Geotechnical engineering data are usually small-sample and high-dimensional,which brings a lot of challenges in predictive modeling.This paper uses a typical high-dimensional and small-sample swell pressure(P_(s))data...Geotechnical engineering data are usually small-sample and high-dimensional,which brings a lot of challenges in predictive modeling.This paper uses a typical high-dimensional and small-sample swell pressure(P_(s))dataset to explore the possibility of using multi-algorithm hybrid ensemble and dimensionality reduction methods to mitigate the uncertainty of soil parameter prediction.Based on six machine learning(ML)algorithms,the base learner pool is constructed,and four ensemble methods,Stacking(SG),Blending(BG),Voting regression(VR),and Feature weight linear stacking(FWL),are used for the multi-algorithm ensemble.Furthermore,the importance of permutation is used for feature dimensionality reduction to mitigate the impact of weakly correlated variables on predictive modeling.The results show that the proposed methods are superior to traditional prediction models and base ML models,where FWL is more suitable for modeling with small-sample datasets,and dimensionality reduction can simplify the data structure and reduce the adverse impact of the small-sample effect,which points the way to feature selection for predictive modeling.Based on the ensemble methods,the feature importance of the five primary factors affecting P_(s) is the maximum dry density(31.145%),clay fraction(15.876%),swell percent(15.289%),plasticity index(14%),and optimum moisture content(13.69%),the influence of input parameters on P_(s) is also investigated,in line with the findings of the existing literature.展开更多
Regular fastener detection is necessary to ensure the safety of railways.However,the number of abnormal fasteners is significantly lower than the number of normal fasteners in real railways.Existing supervised inspect...Regular fastener detection is necessary to ensure the safety of railways.However,the number of abnormal fasteners is significantly lower than the number of normal fasteners in real railways.Existing supervised inspectionmethods have insufficient detection ability in cases of imbalanced samples.To solve this problem,we propose an approach based on deep convolutional neural networks(DCNNs),which consists of three stages:fastener localization,abnormal fastener sample generation based on saliency detection,and fastener state inspection.First,a lightweight YOLOv5s is designed to achieve fast and precise localization of fastener regions.Then,the foreground clip region of a fastener image is extracted by the designed fastener saliency detection network(F-SDNet),combined with data augmentation to generate a large number of abnormal fastener samples and balance the number of abnormal and normal samples.Finally,a fastener inspection model called Fastener ResNet-8 is constructed by being trained with the augmented fastener dataset.Results show the effectiveness of our proposed method in solving the problem of sample imbalance in fastener detection.Qualitative and quantitative comparisons show that the proposed F-SDNet outperforms other state-of-the-art methods in clip region extraction,reaching MAE and max F-measure of 0.0215 and 0.9635,respectively.In addition,the FPS of the fastener state inspection model reached 86.2,and the average accuracy reached 98.7%on 614 augmented fastener test sets and 99.9%on 7505 real fastener datasets.展开更多
In practical engineering,the total vertical stress in the soil layer is not constant due to stress diffusion,and varies with time and depth.Therefore,the purpose of this paper is to investigate the effect of stress di...In practical engineering,the total vertical stress in the soil layer is not constant due to stress diffusion,and varies with time and depth.Therefore,the purpose of this paper is to investigate the effect of stress diffusion on the two-dimensional(2D)plane strain consolidation properties of unsaturated soils when the stress varies with time and depth.A series of semi-analytical solutions in terms of excess pore air and water pressures and settlement for 2D plane strain consolidation of unsaturated soils can be derived with the joint use of Laplace transform and Fourier sine series expansion.Then,the inverse Laplace transform of the semi-analytical solution is given in the time domain using a self-programmed code based on Crump’s method.The reliability of the obtained solutions is proved by the degeneration.Finally,the 2D plots of excess pore pressures and the curves of settlement varying with time,considering different physical parameters of unsaturated soil stratum and depth-dependent stress,are depicted and analyzed to study the 2D plane strain consolidation properties of unsaturated soils subjected to the depthdependent stress.展开更多
The basic conditions of Urban rail transit line test operation are mainly based on Basic condition for trial operation of urban rail transit (GB/T30013-2013) the basic conditions of the relevant provisions, but the ...The basic conditions of Urban rail transit line test operation are mainly based on Basic condition for trial operation of urban rail transit (GB/T30013-2013) the basic conditions of the relevant provisions, but the status and standard of trial operation of the basic conditions for assessment of the operating departments are still inadequate, during the three mouth of trial running operations, the specific work of trial operation and exercise are not clear about what this study focuses. This study emphasizes on the methods of operation assessment, through the Analysis Hierarchy Process (AHP) to make the commissioning work carry out smoothly and effectively, making the running exercise Rally, and the emergency and safety follow-up operation process can be quickly handled properly, and it is also helpful to the sustainable development of urban raft transit.展开更多
This paper proposes a cascade deep convolutional neural network to address the loosening detection problem of bolts on axlebox covers.Firstly,an SSD network based on ResNet50 and CBAM module by improving bolt image fe...This paper proposes a cascade deep convolutional neural network to address the loosening detection problem of bolts on axlebox covers.Firstly,an SSD network based on ResNet50 and CBAM module by improving bolt image features is proposed for locating bolts on axlebox covers.And then,theA2-PFN is proposed according to the slender features of the marker lines for extracting more accurate marker lines regions of the bolts.Finally,a rectangular approximationmethod is proposed to regularize themarker line regions asaway tocalculate the angle of themarker line and plot all the angle values into an angle table,according to which the criteria of the angle table can determine whether the bolt with the marker line is in danger of loosening.Meanwhile,our improved algorithm is compared with the pre-improved algorithmin the object localization stage.The results show that our proposed method has a significant improvement in both detection accuracy and detection speed,where ourmAP(IoU=0.75)reaches 0.77 and fps reaches 16.6.And in the saliency detection stage,after qualitative comparison and quantitative comparison,our method significantly outperforms other state-of-the-art methods,where our MAE reaches 0.092,F-measure reaches 0.948 and AUC reaches 0.943.Ultimately,according to the angle table,out of 676 bolt samples,a total of 60 bolts are loose,69 bolts are at risk of loosening,and 547 bolts are tightened.展开更多
