To address the problems of network congestion and spectrum resources shortage in multi-user large-scale scenarios,this paper proposes a twice random access OFDMA-NOMA-RA protocol combining the advantages of orthogonal...To address the problems of network congestion and spectrum resources shortage in multi-user large-scale scenarios,this paper proposes a twice random access OFDMA-NOMA-RA protocol combining the advantages of orthogonal frequency division multiple access(OFDMA)and non-orthogonal multiple access(NOMA).The idea of this protocol is that OFMDA is used to divide the entire frequency field into multiple orthogonal resource units(RUs),and NOMA is used on each RU to enable more users to access the channel and improve spectrum efficiency.Based on the protocol designed in this paper,in the case of imperfect successive interference cancellation(SIC),the probability of successful competition subchannels and the outage probability are derived for two scenarios:Users occupy the subchannel individually and users share the subchannel.Moreover,when two users share the channel,the decoding order of the users and the corresponding probabilities are considered.Then,the system throughput is obtained.To achieve better outage performance in the system,the optimal power allocation algorithm is proposed in this paper,which enables the optimal power allocation strategy to be obtained.Numerical results show that the larger the imperfect SIC coefficient,the worse the outage performance of weak users.Compared with pure OFDMA and NOMA,OFDMA-NOMA-RA always maintains an advantage when the imperfect SIC coefficient is less than a specific value.展开更多
Pure ZnS and Ni^2+-doped ZnS nanorods (Zn1-xNixS, x=0, 0.01, 0.03, 0.05 and 0.07, mole fraction,%) were synthesized by hydrothermal method. The effects of Ni2+ doping on the phase-structure, morphology, elemental comp...Pure ZnS and Ni^2+-doped ZnS nanorods (Zn1-xNixS, x=0, 0.01, 0.03, 0.05 and 0.07, mole fraction,%) were synthesized by hydrothermal method. The effects of Ni2+ doping on the phase-structure, morphology, elemental composition and optical properties of the samples were investigated by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), X-ray energy dispersive spectrometry (EDS) and ultraviolet–visible spectroscopy (UV-Vis), respectively. The photocatalytic activity of Zn1-xNixS nanorods was evaluated by the photodegradation of organic dyes Rhodamine B (RhB) in aqueous solution under UV light irradiation. The results show that all samples exhibit wurtzite structure with good crystallization. The morphologies are one-dimensional nanorods with good dispersion, and the distortion of the lattice constant occurs. The band gap of Zn1-xNixS samples is smaller than that of pure ZnS, thus red shift occurs. Ni^2+-doped ZnS nanocrystals can enhance photocatalytic activities for the photodegradation of RhB. Especially, Zn0.97Ni0.03S sample exhibits better photocatalytic performance and photocatalytic stability for the decomposition of RhB.展开更多
The dynamics and the transition of spiral waves in the coupled Hindmarsh-Rose (H-R) neurons in two-dimensional space are investigated in the paper. It is found that the spiral wave can be induced and developed in th...The dynamics and the transition of spiral waves in the coupled Hindmarsh-Rose (H-R) neurons in two-dimensional space are investigated in the paper. It is found that the spiral wave can be induced and developed in the coupled HR neurons in two-dimensional space, with appropriate initial values and a parameter region given. However, the spiral wave could encounter instability when the intensity of the external current reaches a threshold value of 1.945. The transition of spiral wave is found to be affected by coupling intensity D and bifurcation parameter r. The spiral wave becomes sparse as the coupling intensity increases, while the spiral wave is eliminated and the whole neuronal system becomes homogeneous as the bifurcation parameter increases to a certain threshold value. Then the coupling action of the four sub-adjacent neurons, which is described by coupling coefficient D', is also considered, and it is found that the spiral wave begins to breakup due to the introduced coupling action from the sub-adjacent neurons (or sites) and together with the coupling action of the nearest-neighbour neurons, which is described by the coupling intensity D.展开更多
In this paper, we consider the Cauchy problem for the Laplace equation, which is severely ill-posed in the sense that the solution does not depend continuously on the data. A modified Tikhonov regularization method is...In this paper, we consider the Cauchy problem for the Laplace equation, which is severely ill-posed in the sense that the solution does not depend continuously on the data. A modified Tikhonov regularization method is proposed to solve this problem. An error estimate for the a priori parameter choice between the exact solution and its regularized approximation is obtained. Moreover, an a posteriori parameter choice rule is proposed and a stable error estimate is also obtained. Numerical examples illustrate the validity and effectiveness of this method.展开更多
Mg(OH)_(2)/graphene oxide(GO)composite film was electrochemical deposited on AZ91D magnesium alloys at constant potential.The characteristics of the Mg(OH)_(2)/GO composite film were investigated by scanning electron ...Mg(OH)_(2)/graphene oxide(GO)composite film was electrochemical deposited on AZ91D magnesium alloys at constant potential.The characteristics of the Mg(OH)_(2)/GO composite film were investigated by scanning electron microscope(SEM),energy-dispersive X-ray spectrometry(EDS),X-ray diffractometer(XRD)and Raman spectroscopy.It was shown that the flaky GO randomly distributed in the composite film.Compared with the Mg(OH)_(2)film,the Mg(OH)_(2)/GO composite film exhibited more uniform and compact structure.Potentiodynamic polarization tests revealed that the Mg(OH)_(2)/GO composite film could significantly improve the corrosion resistance of Mg(OH)_(2)film with an obvious positive shift of corrosion potential by 0.19 V and a dramatic reduction of corrosion current density by more than one order of magnitude.展开更多
