+1 种基金the Foundation for High-Level Talents(GCRC13014)the Students Research Fund of Hubei Collaborative Innovation Center(HBSDY201511)
文摘Geometric and electronic structures of three polymorphs of BiPO4(m MBIP, n MBIP and HBIP) have been investigated by the first-principles calculations. The results show that PO4 tetrahedron in n MBIP is distorted most, and m MBIP possesses minimum effective mass of carriers in three polymorphs of BiPO4. Further, the leading role of inductive effect of dipole moment or effective mass of carries in the separation of electron-hole pairs is analyzed. Based on the fact that n MBIP has higher photocatalytic activity than m MBIP, it can be inferred that the inductive effect of dipole moment deriving from distorted PO4 tetrahedron is the dominant factor affecting the separation efficiency of carries. The calculated results represent that n MBIP has more appropriate redox potential and narrower band gap than others. These findings may provide meaningful guidance for further understanding on the relationship between unique crystal structure and photocatalytic activity of BiPO4.
基金Supported the National Natural Science Foundation of China under Grant No 10974148, the National Science Fund for Talent Training in Basic Science (No J0830310), and the National Basic Research Program of China under Grant No 2009CB939705, the Fund of Wuhan University (5082003), and Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials (Hubei University).
文摘Magnetic properties of spin-ladder compounds Sr14(Cu1-yFey)24O41 (0 ≤ y ≤ 0.05) are investigated in the temperature range from 10 to 300 K. The result reveals that all the samples exhibit magnetic crossover behavior in the paramagnetic range, and Fe^3+ doping can efficiently increase the susceptibility due to the large moment of Fe^3+. Both the observations are consistent with our previous investigation on transport behaviors, indicating the strong correlation between the magnetism and transport behaviors. The spin gap is evidenced in all the samples, and strengthens as Fe^3+ doping level increases, which can be associated with the antiferromagnetic interaction between Fe^3+ and Cu cations.
基金the National Natural Science Foundation of China(No.52272199).
文摘To elucidate the synergistic effect of dual-atom catalysts(DACs)at the microscopic level,we propose and construct a prototype heteronuclear system,CuNi/TiO_(2),in which the two elements of a pair have significantly different d electron-donating abilities,as a piece in the puzzle.Using density functional theory calculations,we investigate charge-dependent configurations of Cu-Ni dimers anchored on TiO_(2)by the mixing of individual constituent atoms.The d electron-donating ability determines deposition sequence and position of transition metal atoms on oxides,establishing dimer pattern and metal-support interactions.The interaction between Cu and Ni,beyond the coordination environment,predominately contributes to the synergistic effect.A complex adsorption-reduction behavior of H species on CuNi/TiO_(2)is observed.The reaction mechanism and catalytic activity of CuNi/TiO_(2)for hydrogen production are explored.At room temperature and high H coverages,CuNi/TiO_(2)shows better performance and efficiency than Ni1/TiO_(2).Our findings provide a new understanding of the synergistic effect on structure-activity relationships of supported dimers,which would be beneficial in the future design of various DACs or even atomically dispersed metal catalysts.
基金the National Natural Science Foun-dation of China(Grant Nos.12105090 and 12175057).
文摘Leveraging the extraordinary phenomena of quantum superposition and quantum correlation,quantum computing offers unprecedented potential for addressing challenges beyond the reach of classical computers.This paper tackles two pivotal challenges in the realm of quantum computing:firstly,the development of an effective encoding protocol for translating classical data into quantum states,a critical step for any quantum computation.Different encoding strategies can significantly influence quantum computer performance.Secondly,we address the need to counteract the inevitable noise that can hinder quantum acceleration.Our primary contribution is the introduction of a novel variational data encoding method,grounded in quantum regression algorithm models.By adapting the learning concept from machine learning,we render data encoding a learnable process.This allowed us to study the role of quantum correlation in data encoding.Through numerical simulations of various regression tasks,we demonstrate the efficacy of our variational data encoding,particularly post-learning from instructional data.Moreover,we delve into the role of quantum correlation in enhancing task performance,especially in noisy environments.Our findings underscore the critical role of quantum correlation in not only bolstering performance but also in mitigating noise interference,thus advancing the frontier of quantum computing.