Alumped parameter transversevibration model of a composite plate harvester is analyzed via harmonic balance approaches. The harvester is mainly composed of a piezoelectriccircular composite clamped by two steel rings ...Alumped parameter transversevibration model of a composite plate harvester is analyzed via harmonic balance approaches. The harvester is mainly composed of a piezoelectriccircular composite clamped by two steel rings and a proof mass on the plate.The lumped parameter model is a 1.5 degree-of-freedom strongly nonlinear system with a higher order polynomial stiffness. Aharmonic balance approach is developed to analyze the system, and the resulting algebraic equations are numerically solved by adopting an arc-length continuation technique. Anincremental harmonic balance approach is also developedfor the lumped parameter model. The two approaches yieldthe same results.The amplitude-frequency responses produced by the harmonic balance approach are validated by the numericalintegrations and the experimental data. The investigation reveals that there coexist hardening and softening characteristics in the amplitude-frequency response curves under sufficiently large excitations. The harvester with thecoexistenceof hardening and softening nonlinearitiescan outperform not only linear energy harvesters but also typical hardening nonlinear energy harvesters.展开更多
A robust control algorithm is proposed to focus on the non-linearity and variables of the hydraulic press machine with the proportional vatve. The proposed robust controller does not need to design stable compensator ...A robust control algorithm is proposed to focus on the non-linearity and variables of the hydraulic press machine with the proportional vatve. The proposed robust controller does not need to design stable compensator in advance, which is simple in design and has large scope of uncertainty applications. The feedback gains of the proposed robust controller are small, so it is easily implemented in engineering applications. The theoretical and experimental research on the position and speed control of the hydraulic press machine is carried out. The control requirements of the hydraulic press machine during the working process are met in the position and speed at the same time. Experimental results show that the proposed controller has better robustness subject to load variables and adaptability of parameter variations of the hydraulic press machine with the proportional valve.展开更多
This study focuses on the consolidation behavior and mathematical interpretation of partially-saturated ground improved by impervious column inclusion.The constitutive relations for soil skeleton,pore air and pore wat...This study focuses on the consolidation behavior and mathematical interpretation of partially-saturated ground improved by impervious column inclusion.The constitutive relations for soil skeleton,pore air and pore water for partially saturated soils are proposed in the context of partially-saturated ground improved by impervious column inclusion.Settlement equation and dissipation equations of excess pore air/water pressures for a partially saturated improved ground are then derived.The semi-analytical solutions for ground settlement and pore pressure dissipation are then obtained through the Laplace transform and validated by the existing solutions for two special cases in the literature and the numerical results obtained from the finite difference method.A series of parametric studies is finally conducted to investigate the influence of some key factors on consolidation of partially saturated ground improved by impervious column inclusion.Based on the parametric study,it can be found that a higher value of the area replacement ratio or modulus of the pile results in a longer dissipation time of excess pore air pressure(PAP),a shorter dissipation time of excess pore water pressure(PWP),and a lower normalized settlement.展开更多
The free vibration analysis of cylindrical helical springs is carried out by means of an analytical study. In the governing equations of the motion of the springs, all displacement functions are defined at the centroi...The free vibration analysis of cylindrical helical springs is carried out by means of an analytical study. In the governing equations of the motion of the springs, all displacement functions are defined at the centroid axis and also the effects of the rotational inertia, axial and shear deformations are included in the proposed model. Explicit analytical expressions which give the vibrating mode shapes are derived by rigorous application of the symbolic computing package MATHEMATICA and a process of searching is used to determine the exact natural frequencies. Numerical examples are provided for fixed-fixed boundary conditions. The free vibrational pa- rameters are chosen as the number of coils (n = 4- 14), the helix pitch angle (a = 5 - 30°) and as the ratio of the diameters of the cylinder and the wire (D/d = 4 - 18) in a wide range. Validation of the proposed model has been achieved through comparison with a finite element model using two-node standard beam elements and the results available in published literature, which in these cases indicates a very good correlation.展开更多
The acoustic propagation characteristics of axisymmetric waves have been widely used in leak detection of fluid-filled pipes.The related acoustic methods and equipment are gradually coming to the market,but their theo...The acoustic propagation characteristics of axisymmetric waves have been widely used in leak detection of fluid-filled pipes.The related acoustic methods and equipment are gradually coming to the market,but their theoretical research obviously lags behind the field practice,which seriously restricts the breakthrough and innovation of this technology.Based on the fully three-dimensional effect of the surrounding medium,a coupled motion equation of axisymmetric wave of buried liquid-filled pipes is derived in detail,a contact coefficient is used to express the coupling strength between surrounding medium and pipe,then,a general equation of motion was derived which contain the pipe soil lubrication contact,pipe soil compact contact and pipe in water and air.Finally,the corresponding numerical calculation model is established and solved used numerical method.The shear effects of the surrounding medium and the shear effects at the interface between surrounding medium and pipe are discussed in detail.The output indicates that the surrounding medium is to add mass to the pipe wall,but the shear effect is to add stiffness.With the consideration of the contact strength between the pipe and the medium,the additional mass and the pipe wall will resonate at a specific frequency,resulting in a significant increase in the radiation wave to the surrounding medium.The research contents have great guiding effect on the theory of acoustic wave propagation and the engineering application of leak detection technology in the buried pipe.展开更多