In extreme heat transfer environments, functionally graded materials(FGMs)have aroused great concern due to the excellent thermal shock resistance. With the development of micro-scale devices, the size-dependent effec...In extreme heat transfer environments, functionally graded materials(FGMs)have aroused great concern due to the excellent thermal shock resistance. With the development of micro-scale devices, the size-dependent effect has become an important issue. However, the classical continuum mechanical model fails on the micro-scale due to the influence of the size-dependent effect. Meanwhile, for thermoelastic behaviors limited to small-scale problems, Fourier's heat conduction law cannot explain the thermal wave effect. In order to capture the size-dependent effect and the thermal wave effect, the nonlocal generalized thermoelastic theory for the formulation of an FGM microbeam is adopted in the present work. For numerical validation, the transient responses for a simply supported FGM microbeam heated by the ramp-type heating are considered.The governing equations are formulated and solved by employing the Laplace transform techniques. In the numerical results, the effects of the ramp-heating time parameter, the nonlocal parameter, and the power-law index on the considered physical quantities are presented and discussed in detail.展开更多
A plasmonic refractive index(RI) sensor with high RI sensitivity based on a gold composite structure is proposed.This composite structure is constructed from a perfect gold nano-disk square array on a gold film, with ...A plasmonic refractive index(RI) sensor with high RI sensitivity based on a gold composite structure is proposed.This composite structure is constructed from a perfect gold nano-disk square array on a gold film, with a SiO_2 spacer. The reflection spectra of the composite structure, with analyte RI in the range of 1.30 to 1.40, are theoretically studied using the finite-difference time-domain method. The incident light beam is partly coupled to the localized surface plasmons(LSP) of the single nano-disks and partly transferred to the propagating surface plasmons(PSP) by grating coupling. The reflectivity is nearly zero at the valley of the reflection spectrum because of the strong coupling between LSP and PSP. Also, the full width at half maximum(FWHM) of one of the surface plasmon polaritons(SPPs) modes is very narrow, which is helpful for RI sensing. An RI sensitivity as high as 853 nm/RIU is obtained. The influence of the structure parameters on the RI sensitivity and the sensor figure of merit(FOM) are investigated in detail. We find that the sensor maintains high RI sensitivity over a large range of periods and nano-disk diameters. Results of the theoretical simulation of the composite structure as a plasmonic sensor are promising. Thus, this composite structure could be extensively applied in the fields of biology and chemistry.展开更多
In this paper, the synchronization and the parameter identification of the chaotic Pikovsky-Rabinovich (PR) circuits are investigated. The linear error of the second corresponding variables is used to change the dri...In this paper, the synchronization and the parameter identification of the chaotic Pikovsky-Rabinovich (PR) circuits are investigated. The linear error of the second corresponding variables is used to change the driven chaotic PR circuit, and the complete synchronization of the two identical chaotic PR circuits is realized with feedback intensity k increasing to a certain threshold. The Lyapunov exponents of the chaotic PR circuits are calculated by using different feedback intensities and our results are confirmed. The case where the two chaotic PR circuits are not identical is also investigated. A general positive Lyapunov function V, which consists of all the errors of the corresponding variables and parameters and changeable gain coefficient, is constructed by using the Lyapunov stability theory to study the parameter identification and complete synchronization of two nomidentical chaotic circuits. The controllers and the parameter observers could be obtained analytically only by simplifying the criterion dV/dt 〈 0 (differential coefficient of Lyapunov function V with respect to time is negative). It is confirmed that the two non-identical chaotic PR circuits could still reach complete synchronization and all the unknown parameters in the drive system are estimated exactly within a short transient period.展开更多
Spiral wave could be observed in the excitable media, the neurons are often excitable within appropriateparameters. The appearance and formation of spiral wave in the cardiac tissue is linked to monomorphic ventricula...Spiral wave could be observed in the excitable media, the neurons are often excitable within appropriateparameters. The appearance and formation of spiral wave in the cardiac tissue is linked to monomorphic ventriculartachycardia that can denervate into polymorphic tachycardia and ventricular fibrillation. The neuronal system oftenconsists of a large number of neurons with complex connections. In this paper, we theoretically study the transitionfrom spiral wave to spiral turbulence and homogeneous state (death of spiral wave) in two-dimensional array of theHindmarsh-Rose neuron with completely nearest-neighbor connections. In our numerical studies, a stable rotating spiralwave is developed and selected as the initial state, then the bifurcation parameters are changed to different values toobserve the transition from spiral wave to homogeneous state, breakup of spiral wave and weak change of spiral wave,respectively. A statistical factor of synchronization is defined with the mean field theory to analyze the transition fromspiral wave to other spatial states, and the snapshots of the membrane potentials of all neurons and time series of meanmembrane potentials of all neurons are also plotted to discuss the change of spiral wave. It is found that the sharpchanging points in the curve for factor of synchronization vs. bifurcation parameter indicate sudden transition fromspiral wave to other states. And the results are independent of the number of neurons we used.展开更多
Based on the thermodynamics and kinetics theory, a theoretical model was built to illuminate the formation of metal nanopowders by anodic arc discharging plasma method, and the mechanism of particle nucleation and gro...Based on the thermodynamics and kinetics theory, a theoretical model was built to illuminate the formation of metal nanopowders by anodic arc discharging plasma method, and the mechanism of particle nucleation and growth was investigated. In addition, the morphology, crystal structure, particle size and specific surface area of the nanopowders were characterized by X-ray diffraction(XRD), Brunauer-Emmett-Teller(BET) adsorption, transmission electron microscopy(TEM) and the corresponding selected area electron diffraction(SAED). The experimental results indicate that the nanopowders prepared by this process have uniform size, high purity, single phase and spherical shape. The crystal structure is FCC structure, the same as that of the bulk materials; the specific surface area is 12 m2/g, the particle size distribution ranges from 30 to 90 nm with an average particle size of 67 nm which is obtained from TEM and confirmed from XRD and BET results.展开更多
