Background:Green tea,mulberry leaf and corn silk are traditional herbs used in the prevention and treatment of diabetes in China for a long time,but their synergistic hypoglycemic effects and mechanisms remain unclear...Background:Green tea,mulberry leaf and corn silk are traditional herbs used in the prevention and treatment of diabetes in China for a long time,but their synergistic hypoglycemic effects and mechanisms remain unclear.Methods:The effective components of green tea,mulberry leaf and corn silk were extracted and enriched.Mixture design of experiments was used to study the influences of different combinations on the cell viability and glucose uptake level of L6 myoblasts,so as to determine the optimal synergistic hypoglycemic combination.The possible hypoglycemic mechanism of the optimal synergistic combination was explored by cytotoxicity assay,glucose uptake assay,and western blot.Results:Three polyphenol enrichment fractions of the herbs,30%ethanol elution fraction of green tea(GT),50%ethanol elution fraction of mulberry leaf(ML)and 60%ethanol elution fraction of corn silk(CS)were obtained.The antioxidant activities of GT-30%,ML-50%and CS-60%were superior to those of crude extracts,and showed strong potential inα-amylase andα-glucosidase inhibition activities.The optimal synergistic combination of crude extracts G7(crude extract of green tea:crude extract of mulberry leaf:crude extract of corn silk=1:5:3),polyphenol enrichment fractions R3(GT-30%:ML-50%:CS-60%=1:7:1)and monomers X2(epigallocatechin gallate:morusin:formononetin=3:1:2)were selected,respectively.G7,R3,and X2 showed promoting effects on the cell viability and glucose uptake of L6 myoblasts within the detected concentration range.In addition,G7,R3,and X2 could increase the expression levels of p-PI3K/PI3K and p-Akt/Akt in L6 myoblasts,and promote the translocation of Glut4,but G7 and R3 showed more significant effects.Conclusion:The synergistic hypoglycemic effects of green tea,mulberry leaf and corn silk had the characteristics of multiple-components and multiple-targets with p-PI3K/PI3K,p-Akt/Akt and the translocation of Glut4 signal pathways involved.The three traditional herbs might have the potential to be combined used for the prevention and treatment of diabetes based on the synergistic hypoglycemic effects.展开更多
Lycopene is very susceptible to degradation once released from the protective chromoplast environment.In this study,oil-in-water(O/W)nanoemulsions coupled with spray drying technology were applied for the encapsulatio...Lycopene is very susceptible to degradation once released from the protective chromoplast environment.In this study,oil-in-water(O/W)nanoemulsions coupled with spray drying technology were applied for the encapsulation and stabilization of lycopene extracted from tomato waste.Tomato extract was obtained by ultrasound-assisted extraction.Nanoemulsions were prepared by a high-speed rotor stator using isopropyl myristate as the oil phase and Pluronic F-127 as the emulsifier for the aqueous external phase.The effect of emulsification process parameters was investigated.Spray drying of the produced emulsions was attempted to obtain a stabilized dry powder after the addition of a coating agent.The effect of different coating agents(maltodextrin,inulin,gum arabic,pectin,whey and polyvinylpyrrolidone),drying temperature(120-170℃),and feed flow rate(3-9 ml·min^(-1))on the obtained particles was evaluated.Results revealed that the emulsion formulation of 20/80(O/W)with 1.5%(mass fraction)of Pluronic F-127 as stabilizer in the aqueous phase resulted in a stable nanoemulsion with droplet sizes in the range of 259-276 nm with a unimodal and sharp size distribution.The extract in the nanoemulsion was well protected at room temperature with a degradation rate of lycopene of about 50%during a month of storage time.The most stable emulsions were then processed by spray drying to obtain a dry powder.Spray drying was particularly successful when using maltodextrin as a coating agent,obtaining dried spherical particles with mean diameters of(4.87±0.17)μm with a smooth surface.The possibility of dissolving the spray dried powder in order to repristinate.The original emulsion was also successfully verified.展开更多
It has been reported that squash leaf curl China virus(SLCCNV)infects some Cucurbitaceae crops except for melon(Cucumis melo L.).A new disease of melon exhibiting severe leaf curl and dwarfing was observed in Hainan P...It has been reported that squash leaf curl China virus(SLCCNV)infects some Cucurbitaceae crops except for melon(Cucumis melo L.).A new disease of melon exhibiting severe leaf curl and dwarfing was observed in Hainan Province of China.In this study,the pathogen was identified as SLCCNV through biological and molecular characterization.The isolate(SLCCNV-HN)possess a bipartite genome,DNA-A(HM566112.1)with the highest nucleotide identity(99%)to SLCCNV-Hn(MF062251.1)pumpkin and SLCCNV-Hn61(AM260205.1)squash isolates from China,whereas DNA-B(HM566113.1)with the highest nucleotide identity(99%)to SLCCNV-Hn(MF062252.1).Phylogenetic analyses based on the full-length SLCCNV-HN DNA-A and-B sequences indicated that SLCCNV-HN melon isolate is clustered with SLCCNV-Hn pumpkin,SLCCNV-Hn61 and SLCCNV-SY squash isolates from southern China,forming an independent cluster.Infectious clone of SLCCNV-HN was constructed and the melon plants were inoculated and the infection rate is 100%,the systemic symptoms in melon showed identical to those of melon plants infected in fields.Additionally,melon plants transmission of this virus by Bemisia tabaci with a transmission rate of 95%(19/20)showed leaf curl and dwarf symptoms 15 days post transmission,thereby fulfilling Koch’s postulates.Analysis of genomic organization and phylogenetic trees indicated that SLCCNV-HN melon isolate belongs to the Begomovirus genus.To the best of our knowledge,this is the first characterization of meloninfecting SLCCNV through its genome,infectious clone and transmission.展开更多