We investigate the three-dimensional (3D) scattering problem of an incident plane shear horizontal wave by a partly through-thickness hole in an isotropic plate, in which the Lamb wave modes are also included due to...We investigate the three-dimensional (3D) scattering problem of an incident plane shear horizontal wave by a partly through-thickness hole in an isotropic plate, in which the Lamb wave modes are also included due to the mode conversions by the scattering obstacle in the 3D problem. An analytical model is presented such that the wave fields are expanded in all of propagating and evanescent SH modes and Lamb modes, and the scattered far-fields of three fundamental guided wave modes are analyzed numerically for different sizes of the holes and frequencies. The numerical results are verified by comparing with those obtained by using the approximate Poisson/Mindlin plate model for small hole radius and low frequency. It is also found that the scattering patterns are different from those of the SO wave incidence. Our work is useful for quantitative evaluation of the plate-like structure by ultrasonic guided waves.展开更多
In case of the failure of Automatic Train Control (ATC), it is necessary to organize the train by Telephone Block System. In this paper, the APP system is built on the basis of local area network, which is focus on ...In case of the failure of Automatic Train Control (ATC), it is necessary to organize the train by Telephone Block System. In this paper, the APP system is built on the basis of local area network, which is focus on the simulation station map of Telephone Block System, Wain operation, equipment failure. This APP can vividly simulate the application of Telephone Block System in train urban transit organization.展开更多
November 2012, the CPC eighteen report makes clear the "three advocacy" that is "promote a prosperous, democratic, civilized, harmonious, advocating freedom, equality, justice, rule of law, promote patriotism, dedi...November 2012, the CPC eighteen report makes clear the "three advocacy" that is "promote a prosperous, democratic, civilized, harmonious, advocating freedom, equality, justice, rule of law, promote patriotism, dedication, integrity, kindness, and actively cultivate community ism core values". Shanghai University of Engineering Science actively exchange, in consultation with Chen Yun Memorial. Chen Yun Memorial becomes education base of Party spirit of Shanghai University of Engineering Science in January 2012. The two sides mutual assistance, resource sharing, innovation, and collaborate on a series of patriotic education, spirit of education, the socialist core value education as the core of ideological education. Make full use of Shanghai University of Engineering Science Chen Yun Memorial rich red cultural resources, cultural heritage and innovation red while actively practice the socialist core values, help young party members to establish a correct outlook on life and values, enhance the spirit of patriotism of young party members to enhance awareness of young party members in the party spirit.展开更多
The semi-analytical solutions to Fredlund and Hasan's one-dimensional (1D) consolidation for unsaturated soils with a semi-permeable drainage boundary are pre- seated. Two variables are introduced to transform the ...The semi-analytical solutions to Fredlund and Hasan's one-dimensional (1D) consolidation for unsaturated soils with a semi-permeable drainage boundary are pre- seated. Two variables are introduced to transform the two coupled governing equations of pore-water and pore-air pressures into an equivalent set of partial differential equations (PDFs), which are easily solved by the Laplace transform method. Then, the pore-water pressure, pore-air pressure, and soil settlement are obtained in the Laplace domain. The Crump method is adopted to perform the inverse Laplace transform in order to obtain the semi-analytical solutions in the time domain. It is shown that the proposed solutions are more applicable to various types of boundary conditions and agree well with the existing solutions from the literature. Several numerical examples are provided to investigate the consolidation behavior of an unsaturated single-layer soil with single, double, mixed, and semi-permeable drainage boundaries. The changes in the pore-air and pore-water pres- sures and the soil settlement with the time factor at different values of the semi-permeable drainage boundary parameters are illustrated. In addition, parametric studies are con- ducted on the pore-air and pore-water pressures at different ratios (the air permeability coefficient to the water permeability coefficient) and depths.展开更多
In this paper, we investigate the diffraction tomography for quantitative imaging damages of partly through-thickness holes with various shapes in isotropic plates by using converted and non-converted scattered Lamb w...In this paper, we investigate the diffraction tomography for quantitative imaging damages of partly through-thickness holes with various shapes in isotropic plates by using converted and non-converted scattered Lamb waves generated nu- merically. Finite element simulations are carried out to provide the scattered wave data. The validity of the finite element model is confirmed by the comparison of scattering directivity pattern (SDP) of circle blind hole damage between the finite element simulations and the analytical results. The imaging method is based on a theoretical relation between the one-dimensional (1D) Fourier transform of the scattered projection and two-dimensional (2D) spatial Fourier transform of the scattering object. A quantitative image of the damage is obtained by carrying out the 2D inverse Fourier transform of the scattering object. The proposed approach employs a circle transducer network containing forward and backward projections, which lead to so-called transmission mode (TMDT) and reflection mode diffraction tomography (RMDT), respectively. The reconstructed results of the two projections for a non-converted SO scattered mode are investigated to illuminate the influence of the scattering field data. The results show that Lamb wave diffraction tomography using the combination of TMDT and RMDT improves the imaging effect compared with by using only the TMDT or RMDT. The scattered data of the converted A0 mode are also used to assess the performance of the diffraction tomography method. It is found that the circle and elliptical shaped damages can still be reasonably identified from the reconstructed images while the reconstructed results of other complex shaped damages like crisscross rectangles and racecourse are relatively poor.展开更多