Benefiting from the unprecedented superiority of coding metasurfaces at manipulating electromagnetic waves in the microwave band,in this paper,we use the Pancharatnam-Berry(PB)phase concept to propose a high-efficienc...Benefiting from the unprecedented superiority of coding metasurfaces at manipulating electromagnetic waves in the microwave band,in this paper,we use the Pancharatnam-Berry(PB)phase concept to propose a high-efficiency reflectivetype coding metasurface that can arbitrarily manipulate the scattering pattern of terahertz waves and implement many novel functionalities.By optimizing the coding sequences,we demonstrate that the designed 1-,2-,and 3-bit coding metasurfaces with specific coding sequences have the strong ability to control reflected terahertz waves.The two proposed1-bit coding metasurfaces demonstrate that the reflected terahertz beam can be redirected and arbitrarily controlled.For normally incident x-and y-polarized waves,a 10 d B radar cross-section(RCS)reduction can be achieved from 2.1 THz to5.2 THz using the designed 2-bit coding metasurface.Moreover,two kinds of orbital angular momentum(OAM)vortex beams with different moduli are generated by a coding metasurface using different coding sequences.Our research provides a new degree of freedom for the sophisticated manipulation of terahertz waves,and contributes to the development of metasurfaces towards practical applications.展开更多
The time-dependent electro-viscoelastic performance of a circular dielectric elastomer(DE) membrane actuator containing an inclusion is investigated in the context of the nonlinear theory for viscoelastic dielectrics....The time-dependent electro-viscoelastic performance of a circular dielectric elastomer(DE) membrane actuator containing an inclusion is investigated in the context of the nonlinear theory for viscoelastic dielectrics. The membrane, a key part of the actuator, is centrally attached to a rigid inclusion of the radius a, and then connected to a fixed rigid ring of the radius b. When subject to a pressure and a voltage, the membrane inflates into an out-of-plane shape and undergoes an inhomogeneous large deformation. The governing equations for the large deformation are derived by means of non-equilibrium thermodynamics, and viscoelasticity of the membrane is characterized by a rheological spring-dashpot model. In the simulation, effects of the pressure, the voltage, and design parameters on the electromechanical viscoelastic behaviors of the membrane are investigated. Evolutions of the considered variables and profiles of the deformed membrane are obtained numerically and illustrated graphically. The results show that electromechanical loadings and design parameters significantly influence the electro-viscoelastic behaviors of the membrane. The design parameters can be tailored to improve the performance of the membrane. The approach may provide guidelines in designing and optimizing such DE devices.展开更多
The skill of most ENSO prediction models has declined significantly since 2000.This decline may be due to a weakening of the correlation between tropical predictors and ENSO.Moreover,the effects of extratropical ocean...The skill of most ENSO prediction models has declined significantly since 2000.This decline may be due to a weakening of the correlation between tropical predictors and ENSO.Moreover,the effects of extratropical ocean variability on ENSO have increased during this period.To improve ENSO predictability,the authors investigate the influence of the extratropical Atlantic and Pacific oceans on ENSO during the pre-2000 and post-2000 periods,and find that the influence of the northern tropical Atlantic sea surface temperature(NTA SST)on ENSO has significantly increased since 2000.Furthermore,there is a much earlier and stronger correlation between NTA SST and ENSO over the central-eastern Pacific during June-July-August in the post-2000 period compared with the pre-2000 period.The extratropical Pacific SST predictors for ENSO retain an approximate 10-month lead time after 2000.The authors use SST signals in the extratropical Atlantic and Pacific to predict ENSO using a statistical prediction model.This results in a significant improvement in ENSO prediction skill and an obvious decrease in the spring predictability barrier phenomenon of ENSO.These results indicate that extratropical Atlantic and Pacific SSTs can make substantial contributions to ENSO prediction,and can be used to enhance ENSO predictability after 2000.展开更多
We propose a simple one-dimensional grating coupling system that can excite multiple surface plasmon resonances for refractive index(RI)sensing with self-reference characteristics in the near-infrared band.Using theor...We propose a simple one-dimensional grating coupling system that can excite multiple surface plasmon resonances for refractive index(RI)sensing with self-reference characteristics in the near-infrared band.Using theoretical analysis and the finite-difference time-domain method,the plasmonic mechanism of the structure is discussed in detail.The results show that the excited resonances are independent of each other and have different fields of action.The mode involving extensive interaction with the analyte environment achieves a high sensitivity of 1236 nm/RIU,and the figure of merit(FOM)can reach 145 RIU-1.Importantly,the mode that is insensitive to the analyte environment exhibits good self-reference characteristics.Moreover,we discuss the case of exchanging the substrate material with the analyte environment.Promising simulation results show that this RI sensor can be widely deployed in unstable and complicated environments.展开更多