Grain to Green program on arable land has been conducted for decades in semi-arid regions of North China.However,it remains uncertain how afforestation practices affect soil hydraulic properties(SHP).Two afforestation...Grain to Green program on arable land has been conducted for decades in semi-arid regions of North China.However,it remains uncertain how afforestation practices affect soil hydraulic properties(SHP).Two afforestation types,i.e.shrubland(SL)and woodland(WL),and the adjacent cropland(CL)were investigated to determine afforestation effects on SHP in this area.Disturbed and undisturbed soil cores were collected in three experimental sites.Soil field capacity(FC),wilting point(WP),and available water capacity(AWC)increased in SL compared to the CL.Soil saturated water content,however,decreased significantly in both SL and WL.Correlation and redundancy analysis identified that bulk density(BD)and soil organic carbon(SOC)were the main factors regulating SHP across different land uses.Lower saturated water contents in afforestation sites were likely driven by the higher BD,compared to the adjacent cropland.FC,WP,and AWC were positively correlated to SOC content.While afforestation may not increase the saturated water content of a landscape,our results indicate that it can improve soil water retention and could be an effective practice for soil and water conservation.展开更多
The temperature is 56.5℃when acetone gas is rectified during the production of powdery phospholipid. If heat exchanger is added, heat energy that is reclaimed can be used by other heaters. On the basis of exchange ho...The temperature is 56.5℃when acetone gas is rectified during the production of powdery phospholipid. If heat exchanger is added, heat energy that is reclaimed can be used by other heaters. On the basis of exchange hot water (51℃) 4m3 every minute, a factory with the productivity of powdery phospholipid being 10 ton a day can save 533.2 ton standard coal which is equivalent to 746.48 ton common coal. If this technique of saving energy and reducing emission could be widely used in correlative industries of all over the country, economic benefits will be prominent.展开更多
Variations in the pathogenicity of Newcastle disease virus(NDV),the agent causing Newcastle disease,are associated with variants of different virulence.A few studies have characterized the expression of microRNAs(miRN...Variations in the pathogenicity of Newcastle disease virus(NDV),the agent causing Newcastle disease,are associated with variants of different virulence.A few studies have characterized the expression of microRNAs(miRNAs)in NDV-infected avian cells.Here,the expression of miRNAs in chicken embryo fibroblasts(CEFs)infected with Herts/33 and LaSota NDV strains(highly virulent and nonvirulent,respectively)was determined using RNA sequencing.miRNAs involved in NDV infection included 562 previously documented and 184 novel miRNAs.miRNA target genes involved transcription factors,cell apoptosis,ubiquitin-mediated proteolysis,and protein processing in the endoplasmic reticulum.Potential target genes associated with autophagy were verified by qRT-PCR.No studies have documented the miRNA profles of CEFs infected with NDVs variants.This study adds to our knowledge of the cellular miRNAs involved in NDV infection and the complex molecular mechanisms mediating virus-host interactions.The results of this study will aid the development of strategies against the chicken virus.展开更多
The conjugate addition of in-situ generated(aza-)quinone methides(QMs)and indole imine methides(IIMs)emerged as a powerful protocol to access densely functionalized benzenes and indoles.Hydroxybenzyl alcohols,aminoben...The conjugate addition of in-situ generated(aza-)quinone methides(QMs)and indole imine methides(IIMs)emerged as a powerful protocol to access densely functionalized benzenes and indoles.Hydroxybenzyl alcohols,aminobenzhydryl alcohols,and varied indolylmethanols served as most effective precursors for the in-situ generation of such reactive species under acid conditions.The relevant propargylic alcohol has proven to be an elegant precursor to generate the propargylic-QMs and-IIMs via the acid promoted dehydration process,thus enabling diverse challenging remote activation to proceed conjugate1,6-and 1,8-additions.Moreover,the heteroarene has proven to be workable to transfer the LUMO of the p-QMs and 2-IIMs,thus inducing the remote nucleophilic dearomative additions.The conjugate additions of(aza-)p-QMs and varied IIMs has made significant contribution in the field of remote activation chemistry in past decade.This review summarizes the latest advances of the remote conjugate additions of the in-situ generated QMs and IIMs.展开更多
Immobilizing enzyme to nano interfaces has demonstrated to be a favorable strategy for prompting the industrialized application of enzyme.Despite tremendous endeavor has been devoted to using gold nanoparticles(AuNPs)...Immobilizing enzyme to nano interfaces has demonstrated to be a favorable strategy for prompting the industrialized application of enzyme.Despite tremendous endeavor has been devoted to using gold nanoparticles(AuNPs)as conjugation matrix due to its fascinating physico-chemical properties,maintaining enzymatic activity while circumventing cumbersome modification remains a formidable challenge.Herein,the freezing-directed conjugation of enzyme/nano interfaces was constructed without extra reagent.As the proof of concept,glucose oxidase(GOx)was chosen as model enzyme.The one-pot conjugation process can be facilely completed at−20°C under aqueous solution.Moreover,with the loading of GOx on AuNP at freezing,the enzyme exhibited superior catalytic activity and stability upon thermal and pH perturbation.The mechanism of boosted activity was then discussed in detail.It was found that higher loading density under freezing condition and more enzyme tending to bind AuNPs via Au-S bond were the main factors for the superior activity.More importantly,this methodology was universal and can also be applied to other enzyme which contains natural cysteine,such as horseradish peroxidase(HRP)and papain.This facile conjugation strategy accompanied by remarkable bioactivity expand the possibilities for enzymatic biosensing,microdevice and even drug delivery.展开更多