A method of combining Green’s function retrieval theory and ultrasonic array imaging using Lamb waves is presented to solve near filed defects in thin aluminum plates.The defects are close to the ultrasonic phased ar...A method of combining Green’s function retrieval theory and ultrasonic array imaging using Lamb waves is presented to solve near filed defects in thin aluminum plates.The defects are close to the ultrasonic phased array and satisfy the near field calculation formula.Near field acoustic information of defects is obscured by the nonlinear effects of initial wave signal in a directly acquired response using the full matrix capture mode.A reconstructed full matrix of inter-element responses is produced from cross-correlation of directly received ultrasonic signals between sensor pairs.This new matrix eliminates the nonlinear interference and restores the near-field defect information.The topological imaging method that was developed in recent ultrasonic inspection is used for displaying the scatterers.The experiments are conducted on both thin aluminum plates containing two and four defects, respectively.The results show that these defects are clearly identified when using a reconstructed full matrix.The spatial resolution is equal to about one wavelength of the selectively excited mode and the identifiable defect is about one fifth of the wavelength.However, in a conventional directly captured image,the images of defects overlap together and cannot be distinguished.The proposed method reduces the background noise and allows for effective topological imaging of near field defects.展开更多
In order to understand the mechanism by which a pantograph can generate aerodynamic noise and grasp its farfield characteristics,a simplified double-strip pantograph is analyzed numerically.Firstly,the unsteady flow f...In order to understand the mechanism by which a pantograph can generate aerodynamic noise and grasp its farfield characteristics,a simplified double-strip pantograph is analyzed numerically.Firstly,the unsteady flow field around the pantograph is simulated in the frame of a large eddy simulation(LES)technique.Then the location of the main noise source is determined using surface fluctuating pressure data and the vortex structures in the pantograph flow field are analyzed by means of the Q-criterion.Based on this,the relationship between the wake vortex and the intensity of the aerodynamic sound source on the pantograph surface is discussed.Finally,the far-field aerodynamic noise is calculated by means of the Ffowcs Williams-Hawkings(FW-H)equation,and the contribution of each component to total noise and the frequency spectrum characteristics are analyzed.The results show that on the pantograph surface where vortex shedding or interaction with the wake of upstream components occurs,the pressure fluctuation is more intense,resulting in strong dipole sources.The far-field aerodynamic noise energy of the pantograph is mainly concentrated in the frequency band below 1500 Hz.The peaks in the frequency spectrum are mainly generated by the base frame,balance arm and the rear strip,which are also the main contributors to the aerodynamic noise.展开更多
A novel direct-drive type wind power generation system based on hybrid excitation synchronous machine(HESM)is introduced in this paper.The generator is connected to an uncontrollable rectifier,and a fully controlled...A novel direct-drive type wind power generation system based on hybrid excitation synchronous machine(HESM)is introduced in this paper.The generator is connected to an uncontrollable rectifier,and a fully controlled voltage-sourceinverter is used to connect the system to utility grid.An intermediate DC bus exists between the rectifier and inverter.A new control strategy is proposed which achieves the maximum power point tracking(MPPT) with the control of excitation current of HESM and stabilizes the DC link voltage with the control of inverter output current simultaneously.Specially-designed buck circuit is used to control the excitation current of HESM,and grid voltage-oriented vector control strategy is employed to realize the decoupling of the inverter output power.Simulation results and experiment in 3 kW lab prototype show an excellent static and dynamic performance of the proposed system.展开更多
Passengers’demands for riding comfort have been getting higher and higher as the high-speed railway develops.Scientific methods to analyze the interior noise of the high-speed train are needed and the operational tra...Passengers’demands for riding comfort have been getting higher and higher as the high-speed railway develops.Scientific methods to analyze the interior noise of the high-speed train are needed and the operational transfer path analysis(OTPA)method provides a theoretical basis and guidance for the noise control of the train and overcomes the shortcomings of the traditional method,which has high test efficiency and can be carried out during the working state of the targeted machine.The OTPA model is established from the aspects of“path reference point-target point”and“sound source reference point-target point”.As for the mechanism of the noise transmission path,an assumption is made that the direct sound propagation is ignored,and the symmetric sound source and the symmetric path are merged.Using the operational test data and the OTPA method,combined with the results of spherical array sound source identification,the path contribution and sound source contribution of the interior noise are analyzed,respectively,from aspects of the total value and spectrum.The results show that the OTPA conforms to the calculation results of the spherical array sound source identification.At low speed,the contribution of the floor path and the contribution of the bogie sources are dominant.When the speed is greater than 300 km/h,the contribution of the roof path is dominant.Moreover,for the carriage with a pantograph,the lifted pantograph is an obvious source.The noise from the exterior sources of the train transfer into the interior mainly through the form of structural excitation,and the contribution of air excitation is non-significant.Certain analyses of train parts provide guides for the interior noise control.展开更多
基金great gratitude to National Key Research and Development Project(Grant No.2019YFC1509800)for their financial supportNational Nature Science Foundation of China(Grant No.12172211)for their financial support.