Well-aligned and uniform Coo.sZno.2Fe204 nanofibers (NFs) are prepared by electrospinning via sol-gel and sub- sequent heat treatment. Each of the as-spun NFs has a diameter of about 300 nm and a smooth surface morp...Well-aligned and uniform Coo.sZno.2Fe204 nanofibers (NFs) are prepared by electrospinning via sol-gel and sub- sequent heat treatment. Each of the as-spun NFs has a diameter of about 300 nm and a smooth surface morphology. The scanning electron microscope (SEM) image shows that the diameter decreases to 70 nm after the Coo.sZno.2Fe204 NF has been annealed at 650℃ for 3 h. The structure and chemical of Co0.8Zn0.2Fe204 NF are investigated by X- ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDS), respectively. Single phase cubic spinel structure, Coo.sZno.2Fe204 NF, is successfully obtained after having been calcined at 550 ~C in air for 3 h, and a reduced lattice constant of the Coo.8Zno.2Fe204 NF provides the evidence of effective Zn2+ substitution. The magnetic measurements show that the substitution of Zn2+ for Co2+ , i.e., the introduction of non-magnetic Zn2+ ions into A sites, can increase the saturation magnetization (Ms) and reduce the coercivity (He). The obtained Hc results of different samples reveal that the critical single-domain size of the Co0.8Zn0.2Fe204 NF is approximately 44 nm. By doping Zn2+ with different concentra- tions, the morphologies of Co1-xZnxFe2O4 (0 〈 x 〈 0.5) NFs do not show obvious changes. For magnetic properties, the Ms increases and Hc decreases monotonically, respectively.展开更多
In order to improve wear resistance and decrease the cost, carbon and carbon nanotubes reinforced copper matrix composites were fabricated by the power metallurgy method. The effects of carbon (carbon and carbon nano...In order to improve wear resistance and decrease the cost, carbon and carbon nanotubes reinforced copper matrix composites were fabricated by the power metallurgy method. The effects of carbon (carbon and carbon nanotubes) volume fraction and applied load on the friction coefficient and wear rate under dry sliding of the composites were investigated at room temperature. By scanning electron microscopy (SEM), the worn surfaces and debris were observed, and wear mechanism was also analyzed and discussed. The experimental wear process consists of the run-in, steady wear and severe wear process with the increasing of sliding distance. Both the friction coefficient and wear rate of the composites first decrease and then increase with the increasing of carbon volume fraction. The minimum friction coefficient and wear rate are obtained when carbon is 4.0vo1%. The wear mechanisms of the composites change from the adhesive wear and delamination wear to abrasive wear with the increasing of carbon volume fraction.展开更多
Aluminum matrix composites reinforced with carbon nanotube were fabricated by a powder metallurgy method. The effects of carbon nanotube content on the relative density,the hardness,and the friction and wear behavior ...Aluminum matrix composites reinforced with carbon nanotube were fabricated by a powder metallurgy method. The effects of carbon nanotube content on the relative density,the hardness,and the friction and wear behavior of the composites under dry sliding condition were investigated using the ball(pin)-on-block tester. By scanning electron microscopy(SEM),the worn surfaces and worn chips were observed,and the wear mechanism of composites was analyzed and discussed. The results indicate that the addition to the aluminum matrix of 2.0%(mass fraction) carbon nanotube causes the increase in the Vickers hardness of about 80%. Within the range of carbon nanotubes content from 1.0% to 2.0%,both the friction coefficient and wear rate of composites decrease with the increase of carbon nanotube content. The delamination wear is the main wear mechanism for the composites.展开更多
The methods of complex function, multi-polar coordinate system, and conformal mapping are used to solve dynamic stress concentration factor. The surface elasticity theory is applied to obtain the stress boundary condi...The methods of complex function, multi-polar coordinate system, and conformal mapping are used to solve dynamic stress concentration factor. The surface elasticity theory is applied to obtain the stress boundary conditions on the surface. The effects of frequency and the ration of the major and minor axis of the ellipse on the dynamic stress concentration factor around the elliptical nano-hole are discussed in detail. When the size of elliptical hole shrinks to nanometers, the numerical results show that the surface effect has a significant effect on the scattering of SH-wave.展开更多
A method for fabricating a micro-optical structure based on sample rotation and two-laser-beam interference is proposed. The rotation process is analyzed using the coordinate transformation in matrix presentation and ...A method for fabricating a micro-optical structure based on sample rotation and two-laser-beam interference is proposed. The rotation process is analyzed using the coordinate transformation in matrix presentation and the theoretical expressions of the optical field distributions corresponding to different sample rotations. By rotating the samples and changing the laser wavelength, various special micro-optical structures can be obtained, such as equally spaced concentric rings and irregular trapezoidal lattices; these structures are demonstrated by simulating the corresponding optical field distributions. The proposed approach may be developed into a low-cost laser interference lithography technology for the fabrication of various micro-optical structures.展开更多
This paper presents the theoretical investigation of hierarchical sub-wavelength photonic structures with various periods and numbers of layers, which were fabricated using a high-order waveguide-mode interference fie...This paper presents the theoretical investigation of hierarchical sub-wavelength photonic structures with various periods and numbers of layers, which were fabricated using a high-order waveguide-mode interference field. A 442-nm laser was used to excite high-order waveguide modes in an asymmetric metal-cladding dielectric waveguide structure. The dispersion curve of the waveguide modes was theoretically analyzed, and the distribution of the interference field of high-order waveguide modes was numerically simulated using the finite-element method. The various dependences of the characteristics of hierarchical sub-wavelength photonic structures on the thickness and refractive index of the photoresist and the waveguide mode were investigated in detail. These hierarchical sub-wavelength photonic structures have various periods and numbers of layers and can be fabricated by a simple and low-cost method.展开更多
基金funded in part by the National Natural Science Foundation of China under Grant 61663024in part by the Hongliu First Class Discipline Development Project of Lanzhou University of Technology(25-225305).
