In order to make full use of digital data, such as data extracted from electronic police video systems, and optimize intersection signal parameters, the theoretical distribution of the vehicle's road travel time m...In order to make full use of digital data, such as data extracted from electronic police video systems, and optimize intersection signal parameters, the theoretical distribution of the vehicle's road travel time must first be determined. The intersection signal cycle and the green splits were optimized simultaneously, and the system total travel time was selected as the optimization goal. The distribution of the vehicle's link travel time is the combined results of the flow composition, road marking, the form of control, and the driver's driving habits. The method proposed has 15% lower system total stop delay and fewer total stops than the method of TRRL(Transport and Road Research Laboratory) in England and the method of ARRB(Australian Road Research Board) in Australia. This method can save 0.5% total travel time and will be easier to understand and test, which establishes a causal relationship between optimal results and specific forms of road segment management, such as speed limits.展开更多
基金Project(14BTJ017)supported by National Social Science Foundation Project of ChinaProject supported by the 2014 Mathematics and Interdisciplinary Science Project of Central South University,China
文摘In order to make full use of digital data, such as data extracted from electronic police video systems, and optimize intersection signal parameters, the theoretical distribution of the vehicle's road travel time must first be determined. The intersection signal cycle and the green splits were optimized simultaneously, and the system total travel time was selected as the optimization goal. The distribution of the vehicle's link travel time is the combined results of the flow composition, road marking, the form of control, and the driver's driving habits. The method proposed has 15% lower system total stop delay and fewer total stops than the method of TRRL(Transport and Road Research Laboratory) in England and the method of ARRB(Australian Road Research Board) in Australia. This method can save 0.5% total travel time and will be easier to understand and test, which establishes a causal relationship between optimal results and specific forms of road segment management, such as speed limits.