文摘Geotechnical engineering data are usually small-sample and high-dimensional,which brings a lot of challenges in predictive modeling.This paper uses a typical high-dimensional and small-sample swell pressure(P_(s))dataset to explore the possibility of using multi-algorithm hybrid ensemble and dimensionality reduction methods to mitigate the uncertainty of soil parameter prediction.Based on six machine learning(ML)algorithms,the base learner pool is constructed,and four ensemble methods,Stacking(SG),Blending(BG),Voting regression(VR),and Feature weight linear stacking(FWL),are used for the multi-algorithm ensemble.Furthermore,the importance of permutation is used for feature dimensionality reduction to mitigate the impact of weakly correlated variables on predictive modeling.The results show that the proposed methods are superior to traditional prediction models and base ML models,where FWL is more suitable for modeling with small-sample datasets,and dimensionality reduction can simplify the data structure and reduce the adverse impact of the small-sample effect,which points the way to feature selection for predictive modeling.Based on the ensemble methods,the feature importance of the five primary factors affecting P_(s) is the maximum dry density(31.145%),clay fraction(15.876%),swell percent(15.289%),plasticity index(14%),and optimum moisture content(13.69%),the influence of input parameters on P_(s) is also investigated,in line with the findings of the existing literature.
基金supported in part by the National Natural Science Foundation of China (Grant Nos.51975347 and 51907117)in part by the Shanghai Science and Technology Program (Grant No.22010501600).
文摘Regular fastener detection is necessary to ensure the safety of railways.However,the number of abnormal fasteners is significantly lower than the number of normal fasteners in real railways.Existing supervised inspectionmethods have insufficient detection ability in cases of imbalanced samples.To solve this problem,we propose an approach based on deep convolutional neural networks(DCNNs),which consists of three stages:fastener localization,abnormal fastener sample generation based on saliency detection,and fastener state inspection.First,a lightweight YOLOv5s is designed to achieve fast and precise localization of fastener regions.Then,the foreground clip region of a fastener image is extracted by the designed fastener saliency detection network(F-SDNet),combined with data augmentation to generate a large number of abnormal fastener samples and balance the number of abnormal and normal samples.Finally,a fastener inspection model called Fastener ResNet-8 is constructed by being trained with the augmented fastener dataset.Results show the effectiveness of our proposed method in solving the problem of sample imbalance in fastener detection.Qualitative and quantitative comparisons show that the proposed F-SDNet outperforms other state-of-the-art methods in clip region extraction,reaching MAE and max F-measure of 0.0215 and 0.9635,respectively.In addition,the FPS of the fastener state inspection model reached 86.2,and the average accuracy reached 98.7%on 614 augmented fastener test sets and 99.9%on 7505 real fastener datasets.
基金supported by the National Natural Science Foundation of China(Grant Nos.12172211 and 41630633)the National Key Research and Development Project of China(Grant No.2019YFC1509800).
文摘In practical engineering,the total vertical stress in the soil layer is not constant due to stress diffusion,and varies with time and depth.Therefore,the purpose of this paper is to investigate the effect of stress diffusion on the two-dimensional(2D)plane strain consolidation properties of unsaturated soils when the stress varies with time and depth.A series of semi-analytical solutions in terms of excess pore air and water pressures and settlement for 2D plane strain consolidation of unsaturated soils can be derived with the joint use of Laplace transform and Fourier sine series expansion.Then,the inverse Laplace transform of the semi-analytical solution is given in the time domain using a self-programmed code based on Crump’s method.The reliability of the obtained solutions is proved by the degeneration.Finally,the 2D plots of excess pore pressures and the curves of settlement varying with time,considering different physical parameters of unsaturated soil stratum and depth-dependent stress,are depicted and analyzed to study the 2D plane strain consolidation properties of unsaturated soils subjected to the depthdependent stress.
文摘The basic conditions of Urban rail transit line test operation are mainly based on Basic condition for trial operation of urban rail transit (GB/T30013-2013) the basic conditions of the relevant provisions, but the status and standard of trial operation of the basic conditions for assessment of the operating departments are still inadequate, during the three mouth of trial running operations, the specific work of trial operation and exercise are not clear about what this study focuses. This study emphasizes on the methods of operation assessment, through the Analysis Hierarchy Process (AHP) to make the commissioning work carry out smoothly and effectively, making the running exercise Rally, and the emergency and safety follow-up operation process can be quickly handled properly, and it is also helpful to the sustainable development of urban raft transit.