文摘To address the problems of network congestion and spectrum resources shortage in multi-user large-scale scenarios,this paper proposes a twice random access OFDMA-NOMA-RA protocol combining the advantages of orthogonal frequency division multiple access(OFDMA)and non-orthogonal multiple access(NOMA).The idea of this protocol is that OFMDA is used to divide the entire frequency field into multiple orthogonal resource units(RUs),and NOMA is used on each RU to enable more users to access the channel and improve spectrum efficiency.Based on the protocol designed in this paper,in the case of imperfect successive interference cancellation(SIC),the probability of successful competition subchannels and the outage probability are derived for two scenarios:Users occupy the subchannel individually and users share the subchannel.Moreover,when two users share the channel,the decoding order of the users and the corresponding probabilities are considered.Then,the system throughput is obtained.To achieve better outage performance in the system,the optimal power allocation algorithm is proposed in this paper,which enables the optimal power allocation strategy to be obtained.Numerical results show that the larger the imperfect SIC coefficient,the worse the outage performance of weak users.Compared with pure OFDMA and NOMA,OFDMA-NOMA-RA always maintains an advantage when the imperfect SIC coefficient is less than a specific value.
基金Project(51261015)supported by the National Natural Science Foundation of ChinaProject(1308RJZA238)supported by the Natural Science Foundation of Gansu Province,China
文摘Pure ZnS and Ni^2+-doped ZnS nanorods (Zn1-xNixS, x=0, 0.01, 0.03, 0.05 and 0.07, mole fraction,%) were synthesized by hydrothermal method. The effects of Ni2+ doping on the phase-structure, morphology, elemental composition and optical properties of the samples were investigated by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), X-ray energy dispersive spectrometry (EDS) and ultraviolet–visible spectroscopy (UV-Vis), respectively. The photocatalytic activity of Zn1-xNixS nanorods was evaluated by the photodegradation of organic dyes Rhodamine B (RhB) in aqueous solution under UV light irradiation. The results show that all samples exhibit wurtzite structure with good crystallization. The morphologies are one-dimensional nanorods with good dispersion, and the distortion of the lattice constant occurs. The band gap of Zn1-xNixS samples is smaller than that of pure ZnS, thus red shift occurs. Ni^2+-doped ZnS nanocrystals can enhance photocatalytic activities for the photodegradation of RhB. Especially, Zn0.97Ni0.03S sample exhibits better photocatalytic performance and photocatalytic stability for the decomposition of RhB.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10747005,10572056 and 10774130)the Natural Science Foundation of Lanzhou University,China (Grant No Q200706)
文摘The dynamics and the transition of spiral waves in the coupled Hindmarsh-Rose (H-R) neurons in two-dimensional space are investigated in the paper. It is found that the spiral wave can be induced and developed in the coupled HR neurons in two-dimensional space, with appropriate initial values and a parameter region given. However, the spiral wave could encounter instability when the intensity of the external current reaches a threshold value of 1.945. The transition of spiral wave is found to be affected by coupling intensity D and bifurcation parameter r. The spiral wave becomes sparse as the coupling intensity increases, while the spiral wave is eliminated and the whole neuronal system becomes homogeneous as the bifurcation parameter increases to a certain threshold value. Then the coupling action of the four sub-adjacent neurons, which is described by coupling coefficient D', is also considered, and it is found that the spiral wave begins to breakup due to the introduced coupling action from the sub-adjacent neurons (or sites) and together with the coupling action of the nearest-neighbour neurons, which is described by the coupling intensity D.
基金supported by the National Natural Science Foundation of China(1117113611261032)+2 种基金the Distinguished Young Scholars Fund of Lan Zhou University of Technology(Q201015)the basic scientific research business expenses of Gansu province collegethe Natural Science Foundation of Gansu province(1310RJYA021)
文摘In this paper, we consider the Cauchy problem for the Laplace equation, which is severely ill-posed in the sense that the solution does not depend continuously on the data. A modified Tikhonov regularization method is proposed to solve this problem. An error estimate for the a priori parameter choice between the exact solution and its regularized approximation is obtained. Moreover, an a posteriori parameter choice rule is proposed and a stable error estimate is also obtained. Numerical examples illustrate the validity and effectiveness of this method.
基金The financial support from the“Hundred Talents Program”of Chinese Academy of Sciences(J.Liang)is gratefully acknowledged.
文摘Mg(OH)_(2)/graphene oxide(GO)composite film was electrochemical deposited on AZ91D magnesium alloys at constant potential.The characteristics of the Mg(OH)_(2)/GO composite film were investigated by scanning electron microscope(SEM),energy-dispersive X-ray spectrometry(EDS),X-ray diffractometer(XRD)and Raman spectroscopy.It was shown that the flaky GO randomly distributed in the composite film.Compared with the Mg(OH)_(2)film,the Mg(OH)_(2)/GO composite film exhibited more uniform and compact structure.Potentiodynamic polarization tests revealed that the Mg(OH)_(2)/GO composite film could significantly improve the corrosion resistance of Mg(OH)_(2)film with an obvious positive shift of corrosion potential by 0.19 V and a dramatic reduction of corrosion current density by more than one order of magnitude.
