Erosion is an important issue in soil science and is related to many environmental problems,such as soil erosion and sediment transport.Establishing a simulation model suitable for soil erosion prediction is of great ...Erosion is an important issue in soil science and is related to many environmental problems,such as soil erosion and sediment transport.Establishing a simulation model suitable for soil erosion prediction is of great significance not only to accurately predict the process of soil separation by runoff,but also improve the physical model of soil erosion.In this study,we develop a graphic processing unit(GPU)-based numerical model that combines two-dimensional(2D)hydrodynamic and Green-Ampt(G-A)infiltration modelling to simulate soil erosion.A Godunov-type scheme on a uniform and structured square grid is then generated to solve the relevant shallow water equations(SWEs).The highlight of this study is the use of GPU-based acceleration technology to enable numerical models to simulate slope and watershed erosion in an efficient and high-resolution manner.The results show that the hydrodynamic model performs well in simulating soil erosion process.Soil erosion is studied by conducting calculation verification at the slope and basin scales.The first case involves simulating soil erosion process of a slope surface under indoor artificial rainfall conditions from 0 to 1000 s,and there is a good agreement between the simulated values and the measured values for the runoff velocity.The second case is a river basin experiment(Coquet River Basin)that involves watershed erosion.Simulations of the erosion depth change and erosion cumulative amount of the basin during a period of 1-40 h show an elevation difference of erosion at 0.5-3.0 m,especially during the period of 20-30 h.Nine cross sections in the basin are selected for simulation and the results reveal that the depth of erosion change value ranges from-0.86 to-2.79 m and the depth of deposition change value varies from 0.38 to 1.02 m.The findings indicate that the developed GPU-based hydrogeomorphological model can reproduce soil erosion processes.These results are valuable for rainfall runoff and soil erosion predictions on rilled hillslopes and river basins.展开更多
Based on the theory of Housner, the transverse seismic response of beam aqueduct considering fluid-structure coupling is established. With the variation of aqueduct cross-section ratio of depth to width, the aqueduct ...Based on the theory of Housner, the transverse seismic response of beam aqueduct considering fluid-structure coupling is established. With the variation of aqueduct cross-section ratio of depth to width, the aqueduct transverse seismic response change. The transverse seismic response of a large-scale aqueduct in several work condition are calculated. It shows that the transverse seismic response is greatly influenced by the water mass in the aqueduct, but the shaking water play a TLD role. ff the whole water is appended aqueduct body, it will magnify seismic inertia action. When aqueduct cross-section is selected, the influence of ratio of depth and width to pier seismic response should be considered in order to reduce seismic action.展开更多
To better understand the adsorption and transport of Cd2+ in soils, column experiments were conducted with various soils and inflow solutions with different pH values. Breakthrough curves (BTCs) of the column tests we...To better understand the adsorption and transport of Cd2+ in soils, column experiments were conducted with various soils and inflow solutions with different pH values. Breakthrough curves (BTCs) of the column tests were fitted using both the equilibrium and non-equilibrium models installed in the program of CXTFIT. Results showed that the equilibrium model fitted most of BTCs reasonably well. Values of the retardation factor (R) and the distribution coefficient (kd) for Cd2+ adsorption and transport increased with increasing pH values of the inflow solution and of the soil. However, the clay content was not a key factor to affect R and kd for Cd2+ adsorption and transport. The average dispersivity values and the variance values of dispersivity increased with increasing clay content of the soils.展开更多
基金This research was funded by the National Natural Science Foundation of China(52079106,52009104,51609199)the National Key Research and Development Program of China(2016YFC0402704).
文摘Erosion is an important issue in soil science and is related to many environmental problems,such as soil erosion and sediment transport.Establishing a simulation model suitable for soil erosion prediction is of great significance not only to accurately predict the process of soil separation by runoff,but also improve the physical model of soil erosion.In this study,we develop a graphic processing unit(GPU)-based numerical model that combines two-dimensional(2D)hydrodynamic and Green-Ampt(G-A)infiltration modelling to simulate soil erosion.A Godunov-type scheme on a uniform and structured square grid is then generated to solve the relevant shallow water equations(SWEs).The highlight of this study is the use of GPU-based acceleration technology to enable numerical models to simulate slope and watershed erosion in an efficient and high-resolution manner.The results show that the hydrodynamic model performs well in simulating soil erosion process.Soil erosion is studied by conducting calculation verification at the slope and basin scales.The first case involves simulating soil erosion process of a slope surface under indoor artificial rainfall conditions from 0 to 1000 s,and there is a good agreement between the simulated values and the measured values for the runoff velocity.The second case is a river basin experiment(Coquet River Basin)that involves watershed erosion.Simulations of the erosion depth change and erosion cumulative amount of the basin during a period of 1-40 h show an elevation difference of erosion at 0.5-3.0 m,especially during the period of 20-30 h.Nine cross sections in the basin are selected for simulation and the results reveal that the depth of erosion change value ranges from-0.86 to-2.79 m and the depth of deposition change value varies from 0.38 to 1.02 m.The findings indicate that the developed GPU-based hydrogeomorphological model can reproduce soil erosion processes.These results are valuable for rainfall runoff and soil erosion predictions on rilled hillslopes and river basins.
基金National Natural Science Foundation of China (50279024)Lanzhou Jiaotong University Qinglan Talented Person Fund Project (QL-05-13A).
文摘Based on the theory of Housner, the transverse seismic response of beam aqueduct considering fluid-structure coupling is established. With the variation of aqueduct cross-section ratio of depth to width, the aqueduct transverse seismic response change. The transverse seismic response of a large-scale aqueduct in several work condition are calculated. It shows that the transverse seismic response is greatly influenced by the water mass in the aqueduct, but the shaking water play a TLD role. ff the whole water is appended aqueduct body, it will magnify seismic inertia action. When aqueduct cross-section is selected, the influence of ratio of depth and width to pier seismic response should be considered in order to reduce seismic action.
基金Supported by the National Natural Science Foundation of China (Grant No. 50839002)the National Hi-Tech Research and Development Program of China ("863" Project) (Grant No. 2006AA100209-04)
文摘To better understand the adsorption and transport of Cd2+ in soils, column experiments were conducted with various soils and inflow solutions with different pH values. Breakthrough curves (BTCs) of the column tests were fitted using both the equilibrium and non-equilibrium models installed in the program of CXTFIT. Results showed that the equilibrium model fitted most of BTCs reasonably well. Values of the retardation factor (R) and the distribution coefficient (kd) for Cd2+ adsorption and transport increased with increasing pH values of the inflow solution and of the soil. However, the clay content was not a key factor to affect R and kd for Cd2+ adsorption and transport. The average dispersivity values and the variance values of dispersivity increased with increasing clay content of the soils.