文摘This paper proposes a cascade deep convolutional neural network to address the loosening detection problem of bolts on axlebox covers.Firstly,an SSD network based on ResNet50 and CBAM module by improving bolt image features is proposed for locating bolts on axlebox covers.And then,theA2-PFN is proposed according to the slender features of the marker lines for extracting more accurate marker lines regions of the bolts.Finally,a rectangular approximationmethod is proposed to regularize themarker line regions asaway tocalculate the angle of themarker line and plot all the angle values into an angle table,according to which the criteria of the angle table can determine whether the bolt with the marker line is in danger of loosening.Meanwhile,our improved algorithm is compared with the pre-improved algorithmin the object localization stage.The results show that our proposed method has a significant improvement in both detection accuracy and detection speed,where ourmAP(IoU=0.75)reaches 0.77 and fps reaches 16.6.And in the saliency detection stage,after qualitative comparison and quantitative comparison,our method significantly outperforms other state-of-the-art methods,where our MAE reaches 0.092,F-measure reaches 0.948 and AUC reaches 0.943.Ultimately,according to the angle table,out of 676 bolt samples,a total of 60 bolts are loose,69 bolts are at risk of loosening,and 547 bolts are tightened.
基金Project(1834201)supported by the National Natural Science Foundation of ChinaProject(2020YJ0076)supported by the Sichuan Science and Technology Program,China+1 种基金Project(2682020CX35)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(2020M673280)supported by the Postdoctoral Science Foundation,China。
基金This work was supported by the National Natural Science Foundation of China (Grants 51575334 and 11802170)the State Key Program of National Natural Science Foundation of China (Grant 11232009)+1 种基金the Key Research Projects of Shanghai Science and Technology Commission (Grant 18010500100)the Innovation Program of Shanghai Municipal Education Commission (Grant 2017-01-07-00-09-E00019).
文摘Alumped parameter transversevibration model of a composite plate harvester is analyzed via harmonic balance approaches. The harvester is mainly composed of a piezoelectriccircular composite clamped by two steel rings and a proof mass on the plate.The lumped parameter model is a 1.5 degree-of-freedom strongly nonlinear system with a higher order polynomial stiffness. Aharmonic balance approach is developed to analyze the system, and the resulting algebraic equations are numerically solved by adopting an arc-length continuation technique. Anincremental harmonic balance approach is also developedfor the lumped parameter model. The two approaches yieldthe same results.The amplitude-frequency responses produced by the harmonic balance approach are validated by the numericalintegrations and the experimental data. The investigation reveals that there coexist hardening and softening characteristics in the amplitude-frequency response curves under sufficiently large excitations. The harvester with thecoexistenceof hardening and softening nonlinearitiescan outperform not only linear energy harvesters but also typical hardening nonlinear energy harvesters.
基金Shanghai Municipal Natural Science Foundation of China (No.06111003)
文摘A robust control algorithm is proposed to focus on the non-linearity and variables of the hydraulic press machine with the proportional vatve. The proposed robust controller does not need to design stable compensator in advance, which is simple in design and has large scope of uncertainty applications. The feedback gains of the proposed robust controller are small, so it is easily implemented in engineering applications. The theoretical and experimental research on the position and speed control of the hydraulic press machine is carried out. The control requirements of the hydraulic press machine during the working process are met in the position and speed at the same time. Experimental results show that the proposed controller has better robustness subject to load variables and adaptability of parameter variations of the hydraulic press machine with the proportional valve.
基金The financial support from National Natural Science Foundation of China (Grant Nos. 12172211 and 52078021)Shanghai Key Laboratory of Rail Infrastructure Durability and System Safety, China (Grant No. R201904)
文摘This study focuses on the consolidation behavior and mathematical interpretation of partially-saturated ground improved by impervious column inclusion.The constitutive relations for soil skeleton,pore air and pore water for partially saturated soils are proposed in the context of partially-saturated ground improved by impervious column inclusion.Settlement equation and dissipation equations of excess pore air/water pressures for a partially saturated improved ground are then derived.The semi-analytical solutions for ground settlement and pore pressure dissipation are then obtained through the Laplace transform and validated by the existing solutions for two special cases in the literature and the numerical results obtained from the finite difference method.A series of parametric studies is finally conducted to investigate the influence of some key factors on consolidation of partially saturated ground improved by impervious column inclusion.Based on the parametric study,it can be found that a higher value of the area replacement ratio or modulus of the pile results in a longer dissipation time of excess pore air pressure(PAP),a shorter dissipation time of excess pore water pressure(PWP),and a lower normalized settlement.
基金supported by the National Natural Science Foundation of China (No.10572105)the Shanghai Leading Academic Discipline Project (No.B302)
文摘The free vibration analysis of cylindrical helical springs is carried out by means of an analytical study. In the governing equations of the motion of the springs, all displacement functions are defined at the centroid axis and also the effects of the rotational inertia, axial and shear deformations are included in the proposed model. Explicit analytical expressions which give the vibrating mode shapes are derived by rigorous application of the symbolic computing package MATHEMATICA and a process of searching is used to determine the exact natural frequencies. Numerical examples are provided for fixed-fixed boundary conditions. The free vibrational pa- rameters are chosen as the number of coils (n = 4- 14), the helix pitch angle (a = 5 - 30°) and as the ratio of the diameters of the cylinder and the wire (D/d = 4 - 18) in a wide range. Validation of the proposed model has been achieved through comparison with a finite element model using two-node standard beam elements and the results available in published literature, which in these cases indicates a very good correlation.