基金Project supported by the National Natural Science Foundation of China (Nos. 11972176 and12062011)the Incubation Programme of Excellent Doctoral Dissertation-Lanzhou University of Technology。
文摘In extreme heat transfer environments, functionally graded materials(FGMs)have aroused great concern due to the excellent thermal shock resistance. With the development of micro-scale devices, the size-dependent effect has become an important issue. However, the classical continuum mechanical model fails on the micro-scale due to the influence of the size-dependent effect. Meanwhile, for thermoelastic behaviors limited to small-scale problems, Fourier's heat conduction law cannot explain the thermal wave effect. In order to capture the size-dependent effect and the thermal wave effect, the nonlocal generalized thermoelastic theory for the formulation of an FGM microbeam is adopted in the present work. For numerical validation, the transient responses for a simply supported FGM microbeam heated by the ramp-type heating are considered.The governing equations are formulated and solved by employing the Laplace transform techniques. In the numerical results, the effects of the ramp-heating time parameter, the nonlocal parameter, and the power-law index on the considered physical quantities are presented and discussed in detail.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61865008 and 61505074)the Undergraduate Innovation Training Program of Gansu Province,China(Grant No.DC2018002)the Undergraduate Innovation Training Program of Lanzhou University of Technology(Grant No.DC2018004)
文摘A plasmonic refractive index(RI) sensor with high RI sensitivity based on a gold composite structure is proposed.This composite structure is constructed from a perfect gold nano-disk square array on a gold film, with a SiO_2 spacer. The reflection spectra of the composite structure, with analyte RI in the range of 1.30 to 1.40, are theoretically studied using the finite-difference time-domain method. The incident light beam is partly coupled to the localized surface plasmons(LSP) of the single nano-disks and partly transferred to the propagating surface plasmons(PSP) by grating coupling. The reflectivity is nearly zero at the valley of the reflection spectrum because of the strong coupling between LSP and PSP. Also, the full width at half maximum(FWHM) of one of the surface plasmon polaritons(SPPs) modes is very narrow, which is helpful for RI sensing. An RI sensitivity as high as 853 nm/RIU is obtained. The influence of the structure parameters on the RI sensitivity and the sensor figure of merit(FOM) are investigated in detail. We find that the sensor maintains high RI sensitivity over a large range of periods and nano-disk diameters. Results of the theoretical simulation of the composite structure as a plasmonic sensor are promising. Thus, this composite structure could be extensively applied in the fields of biology and chemistry.
基金supported by the National Nature Science Foundation of China (Grant No 10747005)the Natural science foundation of Lanzhou University of Technology,China (Grant No Q200706)
文摘In this paper, the synchronization and the parameter identification of the chaotic Pikovsky-Rabinovich (PR) circuits are investigated. The linear error of the second corresponding variables is used to change the driven chaotic PR circuit, and the complete synchronization of the two identical chaotic PR circuits is realized with feedback intensity k increasing to a certain threshold. The Lyapunov exponents of the chaotic PR circuits are calculated by using different feedback intensities and our results are confirmed. The case where the two chaotic PR circuits are not identical is also investigated. A general positive Lyapunov function V, which consists of all the errors of the corresponding variables and parameters and changeable gain coefficient, is constructed by using the Lyapunov stability theory to study the parameter identification and complete synchronization of two nomidentical chaotic circuits. The controllers and the parameter observers could be obtained analytically only by simplifying the criterion dV/dt 〈 0 (differential coefficient of Lyapunov function V with respect to time is negative). It is confirmed that the two non-identical chaotic PR circuits could still reach complete synchronization and all the unknown parameters in the drive system are estimated exactly within a short transient period.
基金Supported by National Nature Science of Foundation of China under Grant Nos. 10747005, 10847140the Natural Science of Lanzhou University of Technology under Grant No. Q200706
文摘Spiral wave could be observed in the excitable media, the neurons are often excitable within appropriateparameters. The appearance and formation of spiral wave in the cardiac tissue is linked to monomorphic ventriculartachycardia that can denervate into polymorphic tachycardia and ventricular fibrillation. The neuronal system oftenconsists of a large number of neurons with complex connections. In this paper, we theoretically study the transitionfrom spiral wave to spiral turbulence and homogeneous state (death of spiral wave) in two-dimensional array of theHindmarsh-Rose neuron with completely nearest-neighbor connections. In our numerical studies, a stable rotating spiralwave is developed and selected as the initial state, then the bifurcation parameters are changed to different values toobserve the transition from spiral wave to homogeneous state, breakup of spiral wave and weak change of spiral wave,respectively. A statistical factor of synchronization is defined with the mean field theory to analyze the transition fromspiral wave to other spatial states, and the snapshots of the membrane potentials of all neurons and time series of meanmembrane potentials of all neurons are also plotted to discuss the change of spiral wave. It is found that the sharpchanging points in the curve for factor of synchronization vs. bifurcation parameter indicate sudden transition fromspiral wave to other states. And the results are independent of the number of neurons we used.