High myopia(HM)is the primary cause of blindness,with the microstructural organization and composition of collagenous fibers in the cornea and sclera playing a crucial role in the biomechanical behavior of these tissu...High myopia(HM)is the primary cause of blindness,with the microstructural organization and composition of collagenous fibers in the cornea and sclera playing a crucial role in the biomechanical behavior of these tissues.In a previously reported myopic linkage region,MYP5(17q21-22),a potential candidate gene,LRRC46(c.C235T,p.Q79X),was identified in a large Han Chinese pedigree.LRRC46 is expressed in various eye tissues in humans and mice,including the retina,cornea,and sclera.In subsequent cell experiments,the mutation(c.C235T)decreased the expression of LRRC46 protein in human corneal epithelial cells(HCE-T).Further investigation revealed that Lrrc46^(-/-)mice(KO)exhibited a classical myopia phenotype.The thickness of the cornea and sclera in KO mice became thinner and more pronounced with age,the activity of limbal stem cells decreased,and microstructural changes were observed in the fibroblasts of the sclera and cornea.We performed RNA-seq on scleral and corneal tissues of KO and normal control wild-type(WT)mice,which indicated a significant downregulation of the collagen synthesis-related pathway(extracellular matrix,ECM)in KO mice.Subsequent in vitro studies further indicated that LRRC46,a member of the important LRR protein family,primarily affected the formation of collagens.This study suggested that LRRC46 is a novel candidate gene for HM,influencing collagen protein VⅢ(Col8a1)formation in the eye and gradually altering the biomechanical structure of the cornea and sclera,thereby promoting the occurrence and development of HM.展开更多
Malus hupehensis (Pamp.) Rehd. is a widely cultivated rootstock in China. We studied the effect of three NO3-/NH4+ ratios (100/0, 50/50, and 0/100, molar basis) at total nitrogen (N) concentration of 8 mmoL L-1...Malus hupehensis (Pamp.) Rehd. is a widely cultivated rootstock in China. We studied the effect of three NO3-/NH4+ ratios (100/0, 50/50, and 0/100, molar basis) at total nitrogen (N) concentration of 8 mmoL L-1 in a nutrient solution on M. hupehensis seedlings. Plant biomass, NO3- and NH4+concentrafion, chlorophyll con- tent, respiratory rate, and cellular structure were investi- gated. M. hupehensis seedlings at the NO3-/NH4+ ratio of 50/50 had the highest level of fresh weight, dry weight, shoot length, and chlorophyll (a, b, and a + b) content, but the lowest respiration rate in the leavesand roots. In addition, thickness and numbers of palisade and spongy tissue cells of the leaves were greater with this treatment than with other treatments. At the NO3-/NH4+ ratio of 100/0, the leaves and roots had higher NO3- concentration and lower NH4+ concentration. However, the opposite trend occurred at the NO3-/NH4+ ratio of 0/100. Chloro- phyll (a, b, and a + b) content was lowest at the NO3-/NH4+ ratio of 100/0 than at the other ratios. At the NO3-/ NH4+ ratio of 0/100, oxygen (02) consumption increased in the leaves and roots, and irregular epidermis and cortex cells were observed in the root apical meristematic and mature region. Our results indicated that the NO3-INH4+ ratio at 50/50 was suitable for growth of M. hupehensis seedling to achieve the highest biomass production and efficiency.展开更多
As a strong oxidizer,hypochlorite(Cl O^(-))are widely employed as bleaching agents and disinfectants.Determination of ClO^(-)is required to ensure bactericidal effects and avoid hazards caused by excessive residual ch...As a strong oxidizer,hypochlorite(Cl O^(-))are widely employed as bleaching agents and disinfectants.Determination of ClO^(-)is required to ensure bactericidal effects and avoid hazards caused by excessive residual chlorine.Herein,the derivative bicyclic 2-pyridone,namely DHIP-Py,was prepared successfully to establish a new ClO^(-)-quantitative method.The probe exhibits excellent Cl O^(-)selectivity over other ROS and anions/cations,high sensitivity(LOD=1.32μmol/L),fast response(<5 s),and wide-p H tolerance(pH4~10).Benefit from its good water solubility,DHIP-Py is well suited for water sample analysis and has been successfully applied to detect Cl O^(-)in real-world food and environmental samples,including tap water,bottled water and river water.The detection results were essentially identical to that of obtained from traditional DPD method.Moreover,visual detection of Cl O^(-)via filter paper-based solid sensor and imaging of ClO^(-)in Escherichia coli were also achieved by DHIP-Py.These satisfactory results demonstrate that this bicyclic 2-pyridone-based hypochlorite probe is a promising free chlorine chemosensor with great potential for analytical applications.展开更多
Layered double hydroxide was investigated as cordycepin delivery nanocarrier for the first time in this study. Negatively charged biomolecule-cordycepin was intercalated in the gallery spaces of [Mg-Al-NO3], which was...Layered double hydroxide was investigated as cordycepin delivery nanocarrier for the first time in this study. Negatively charged biomolecule-cordycepin was intercalated in the gallery spaces of [Mg-Al-NO3], which was corff'trmed by the results of X-ray diffraction and electrophoretic mobility. Cell experiment suggested that the new bio-LDH nanohybrid could prevent cordycepin decomposition by adenosine deaminase. This new formulation could possibly be used as a novel form cordycepin intravenous injection.展开更多