基金National Natural Science Foundation of China(Grant No.11774378).
文摘The acoustic propagation characteristics of axisymmetric waves have been widely used in leak detection of fluid-filled pipes.The related acoustic methods and equipment are gradually coming to the market,but their theoretical research obviously lags behind the field practice,which seriously restricts the breakthrough and innovation of this technology.Based on the fully three-dimensional effect of the surrounding medium,a coupled motion equation of axisymmetric wave of buried liquid-filled pipes is derived in detail,a contact coefficient is used to express the coupling strength between surrounding medium and pipe,then,a general equation of motion was derived which contain the pipe soil lubrication contact,pipe soil compact contact and pipe in water and air.Finally,the corresponding numerical calculation model is established and solved used numerical method.The shear effects of the surrounding medium and the shear effects at the interface between surrounding medium and pipe are discussed in detail.The output indicates that the surrounding medium is to add mass to the pipe wall,but the shear effect is to add stiffness.With the consideration of the contact strength between the pipe and the medium,the additional mass and the pipe wall will resonate at a specific frequency,resulting in a significant increase in the radiation wave to the surrounding medium.The research contents have great guiding effect on the theory of acoustic wave propagation and the engineering application of leak detection technology in the buried pipe.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11474195,11274226,51478258 and 51405287
文摘We investigate the three-dimensional (3D) scattering problem of an incident plane shear horizontal wave by a partly through-thickness hole in an isotropic plate, in which the Lamb wave modes are also included due to the mode conversions by the scattering obstacle in the 3D problem. An analytical model is presented such that the wave fields are expanded in all of propagating and evanescent SH modes and Lamb modes, and the scattered far-fields of three fundamental guided wave modes are analyzed numerically for different sizes of the holes and frequencies. The numerical results are verified by comparing with those obtained by using the approximate Poisson/Mindlin plate model for small hole radius and low frequency. It is also found that the scattering patterns are different from those of the SO wave incidence. Our work is useful for quantitative evaluation of the plate-like structure by ultrasonic guided waves.
文摘In case of the failure of Automatic Train Control (ATC), it is necessary to organize the train by Telephone Block System. In this paper, the APP system is built on the basis of local area network, which is focus on the simulation station map of Telephone Block System, Wain operation, equipment failure. This APP can vividly simulate the application of Telephone Block System in train urban transit organization.
文摘November 2012, the CPC eighteen report makes clear the "three advocacy" that is "promote a prosperous, democratic, civilized, harmonious, advocating freedom, equality, justice, rule of law, promote patriotism, dedication, integrity, kindness, and actively cultivate community ism core values". Shanghai University of Engineering Science actively exchange, in consultation with Chen Yun Memorial. Chen Yun Memorial becomes education base of Party spirit of Shanghai University of Engineering Science in January 2012. The two sides mutual assistance, resource sharing, innovation, and collaborate on a series of patriotic education, spirit of education, the socialist core value education as the core of ideological education. Make full use of Shanghai University of Engineering Science Chen Yun Memorial rich red cultural resources, cultural heritage and innovation red while actively practice the socialist core values, help young party members to establish a correct outlook on life and values, enhance the spirit of patriotism of young party members to enhance awareness of young party members in the party spirit.
基金Project supported by the National Natural Science Foundation of China(Nos.41630633 and11672172)
文摘The semi-analytical solutions to Fredlund and Hasan's one-dimensional (1D) consolidation for unsaturated soils with a semi-permeable drainage boundary are pre- seated. Two variables are introduced to transform the two coupled governing equations of pore-water and pore-air pressures into an equivalent set of partial differential equations (PDFs), which are easily solved by the Laplace transform method. Then, the pore-water pressure, pore-air pressure, and soil settlement are obtained in the Laplace domain. The Crump method is adopted to perform the inverse Laplace transform in order to obtain the semi-analytical solutions in the time domain. It is shown that the proposed solutions are more applicable to various types of boundary conditions and agree well with the existing solutions from the literature. Several numerical examples are provided to investigate the consolidation behavior of an unsaturated single-layer soil with single, double, mixed, and semi-permeable drainage boundaries. The changes in the pore-air and pore-water pres- sures and the soil settlement with the time factor at different values of the semi-permeable drainage boundary parameters are illustrated. In addition, parametric studies are con- ducted on the pore-air and pore-water pressures at different ratios (the air permeability coefficient to the water permeability coefficient) and depths.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11474195,11274226,11674214,and 51478258)