基金supported by the National Natural Science Foundation of China (Grant Nos.62274058,62104065)the Open Project of China-Poland Belt and Road Joint Laboratory of Measurement and Control Technology (Grant No.MCT202104)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No.XDB44000000)the Hubei Province Key Research and Development Program (Grant No.2022BAA020)the Wuhan Key Research and Development Program (Grant Nos.2022012202015055,2023010402010612)。
文摘As a key building block of the biological cortex,synapses are powerful information processing units that enable highly complex nonlinear computations.The realization of artificial synapses with similar capabilities has important implications for building intelligent,neuromorphic systems.Here,we demonstrate an artificial synapse based on NbO_(x) nonvolatile memristor to mimic multifunctional bionic applications such as nociceptor and associative learning.Combined experimental characterization with COMSOL simulation,the traditional resistance switching characteristics,which are the decisive factor for the synapse properties are in-depth analyzed.It can be proposed that the I-V characteristics of Pt/NbO_(x)/TiN memristor are governed by core-shell filaments consisting of the shell region of sub-stoichiometric Nb_(2)O_(5-δ)and the core of NbO_(2).On the basis of the core-shell filament model,it can be reasonably explained that Ohmic conduction and Poole-Frenkel conduction take turns to dominate the current flowing in the memristive device,leading to the zigzag evolution of current during the operation process of NbO_(x)-based device.The simulations of synaptic plasticity,including long-term potentiation/depression(LTP/LTD),paired-pulse facilitation(PPF),and spike-timing-dependent plasticity(STDP),exhibiting that the NbO_(x) can be utilized for an artificial synapse.Furthermore,bionic functions such as hyperalgesia and allodynia of a nociceptor and a series of associative learning behaviors in Pavlovian dog experiment are mimicked,illustrating that the Pt/NbO_(x)/TiN have great potential for highly simplified artificial neural network applications.
基金Supported by National Natural Science Foundation of China(Grant Nos.12126329,12171266,12126346,12101234)Simons Foundation(Grant No.585081)+6 种基金Educational Commission of Fujian Province(Grant No.JAT190589)Natural Science Foundation of Fujian Province(Grant No.2021J05237)the research start-up fund of Jimei University(Grant No.ZQ2021017)the research start-up fund of Putian University(Grant No.2020002)the Natural Science Foundation of Hebei Province(Grant No.A2022502010)the Fundamental Research Funds for the Central Universities(Grant No.2023MS164)the Natural Science Foundation of Fujian Province(Grant No.2023J01805)。
文摘Let X and Y be two pointed metric spaces.In this article,we give a generalization of the Cheng-Dong-Zhang theorem for coarse Lipschitz embeddings as follows:If f:X→Y is a standard coarse Lipschitz embedding,then for each x^(*)∈Lip_(0)(X)there existα,γ>0 depending only on f and Q_(x)*∈Lip_(0)(Y)with‖Q_(x)*‖_(Lip)≤α‖x^(*)‖_(Lip)such that|Q_(x)*f(x)-x^(*)(x)|≤γ‖x^(*)‖_(Lip),for all x∈X.Coarse stability for a pair of metric spaces is studied.This can be considered as a coarse version of Qian Problem.As an application,we give candidate negative answers to a 58-year old problem by Lindenstrauss asking whether every Banach space is a Lipschitz retract of its bidual.Indeed,we show that X is not a Lipschitz retract of its bidual if X is a universally left-coarsely stable space but not an absolute cardinality-Lipschitz retract.If there exists a universally right-coarsely stable Banach space with the RNP but not isomorphic to any Hilbert space,then the problem also has a negative answer for a separable space.
基金supported by the National"973"Program of China(No.2009CB723905),the National"863"Program of China(No.2009AA12Z107)the National Natural Science Foundation of China (Nos.10978003 and 40871171).
文摘The profiles of aerosol extinction,backscatter coefficient,and lidar ratio in the lower troposphere over Wuhan are measured by a multi-channel Raman/Mie lidar.Using the lidar ratio retrieved by Raman scattering principle,the profiles of aerosol extinction and backscatter coefficients are also retrieved by Mie scattering signals,without a prior assumption about their relation in the traditional pure Mie signals data analyses.The observations by both Raman and Mie are in good agreement with each other.The high coherence shows that the system is reliable,and the Mie and Raman channels are in good adjustment and have the same field of view.
基金supported by the National "973" Program of China (Nos. 2009CB723905 and 2011CB707106)the National Natural Science Foundation of China(Nos. 10978003 and 40871171)
文摘Although the empirical mode decomposition (EMD) method is an effective tool for noise reduction in lidar signals, evaluating the effectiveness of the denoising method is difficult. A dual-field-of-view lidar for observing atmospheric aerosols is described. The backscattering signals obtained from two channels have different signal-to-noise ratios (SNRs). The performance of noise reduction can be investigated by comparing the high SNR signal and the denoised low SNR signal without a simulation experiment. With this approach, the signal and noise are extracted to one intrinsic mode function (IMF) by the EMD- based denoising; thus, the threshold method is applied to the IMFs. Experimental results show that the improved threshold method can effectively perform noise reduction while preserving useful sudden-change information.