Many aquatic products have been stored using superchilling technology, but rarely used for the storage of sturgeon fillets. In this study, we investigated the effects of protein oxidation, cathepsin, and various freez...Many aquatic products have been stored using superchilling technology, but rarely used for the storage of sturgeon fillets. In this study, we investigated the effects of protein oxidation, cathepsin, and various freezing temperatures on the quality of superchilled sturgeon fillets. Sensory evaluation results showed that the sensory attributes of superchilled (−3 °C) sturgeon fillets were acceptable three times longer (18 days) than samples stored at refrigeration temperatures (4 °C). The sarcoplasmic protein, carbonyl, myofibrillar protein, total sulfhydryl content and the surface hydrophobicity were determined using fluorescence spectrophotometry and SDS-PAGE. Results showed that superchilling might protect myofibrillar proteins from oxidation compared to refrigeration temperatures. The activity of the three cathepsins (B, L, and H) in terms of myofibrillar, mitochondria, lysosomes, and sarcoplasm demonstrated that superchilling can inhibit cathepsins activity in sturgeon and protect its muscle structure. Microscopic observations showed that as the temperature decreased, the gap area of the muscle fibers decreased, and the deformation of cross-sectional slices was gradually reduced. In addition, the freezing rate of ice crystals produced during the freezing process influenced the muscle structure, texture, and sensory attributes. Superchilled sturgeon fillets showed good hardness, chewiness, and water retention. In conclusion, superchilling technology shows promise for its ability to extend the shelf life while maintaining the texture and sensory attributes of fresh sturgeon fillets.展开更多
In recent years, nanozymes have received more and more attention, but the low activity limits the development of nanozymes. Therefore, the design and development of efficient nanozymes is still a major challenge for r...In recent years, nanozymes have received more and more attention, but the low activity limits the development of nanozymes. Therefore, the design and development of efficient nanozymes is still a major challenge for researchers. Herein, the Fe,N co-doped ultrathin hollow carbon framework(Fe,N-UHCF) exhibit ultra-high peroxidase-like activity. The specific activity of Fe,N-UHCF nanozyme is as high as 36.6 U/mg,which is much higher than almost all of other reported nanozymes. In practical applications, the Fe,N-UHCF show good antibacterial effects.展开更多
D-Mannose is an attractive functional sugar that exhibits many physiological benefits on human health.The demand for low-calorie sugars and sweeteners in foods are increasingly available on the market.Some sugar isome...D-Mannose is an attractive functional sugar that exhibits many physiological benefits on human health.The demand for low-calorie sugars and sweeteners in foods are increasingly available on the market.Some sugar isomerases,such as D-lyxose isomerase(D-LIase),can achieve an isomerization reaction between D-mannose and D-fructose.However,the weak thermostability of D-LIase limits its efficient conversion from D-fructose to D-mannose.Nonetheless,few studies are available that have investigated the molecular modification of D-LIase to improve its thermal stability.In this study,computer-aided tools including FireProt,PROSS,and Consensus Finder were employed to jointly design D-LIase mutants with improved thermostability for the first time.Finally,the obtained five-point mutant M5(N21G/E78P/V58Y/C119Y/K170P)showed high thermal stability and cat-alytic activity.The half-life of M5 at 65◦C was 10.22 fold,and the catalytic efficiency towards 600 g/L of D-fructose was 2.6 times to that of the wild type enzyme,respectively.Molecular dynamics simulation and intramolecular forces analysis revealed a thermostability mechanism of highly rigidity conformation,newly formed hydrogen bonds andπ-cation interaction between and within protein domains,and redistributed surface electrostatic charges for the mutant M5.This research provided a promising D-LIase mutant for the industrial production of D-mannose from D-fructose.展开更多
Simultaneous anammox and denitrification(SAD) is an efficient approach to treat wastewater having a low C/N ratio;however, few studies have investigated a combination of SAD and partial nitritation(PN). In this study,...Simultaneous anammox and denitrification(SAD) is an efficient approach to treat wastewater having a low C/N ratio;however, few studies have investigated a combination of SAD and partial nitritation(PN). In this study, a lab-scale up-flow blanket filter(UBF) and zeolite sequence batch reactor(ZSBR) were continuously operated to implement SAD and PN advantages, respectively. The UBF achieved a high total nitrogen(TN) removal efficiency of over 70% during the start-up stage(days 1–50), and reached a TN removal efficiency of 96%in the following 90 days(days 51–140) at COD/NH_(4)^(+)-N ratio of 2.5. The absolute abundance of anammox bateria increased to the highest value of 1.58 × 107copies/μL DNA;Comamonadaceae was predominant in the UBF at the optimal ratio. Meanwhile, ZSBR was initiated on day 115 as fast nitritation process to satisfy the influent requirement for the UBF. The combined process was started on day 140 and then lasted for 30 days, during the combined process, between the two reactors, the UBF was the main contributor for TN(66.5% ± 4.5%)and COD(71.8% ± 4.9%) removal. These results demonstrated that strong SAD occurred in the UBF when following a ZSBR with in-situ NOB elimination. This research presents insights into a novel biological nitrogen removal process for low C/N ratio wastewater treatment.展开更多
Organic conjugated polymers have received extensive attention due to their unique electronic properties.However,there have been relatively few reports on the dark photocatalytic reactions utilizing organic conjugated ...Organic conjugated polymers have received extensive attention due to their unique electronic properties.However,there have been relatively few reports on the dark photocatalytic reactions utilizing organic conjugated polymers.Herein,we report the successful synthesis of an organic conjugated polymer based on poly(heptazine imide)nanocrystals(CNNCs)for H_(2)O_(2)evolution and biomedical applications using a simple salt molten method and sonication-centrifugation process.The results show that these colloid CNNCs have the characteristics of photogenerated electrons accumulation and realize dark photocatalysis with high reducibility under visible light irradiation.Notably,these accumulating photogenerated electrons can reduce O_(2)in darkness to produce H_(2)O_(2).In addition,cytotoxicity tests were conducted and it was found that H_(2)O_(2)produced under dark conditions could oxidize L-arginine(L-Arg)to NO,which effectively killed tumors in the dark.This work provides an important strategy to construct organic conjugated semiconductor nanocrystals and applying them to future energy and biomedical fields.展开更多