文摘In this paper, we investigate the diffraction tomography for quantitative imaging damages of partly through-thickness holes with various shapes in isotropic plates by using converted and non-converted scattered Lamb waves generated nu- merically. Finite element simulations are carried out to provide the scattered wave data. The validity of the finite element model is confirmed by the comparison of scattering directivity pattern (SDP) of circle blind hole damage between the finite element simulations and the analytical results. The imaging method is based on a theoretical relation between the one-dimensional (1D) Fourier transform of the scattered projection and two-dimensional (2D) spatial Fourier transform of the scattering object. A quantitative image of the damage is obtained by carrying out the 2D inverse Fourier transform of the scattering object. The proposed approach employs a circle transducer network containing forward and backward projections, which lead to so-called transmission mode (TMDT) and reflection mode diffraction tomography (RMDT), respectively. The reconstructed results of the two projections for a non-converted SO scattered mode are investigated to illuminate the influence of the scattering field data. The results show that Lamb wave diffraction tomography using the combination of TMDT and RMDT improves the imaging effect compared with by using only the TMDT or RMDT. The scattered data of the converted A0 mode are also used to assess the performance of the diffraction tomography method. It is found that the circle and elliptical shaped damages can still be reasonably identified from the reconstructed images while the reconstructed results of other complex shaped damages like crisscross rectangles and racecourse are relatively poor.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11674214 and 11874255)
文摘A method of combining Green’s function retrieval theory and ultrasonic array imaging using Lamb waves is presented to solve near filed defects in thin aluminum plates.The defects are close to the ultrasonic phased array and satisfy the near field calculation formula.Near field acoustic information of defects is obscured by the nonlinear effects of initial wave signal in a directly acquired response using the full matrix capture mode.A reconstructed full matrix of inter-element responses is produced from cross-correlation of directly received ultrasonic signals between sensor pairs.This new matrix eliminates the nonlinear interference and restores the near-field defect information.The topological imaging method that was developed in recent ultrasonic inspection is used for displaying the scatterers.The experiments are conducted on both thin aluminum plates containing two and four defects, respectively.The results show that these defects are clearly identified when using a reconstructed full matrix.The spatial resolution is equal to about one wavelength of the selectively excited mode and the identifiable defect is about one fifth of the wavelength.However, in a conventional directly captured image,the images of defects overlap together and cannot be distinguished.The proposed method reduces the background noise and allows for effective topological imaging of near field defects.
基金This work is funded by National key R&D Program China(2016YFE0205200)National Natural Foundation of China(U1834201).
文摘In order to understand the mechanism by which a pantograph can generate aerodynamic noise and grasp its farfield characteristics,a simplified double-strip pantograph is analyzed numerically.Firstly,the unsteady flow field around the pantograph is simulated in the frame of a large eddy simulation(LES)technique.Then the location of the main noise source is determined using surface fluctuating pressure data and the vortex structures in the pantograph flow field are analyzed by means of the Q-criterion.Based on this,the relationship between the wake vortex and the intensity of the aerodynamic sound source on the pantograph surface is discussed.Finally,the far-field aerodynamic noise is calculated by means of the Ffowcs Williams-Hawkings(FW-H)equation,and the contribution of each component to total noise and the frequency spectrum characteristics are analyzed.The results show that on the pantograph surface where vortex shedding or interaction with the wake of upstream components occurs,the pressure fluctuation is more intense,resulting in strong dipole sources.The far-field aerodynamic noise energy of the pantograph is mainly concentrated in the frequency band below 1500 Hz.The peaks in the frequency spectrum are mainly generated by the base frame,balance arm and the rear strip,which are also the main contributors to the aerodynamic noise.
基金Project supported by Delta Power Electronic Science and Education Development (Grant No.DRES2007002)
文摘A novel direct-drive type wind power generation system based on hybrid excitation synchronous machine(HESM)is introduced in this paper.The generator is connected to an uncontrollable rectifier,and a fully controlled voltage-sourceinverter is used to connect the system to utility grid.An intermediate DC bus exists between the rectifier and inverter.A new control strategy is proposed which achieves the maximum power point tracking(MPPT) with the control of excitation current of HESM and stabilizes the DC link voltage with the control of inverter output current simultaneously.Specially-designed buck circuit is used to control the excitation current of HESM,and grid voltage-oriented vector control strategy is employed to realize the decoupling of the inverter output power.Simulation results and experiment in 3 kW lab prototype show an excellent static and dynamic performance of the proposed system.
文摘Passengers’demands for riding comfort have been getting higher and higher as the high-speed railway develops.Scientific methods to analyze the interior noise of the high-speed train are needed and the operational transfer path analysis(OTPA)method provides a theoretical basis and guidance for the noise control of the train and overcomes the shortcomings of the traditional method,which has high test efficiency and can be carried out during the working state of the targeted machine.The OTPA model is established from the aspects of“path reference point-target point”and“sound source reference point-target point”.As for the mechanism of the noise transmission path,an assumption is made that the direct sound propagation is ignored,and the symmetric sound source and the symmetric path are merged.Using the operational test data and the OTPA method,combined with the results of spherical array sound source identification,the path contribution and sound source contribution of the interior noise are analyzed,respectively,from aspects of the total value and spectrum.The results show that the OTPA conforms to the calculation results of the spherical array sound source identification.At low speed,the contribution of the floor path and the contribution of the bogie sources are dominant.When the speed is greater than 300 km/h,the contribution of the roof path is dominant.Moreover,for the carriage with a pantograph,the lifted pantograph is an obvious source.The noise from the exterior sources of the train transfer into the interior mainly through the form of structural excitation,and the contribution of air excitation is non-significant.Certain analyses of train parts provide guides for the interior noise control.