基金Project (3ZS042-B25-017) supported by the Natural Science Foundation of Gansu Province, China
文摘Based on the thermodynamics and kinetics theory, a theoretical model was built to illuminate the formation of metal nanopowders by anodic arc discharging plasma method, and the mechanism of particle nucleation and growth was investigated. In addition, the morphology, crystal structure, particle size and specific surface area of the nanopowders were characterized by X-ray diffraction(XRD), Brunauer-Emmett-Teller(BET) adsorption, transmission electron microscopy(TEM) and the corresponding selected area electron diffraction(SAED). The experimental results indicate that the nanopowders prepared by this process have uniform size, high purity, single phase and spherical shape. The crystal structure is FCC structure, the same as that of the bulk materials; the specific surface area is 12 m2/g, the particle size distribution ranges from 30 to 90 nm with an average particle size of 67 nm which is obtained from TEM and confirmed from XRD and BET results.
基金Project supported by the National Natural Science Foundation of China(Grant No.61865008)Northwest Normal University Young Teachers’Scientific Research Capability Upgrading Program(Grant No.NWNU-LKQN2020-11)the Scientific Research Fund of Sichuan Provincial Science and Technology Department,China(Grant No.2020YJ0137)。
文摘Benefiting from the unprecedented superiority of coding metasurfaces at manipulating electromagnetic waves in the microwave band,in this paper,we use the Pancharatnam-Berry(PB)phase concept to propose a high-efficiency reflectivetype coding metasurface that can arbitrarily manipulate the scattering pattern of terahertz waves and implement many novel functionalities.By optimizing the coding sequences,we demonstrate that the designed 1-,2-,and 3-bit coding metasurfaces with specific coding sequences have the strong ability to control reflected terahertz waves.The two proposed1-bit coding metasurfaces demonstrate that the reflected terahertz beam can be redirected and arbitrarily controlled.For normally incident x-and y-polarized waves,a 10 d B radar cross-section(RCS)reduction can be achieved from 2.1 THz to5.2 THz using the designed 2-bit coding metasurface.Moreover,two kinds of orbital angular momentum(OAM)vortex beams with different moduli are generated by a coding metasurface using different coding sequences.Our research provides a new degree of freedom for the sophisticated manipulation of terahertz waves,and contributes to the development of metasurfaces towards practical applications.
基金Project supported by the National Natural Science Foundation of China(No.11372123)
文摘The time-dependent electro-viscoelastic performance of a circular dielectric elastomer(DE) membrane actuator containing an inclusion is investigated in the context of the nonlinear theory for viscoelastic dielectrics. The membrane, a key part of the actuator, is centrally attached to a rigid inclusion of the radius a, and then connected to a fixed rigid ring of the radius b. When subject to a pressure and a voltage, the membrane inflates into an out-of-plane shape and undergoes an inhomogeneous large deformation. The governing equations for the large deformation are derived by means of non-equilibrium thermodynamics, and viscoelasticity of the membrane is characterized by a rheological spring-dashpot model. In the simulation, effects of the pressure, the voltage, and design parameters on the electromechanical viscoelastic behaviors of the membrane are investigated. Evolutions of the considered variables and profiles of the deformed membrane are obtained numerically and illustrated graphically. The results show that electromechanical loadings and design parameters significantly influence the electro-viscoelastic behaviors of the membrane. The design parameters can be tailored to improve the performance of the membrane. The approach may provide guidelines in designing and optimizing such DE devices.
基金This research was supported by the National Natural Science Foundation of China[grant number 41975070]the Identification and mechanism study of global warming‘hiatus’phenomenon of 973 project of China[grant number 2016YFA0601801].
文摘The skill of most ENSO prediction models has declined significantly since 2000.This decline may be due to a weakening of the correlation between tropical predictors and ENSO.Moreover,the effects of extratropical ocean variability on ENSO have increased during this period.To improve ENSO predictability,the authors investigate the influence of the extratropical Atlantic and Pacific oceans on ENSO during the pre-2000 and post-2000 periods,and find that the influence of the northern tropical Atlantic sea surface temperature(NTA SST)on ENSO has significantly increased since 2000.Furthermore,there is a much earlier and stronger correlation between NTA SST and ENSO over the central-eastern Pacific during June-July-August in the post-2000 period compared with the pre-2000 period.The extratropical Pacific SST predictors for ENSO retain an approximate 10-month lead time after 2000.The authors use SST signals in the extratropical Atlantic and Pacific to predict ENSO using a statistical prediction model.This results in a significant improvement in ENSO prediction skill and an obvious decrease in the spring predictability barrier phenomenon of ENSO.These results indicate that extratropical Atlantic and Pacific SSTs can make substantial contributions to ENSO prediction,and can be used to enhance ENSO predictability after 2000.
基金the National Natural Science Foundation of China(Grant No.61865008).
文摘We propose a simple one-dimensional grating coupling system that can excite multiple surface plasmon resonances for refractive index(RI)sensing with self-reference characteristics in the near-infrared band.Using theoretical analysis and the finite-difference time-domain method,the plasmonic mechanism of the structure is discussed in detail.The results show that the excited resonances are independent of each other and have different fields of action.The mode involving extensive interaction with the analyte environment achieves a high sensitivity of 1236 nm/RIU,and the figure of merit(FOM)can reach 145 RIU-1.Importantly,the mode that is insensitive to the analyte environment exhibits good self-reference characteristics.Moreover,we discuss the case of exchanging the substrate material with the analyte environment.Promising simulation results show that this RI sensor can be widely deployed in unstable and complicated environments.