The paper provides descriptions and illustrations of the intemal reproductive systems in both sexes of a wide-spread species, Tipula (Yamatotipula) nova, and analyzes the possible usefulness of some internal reprodu...The paper provides descriptions and illustrations of the intemal reproductive systems in both sexes of a wide-spread species, Tipula (Yamatotipula) nova, and analyzes the possible usefulness of some internal reproductive structures for taxonomy in subgenus Tipula (Yamatotipula). The female ovipositor is described and illustrated for the first time. The original description of the male hypopygium is expanded upon the description of new morphological characters and detailed illustrations.展开更多
The paper reports eight species from Mountain Huang, Anhui, China, including two new species, Nephrotoma huangshanensis sp. nov. and Tipula (Pterelachisus) pseudobiaciculifera sp. nov. The males of four species, Pse...The paper reports eight species from Mountain Huang, Anhui, China, including two new species, Nephrotoma huangshanensis sp. nov. and Tipula (Pterelachisus) pseudobiaciculifera sp. nov. The males of four species, Pselliophora xanthopimplina Enderlein, 1921, Tanyptera hubeiensis Yang & Yang, 1988, Tipula coxitalis Alexander, 1935 and Tipulodina xyris (Alexander, 1949) are redescribed and illustrated, with new morphological characters. All specimens are deposited in the animal specimen room, School of Life Sciences, Anqing Normal University, Anhui Province, China.展开更多
Staphylococcal enterotoxin A(SEA)synthesized by Staphylococcus aureus is a foodborne and heatstable toxin,which is a great threat to human health(Pexara et al.,2010).Highly sensitive antibodies are a key factor in the...Staphylococcal enterotoxin A(SEA)synthesized by Staphylococcus aureus is a foodborne and heatstable toxin,which is a great threat to human health(Pexara et al.,2010).Highly sensitive antibodies are a key factor in the immunological detection of SEA,which is one of the most effective ways to detect SEA because of its accuracy,agility,and efficiency(Nouri et al.,2018).展开更多
基金the grant from National Key Research and Development Program of China(Grant No.2021YFE0110000)the grant from Tianjin Municipal Science and Technology Foundation(Grant No.22JCYBJC00160).
文摘Background:Green tea,mulberry leaf and corn silk are traditional herbs used in the prevention and treatment of diabetes in China for a long time,but their synergistic hypoglycemic effects and mechanisms remain unclear.Methods:The effective components of green tea,mulberry leaf and corn silk were extracted and enriched.Mixture design of experiments was used to study the influences of different combinations on the cell viability and glucose uptake level of L6 myoblasts,so as to determine the optimal synergistic hypoglycemic combination.The possible hypoglycemic mechanism of the optimal synergistic combination was explored by cytotoxicity assay,glucose uptake assay,and western blot.Results:Three polyphenol enrichment fractions of the herbs,30%ethanol elution fraction of green tea(GT),50%ethanol elution fraction of mulberry leaf(ML)and 60%ethanol elution fraction of corn silk(CS)were obtained.The antioxidant activities of GT-30%,ML-50%and CS-60%were superior to those of crude extracts,and showed strong potential inα-amylase andα-glucosidase inhibition activities.The optimal synergistic combination of crude extracts G7(crude extract of green tea:crude extract of mulberry leaf:crude extract of corn silk=1:5:3),polyphenol enrichment fractions R3(GT-30%:ML-50%:CS-60%=1:7:1)and monomers X2(epigallocatechin gallate:morusin:formononetin=3:1:2)were selected,respectively.G7,R3,and X2 showed promoting effects on the cell viability and glucose uptake of L6 myoblasts within the detected concentration range.In addition,G7,R3,and X2 could increase the expression levels of p-PI3K/PI3K and p-Akt/Akt in L6 myoblasts,and promote the translocation of Glut4,but G7 and R3 showed more significant effects.Conclusion:The synergistic hypoglycemic effects of green tea,mulberry leaf and corn silk had the characteristics of multiple-components and multiple-targets with p-PI3K/PI3K,p-Akt/Akt and the translocation of Glut4 signal pathways involved.The three traditional herbs might have the potential to be combined used for the prevention and treatment of diabetes based on the synergistic hypoglycemic effects.
文摘Lycopene is very susceptible to degradation once released from the protective chromoplast environment.In this study,oil-in-water(O/W)nanoemulsions coupled with spray drying technology were applied for the encapsulation and stabilization of lycopene extracted from tomato waste.Tomato extract was obtained by ultrasound-assisted extraction.Nanoemulsions were prepared by a high-speed rotor stator using isopropyl myristate as the oil phase and Pluronic F-127 as the emulsifier for the aqueous external phase.The effect of emulsification process parameters was investigated.Spray drying of the produced emulsions was attempted to obtain a stabilized dry powder after the addition of a coating agent.The effect of different coating agents(maltodextrin,inulin,gum arabic,pectin,whey and polyvinylpyrrolidone),drying temperature(120-170℃),and feed flow rate(3-9 ml·min^(-1))on the obtained particles was evaluated.Results revealed that the emulsion formulation of 20/80(O/W)with 1.5%(mass fraction)of Pluronic F-127 as stabilizer in the aqueous phase resulted in a stable nanoemulsion with droplet sizes in the range of 259-276 nm with a unimodal and sharp size distribution.The extract in the nanoemulsion was well protected at room temperature with a degradation rate of lycopene of about 50%during a month of storage time.The most stable emulsions were then processed by spray drying to obtain a dry powder.Spray drying was particularly successful when using maltodextrin as a coating agent,obtaining dried spherical particles with mean diameters of(4.87±0.17)μm with a smooth surface.The possibility of dissolving the spray dried powder in order to repristinate.The original emulsion was also successfully verified.
基金supported by the National Natural Science Foundation of China (31701941 and 31401810)the grants from the earmarked fund for China Agriculture Research System (CARS-26-13)the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences (ASTIP) (CAAS-ASTIP-2018-ZFRI-08)
文摘It has been reported that squash leaf curl China virus(SLCCNV)infects some Cucurbitaceae crops except for melon(Cucumis melo L.).A new disease of melon exhibiting severe leaf curl and dwarfing was observed in Hainan Province of China.In this study,the pathogen was identified as SLCCNV through biological and molecular characterization.The isolate(SLCCNV-HN)possess a bipartite genome,DNA-A(HM566112.1)with the highest nucleotide identity(99%)to SLCCNV-Hn(MF062251.1)pumpkin and SLCCNV-Hn61(AM260205.1)squash isolates from China,whereas DNA-B(HM566113.1)with the highest nucleotide identity(99%)to SLCCNV-Hn(MF062252.1).Phylogenetic analyses based on the full-length SLCCNV-HN DNA-A and-B sequences indicated that SLCCNV-HN melon isolate is clustered with SLCCNV-Hn pumpkin,SLCCNV-Hn61 and SLCCNV-SY squash isolates from southern China,forming an independent cluster.Infectious clone of SLCCNV-HN was constructed and the melon plants were inoculated and the infection rate is 100%,the systemic symptoms in melon showed identical to those of melon plants infected in fields.Additionally,melon plants transmission of this virus by Bemisia tabaci with a transmission rate of 95%(19/20)showed leaf curl and dwarf symptoms 15 days post transmission,thereby fulfilling Koch’s postulates.Analysis of genomic organization and phylogenetic trees indicated that SLCCNV-HN melon isolate belongs to the Begomovirus genus.To the best of our knowledge,this is the first characterization of meloninfecting SLCCNV through its genome,infectious clone and transmission.
基金financially supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA23090403)the National Key Research and Development Program of China(Grant No.2019YFD1100503)the National Major Science and Technology Program for Water Pollution Control and Treatment(Grant No.2017ZX07101001)。
文摘Grain to Green program on arable land has been conducted for decades in semi-arid regions of North China.However,it remains uncertain how afforestation practices affect soil hydraulic properties(SHP).Two afforestation types,i.e.shrubland(SL)and woodland(WL),and the adjacent cropland(CL)were investigated to determine afforestation effects on SHP in this area.Disturbed and undisturbed soil cores were collected in three experimental sites.Soil field capacity(FC),wilting point(WP),and available water capacity(AWC)increased in SL compared to the CL.Soil saturated water content,however,decreased significantly in both SL and WL.Correlation and redundancy analysis identified that bulk density(BD)and soil organic carbon(SOC)were the main factors regulating SHP across different land uses.Lower saturated water contents in afforestation sites were likely driven by the higher BD,compared to the adjacent cropland.FC,WP,and AWC were positively correlated to SOC content.While afforestation may not increase the saturated water content of a landscape,our results indicate that it can improve soil water retention and could be an effective practice for soil and water conservation.
文摘The temperature is 56.5℃when acetone gas is rectified during the production of powdery phospholipid. If heat exchanger is added, heat energy that is reclaimed can be used by other heaters. On the basis of exchange hot water (51℃) 4m3 every minute, a factory with the productivity of powdery phospholipid being 10 ton a day can save 533.2 ton standard coal which is equivalent to 746.48 ton common coal. If this technique of saving energy and reducing emission could be widely used in correlative industries of all over the country, economic benefits will be prominent.
基金This work was financially supported by the National Natural Science Foundation of China(No.31800144 and No.32030108)the Natural Science Foundation of Shanghai(No.18ZR1448700)the Agricultural Science and Technology Innovation Program(ASTIP)of the Chinese Academy of Agricultural Science.
文摘Variations in the pathogenicity of Newcastle disease virus(NDV),the agent causing Newcastle disease,are associated with variants of different virulence.A few studies have characterized the expression of microRNAs(miRNAs)in NDV-infected avian cells.Here,the expression of miRNAs in chicken embryo fibroblasts(CEFs)infected with Herts/33 and LaSota NDV strains(highly virulent and nonvirulent,respectively)was determined using RNA sequencing.miRNAs involved in NDV infection included 562 previously documented and 184 novel miRNAs.miRNA target genes involved transcription factors,cell apoptosis,ubiquitin-mediated proteolysis,and protein processing in the endoplasmic reticulum.Potential target genes associated with autophagy were verified by qRT-PCR.No studies have documented the miRNA profles of CEFs infected with NDVs variants.This study adds to our knowledge of the cellular miRNAs involved in NDV infection and the complex molecular mechanisms mediating virus-host interactions.The results of this study will aid the development of strategies against the chicken virus.
基金the financial support from the National Natural Science Foundation of China(No.22001216)the Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province(No.CSPC202315)+2 种基金the Science and Technology Department of Sichuan Province,China(No.2022NSFSC1203)the Higher Education Institution Key Research Project Plan of Henan Province(No.24B150031)the Program for Youth Backbone Teacher Training in University of Henan Province(No.2021GGJS163)。
文摘The conjugate addition of in-situ generated(aza-)quinone methides(QMs)and indole imine methides(IIMs)emerged as a powerful protocol to access densely functionalized benzenes and indoles.Hydroxybenzyl alcohols,aminobenzhydryl alcohols,and varied indolylmethanols served as most effective precursors for the in-situ generation of such reactive species under acid conditions.The relevant propargylic alcohol has proven to be an elegant precursor to generate the propargylic-QMs and-IIMs via the acid promoted dehydration process,thus enabling diverse challenging remote activation to proceed conjugate1,6-and 1,8-additions.Moreover,the heteroarene has proven to be workable to transfer the LUMO of the p-QMs and 2-IIMs,thus inducing the remote nucleophilic dearomative additions.The conjugate additions of(aza-)p-QMs and varied IIMs has made significant contribution in the field of remote activation chemistry in past decade.This review summarizes the latest advances of the remote conjugate additions of the in-situ generated QMs and IIMs.