基金Project supported by the National Natural Science Foundation of China(Grant No.50873047)the Foundation of Gansu Education Department,China(Grant No.0603-02)
文摘Well-aligned and uniform Coo.sZno.2Fe204 nanofibers (NFs) are prepared by electrospinning via sol-gel and sub- sequent heat treatment. Each of the as-spun NFs has a diameter of about 300 nm and a smooth surface morphology. The scanning electron microscope (SEM) image shows that the diameter decreases to 70 nm after the Coo.sZno.2Fe204 NF has been annealed at 650℃ for 3 h. The structure and chemical of Co0.8Zn0.2Fe204 NF are investigated by X- ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDS), respectively. Single phase cubic spinel structure, Coo.sZno.2Fe204 NF, is successfully obtained after having been calcined at 550 ~C in air for 3 h, and a reduced lattice constant of the Coo.8Zno.2Fe204 NF provides the evidence of effective Zn2+ substitution. The magnetic measurements show that the substitution of Zn2+ for Co2+ , i.e., the introduction of non-magnetic Zn2+ ions into A sites, can increase the saturation magnetization (Ms) and reduce the coercivity (He). The obtained Hc results of different samples reveal that the critical single-domain size of the Co0.8Zn0.2Fe204 NF is approximately 44 nm. By doping Zn2+ with different concentra- tions, the morphologies of Co1-xZnxFe2O4 (0 〈 x 〈 0.5) NFs do not show obvious changes. For magnetic properties, the Ms increases and Hc decreases monotonically, respectively.
基金Funded by the National Natural Science Foundation of China (50873047)the Natural Science Foundation of Gansu Province (3ZS061-A25-039)
文摘In order to improve wear resistance and decrease the cost, carbon and carbon nanotubes reinforced copper matrix composites were fabricated by the power metallurgy method. The effects of carbon (carbon and carbon nanotubes) volume fraction and applied load on the friction coefficient and wear rate under dry sliding of the composites were investigated at room temperature. By scanning electron microscopy (SEM), the worn surfaces and debris were observed, and wear mechanism was also analyzed and discussed. The experimental wear process consists of the run-in, steady wear and severe wear process with the increasing of sliding distance. Both the friction coefficient and wear rate of the composites first decrease and then increase with the increasing of carbon volume fraction. The minimum friction coefficient and wear rate are obtained when carbon is 4.0vo1%. The wear mechanisms of the composites change from the adhesive wear and delamination wear to abrasive wear with the increasing of carbon volume fraction.
基金Project(3ZS061-A25-039) supported by the Natural Science Foundation of Gansu Province, China
文摘Aluminum matrix composites reinforced with carbon nanotube were fabricated by a powder metallurgy method. The effects of carbon nanotube content on the relative density,the hardness,and the friction and wear behavior of the composites under dry sliding condition were investigated using the ball(pin)-on-block tester. By scanning electron microscopy(SEM),the worn surfaces and worn chips were observed,and the wear mechanism of composites was analyzed and discussed. The results indicate that the addition to the aluminum matrix of 2.0%(mass fraction) carbon nanotube causes the increase in the Vickers hardness of about 80%. Within the range of carbon nanotubes content from 1.0% to 2.0%,both the friction coefficient and wear rate of composites decrease with the increase of carbon nanotube content. The delamination wear is the main wear mechanism for the composites.
文摘The methods of complex function, multi-polar coordinate system, and conformal mapping are used to solve dynamic stress concentration factor. The surface elasticity theory is applied to obtain the stress boundary conditions on the surface. The effects of frequency and the ration of the major and minor axis of the ellipse on the dynamic stress concentration factor around the elliptical nano-hole are discussed in detail. When the size of elliptical hole shrinks to nanometers, the numerical results show that the surface effect has a significant effect on the scattering of SH-wave.
基金Project supported by the National Natural Science Foundation of China(Grant No.61505074)the National Basic Research Program of China(Grant No.2013CBA01703)+1 种基金the Hong Liu Young Teachers Training Program Funded Projects of Lanzhou University of Technology,China(Grant No.Q201509)the National Undergraduate Innovation Training Program of China(Grant No.201610731030)
文摘A method for fabricating a micro-optical structure based on sample rotation and two-laser-beam interference is proposed. The rotation process is analyzed using the coordinate transformation in matrix presentation and the theoretical expressions of the optical field distributions corresponding to different sample rotations. By rotating the samples and changing the laser wavelength, various special micro-optical structures can be obtained, such as equally spaced concentric rings and irregular trapezoidal lattices; these structures are demonstrated by simulating the corresponding optical field distributions. The proposed approach may be developed into a low-cost laser interference lithography technology for the fabrication of various micro-optical structures.
基金Project supported by the National Natural Science Foundation of China(Grant No.61505074)the National Key Basic Research Program of China(Grant No.2013CBA01703)the Hong Liu Young Teachers Training Program Funded Projects of Lanzhou University of Technology(Grant No.Q201509)
文摘This paper presents the theoretical investigation of hierarchical sub-wavelength photonic structures with various periods and numbers of layers, which were fabricated using a high-order waveguide-mode interference field. A 442-nm laser was used to excite high-order waveguide modes in an asymmetric metal-cladding dielectric waveguide structure. The dispersion curve of the waveguide modes was theoretically analyzed, and the distribution of the interference field of high-order waveguide modes was numerically simulated using the finite-element method. The various dependences of the characteristics of hierarchical sub-wavelength photonic structures on the thickness and refractive index of the photoresist and the waveguide mode were investigated in detail. These hierarchical sub-wavelength photonic structures have various periods and numbers of layers and can be fabricated by a simple and low-cost method.