基金the National Natural Science Foundation of China(Nos.32001782 and 22222402)the Natural Science Foundation of Hunan Province(No.2021JJ40564)+2 种基金Changsha Municipal Natural Science Foundation(No.kq2007021)the Opening Foundation of State Key Laboratory of Chemo/Biosensing and Chemometrics,Hunan University(No.2019013)Open Project of State Key Laboratory of Supramolecular Structure and Materials(No.sklssm2023016).
文摘Immobilizing enzyme to nano interfaces has demonstrated to be a favorable strategy for prompting the industrialized application of enzyme.Despite tremendous endeavor has been devoted to using gold nanoparticles(AuNPs)as conjugation matrix due to its fascinating physico-chemical properties,maintaining enzymatic activity while circumventing cumbersome modification remains a formidable challenge.Herein,the freezing-directed conjugation of enzyme/nano interfaces was constructed without extra reagent.As the proof of concept,glucose oxidase(GOx)was chosen as model enzyme.The one-pot conjugation process can be facilely completed at−20°C under aqueous solution.Moreover,with the loading of GOx on AuNP at freezing,the enzyme exhibited superior catalytic activity and stability upon thermal and pH perturbation.The mechanism of boosted activity was then discussed in detail.It was found that higher loading density under freezing condition and more enzyme tending to bind AuNPs via Au-S bond were the main factors for the superior activity.More importantly,this methodology was universal and can also be applied to other enzyme which contains natural cysteine,such as horseradish peroxidase(HRP)and papain.This facile conjugation strategy accompanied by remarkable bioactivity expand the possibilities for enzymatic biosensing,microdevice and even drug delivery.
基金supported by the National Natural Science Foundation of China(82330030,82271120,82121003,82201234)the CAMS Innovation Fund for Medical Sciences(2019-12 M-5-032,2021LY06)Sichuan Science and Technology Program(2021YFS0369,2022ZYD0131,24YSZH0012,23ZYZYTS0271,TB2023093,2023ZY0059)。
文摘High myopia(HM)is the primary cause of blindness,with the microstructural organization and composition of collagenous fibers in the cornea and sclera playing a crucial role in the biomechanical behavior of these tissues.In a previously reported myopic linkage region,MYP5(17q21-22),a potential candidate gene,LRRC46(c.C235T,p.Q79X),was identified in a large Han Chinese pedigree.LRRC46 is expressed in various eye tissues in humans and mice,including the retina,cornea,and sclera.In subsequent cell experiments,the mutation(c.C235T)decreased the expression of LRRC46 protein in human corneal epithelial cells(HCE-T).Further investigation revealed that Lrrc46^(-/-)mice(KO)exhibited a classical myopia phenotype.The thickness of the cornea and sclera in KO mice became thinner and more pronounced with age,the activity of limbal stem cells decreased,and microstructural changes were observed in the fibroblasts of the sclera and cornea.We performed RNA-seq on scleral and corneal tissues of KO and normal control wild-type(WT)mice,which indicated a significant downregulation of the collagen synthesis-related pathway(extracellular matrix,ECM)in KO mice.Subsequent in vitro studies further indicated that LRRC46,a member of the important LRR protein family,primarily affected the formation of collagens.This study suggested that LRRC46 is a novel candidate gene for HM,influencing collagen protein VⅢ(Col8a1)formation in the eye and gradually altering the biomechanical structure of the cornea and sclera,thereby promoting the occurrence and development of HM.
基金supported by the Agricultural Comprehensive Development Project of Hebei Province(No.2012ACDPHP01)
文摘Malus hupehensis (Pamp.) Rehd. is a widely cultivated rootstock in China. We studied the effect of three NO3-/NH4+ ratios (100/0, 50/50, and 0/100, molar basis) at total nitrogen (N) concentration of 8 mmoL L-1 in a nutrient solution on M. hupehensis seedlings. Plant biomass, NO3- and NH4+concentrafion, chlorophyll con- tent, respiratory rate, and cellular structure were investi- gated. M. hupehensis seedlings at the NO3-/NH4+ ratio of 50/50 had the highest level of fresh weight, dry weight, shoot length, and chlorophyll (a, b, and a + b) content, but the lowest respiration rate in the leavesand roots. In addition, thickness and numbers of palisade and spongy tissue cells of the leaves were greater with this treatment than with other treatments. At the NO3-/NH4+ ratio of 100/0, the leaves and roots had higher NO3- concentration and lower NH4+ concentration. However, the opposite trend occurred at the NO3-/NH4+ ratio of 0/100. Chloro- phyll (a, b, and a + b) content was lowest at the NO3-/NH4+ ratio of 100/0 than at the other ratios. At the NO3-/ NH4+ ratio of 0/100, oxygen (02) consumption increased in the leaves and roots, and irregular epidermis and cortex cells were observed in the root apical meristematic and mature region. Our results indicated that the NO3-INH4+ ratio at 50/50 was suitable for growth of M. hupehensis seedling to achieve the highest biomass production and efficiency.
基金financially supported by the National Natural Science Foundation of China(No.21877082)the International Science and Technology Innovation Cooperation Project of Sichuan Province(No.2021YFH0132)+1 种基金the Sichuan Science and Technology Program(No.2021YFG0291)the Undergraduate Scientific and Technological Innovation Project(Nos.2021127,2021130),Xihua University。
文摘As a strong oxidizer,hypochlorite(Cl O^(-))are widely employed as bleaching agents and disinfectants.Determination of ClO^(-)is required to ensure bactericidal effects and avoid hazards caused by excessive residual chlorine.Herein,the derivative bicyclic 2-pyridone,namely DHIP-Py,was prepared successfully to establish a new ClO^(-)-quantitative method.The probe exhibits excellent Cl O^(-)selectivity over other ROS and anions/cations,high sensitivity(LOD=1.32μmol/L),fast response(<5 s),and wide-p H tolerance(pH4~10).Benefit from its good water solubility,DHIP-Py is well suited for water sample analysis and has been successfully applied to detect Cl O^(-)in real-world food and environmental samples,including tap water,bottled water and river water.The detection results were essentially identical to that of obtained from traditional DPD method.Moreover,visual detection of Cl O^(-)via filter paper-based solid sensor and imaging of ClO^(-)in Escherichia coli were also achieved by DHIP-Py.These satisfactory results demonstrate that this bicyclic 2-pyridone-based hypochlorite probe is a promising free chlorine chemosensor with great potential for analytical applications.
文摘Layered double hydroxide was investigated as cordycepin delivery nanocarrier for the first time in this study. Negatively charged biomolecule-cordycepin was intercalated in the gallery spaces of [Mg-Al-NO3], which was corff'trmed by the results of X-ray diffraction and electrophoretic mobility. Cell experiment suggested that the new bio-LDH nanohybrid could prevent cordycepin decomposition by adenosine deaminase. This new formulation could possibly be used as a novel form cordycepin intravenous injection.
基金financial support from the Key Laboratory of Aquatic Product Processing,Ministry of Agriculture,P.R.China(NYJG201901)Natural Science Foundation of Shandong Province(ZR2019MC014)+1 种基金China Agriculture Research System of MOF and MARA(CARS-46)Jiangsu Provincial Science and Technology Program(LYG-SZ201815).
文摘Many aquatic products have been stored using superchilling technology, but rarely used for the storage of sturgeon fillets. In this study, we investigated the effects of protein oxidation, cathepsin, and various freezing temperatures on the quality of superchilled sturgeon fillets. Sensory evaluation results showed that the sensory attributes of superchilled (−3 °C) sturgeon fillets were acceptable three times longer (18 days) than samples stored at refrigeration temperatures (4 °C). The sarcoplasmic protein, carbonyl, myofibrillar protein, total sulfhydryl content and the surface hydrophobicity were determined using fluorescence spectrophotometry and SDS-PAGE. Results showed that superchilling might protect myofibrillar proteins from oxidation compared to refrigeration temperatures. The activity of the three cathepsins (B, L, and H) in terms of myofibrillar, mitochondria, lysosomes, and sarcoplasm demonstrated that superchilling can inhibit cathepsins activity in sturgeon and protect its muscle structure. Microscopic observations showed that as the temperature decreased, the gap area of the muscle fibers decreased, and the deformation of cross-sectional slices was gradually reduced. In addition, the freezing rate of ice crystals produced during the freezing process influenced the muscle structure, texture, and sensory attributes. Superchilled sturgeon fillets showed good hardness, chewiness, and water retention. In conclusion, superchilling technology shows promise for its ability to extend the shelf life while maintaining the texture and sensory attributes of fresh sturgeon fillets.
基金supported by the National Natural Science Foundation of China(NSFC,Nos.21671149,21571140,21531005 and 21703156)the 973 Program(No.2014CB845601)+3 种基金the Program for Innovative Research Team in University of Tianjin(No.TD13–5074)the Natural Science Foundation of Tianjin(No.18JCQNJC76000)the Science&Technology Development Fund of Tianjin Education Commission for Higher Education(No.2021KJ190)the Jiangsu Provincial Double-Innovation Doctor Program(No.02300053)。
文摘In recent years, nanozymes have received more and more attention, but the low activity limits the development of nanozymes. Therefore, the design and development of efficient nanozymes is still a major challenge for researchers. Herein, the Fe,N co-doped ultrathin hollow carbon framework(Fe,N-UHCF) exhibit ultra-high peroxidase-like activity. The specific activity of Fe,N-UHCF nanozyme is as high as 36.6 U/mg,which is much higher than almost all of other reported nanozymes. In practical applications, the Fe,N-UHCF show good antibacterial effects.
基金supported by the National Natural Science Foundation of China(32201963)Scientific Research Foundation of Hunan Provincial Education Department(22C0137).
文摘D-Mannose is an attractive functional sugar that exhibits many physiological benefits on human health.The demand for low-calorie sugars and sweeteners in foods are increasingly available on the market.Some sugar isomerases,such as D-lyxose isomerase(D-LIase),can achieve an isomerization reaction between D-mannose and D-fructose.However,the weak thermostability of D-LIase limits its efficient conversion from D-fructose to D-mannose.Nonetheless,few studies are available that have investigated the molecular modification of D-LIase to improve its thermal stability.In this study,computer-aided tools including FireProt,PROSS,and Consensus Finder were employed to jointly design D-LIase mutants with improved thermostability for the first time.Finally,the obtained five-point mutant M5(N21G/E78P/V58Y/C119Y/K170P)showed high thermal stability and cat-alytic activity.The half-life of M5 at 65◦C was 10.22 fold,and the catalytic efficiency towards 600 g/L of D-fructose was 2.6 times to that of the wild type enzyme,respectively.Molecular dynamics simulation and intramolecular forces analysis revealed a thermostability mechanism of highly rigidity conformation,newly formed hydrogen bonds andπ-cation interaction between and within protein domains,and redistributed surface electrostatic charges for the mutant M5.This research provided a promising D-LIase mutant for the industrial production of D-mannose from D-fructose.
基金supported by the Open Research Fund of Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control (No. EPD202002)Scientific Research Project of Education Department of Hunan Province (No. 20C0057)the Science and Technology Department of Hunan Province (Nos. 2021JJ10007, 2021NK2015)。
文摘Simultaneous anammox and denitrification(SAD) is an efficient approach to treat wastewater having a low C/N ratio;however, few studies have investigated a combination of SAD and partial nitritation(PN). In this study, a lab-scale up-flow blanket filter(UBF) and zeolite sequence batch reactor(ZSBR) were continuously operated to implement SAD and PN advantages, respectively. The UBF achieved a high total nitrogen(TN) removal efficiency of over 70% during the start-up stage(days 1–50), and reached a TN removal efficiency of 96%in the following 90 days(days 51–140) at COD/NH_(4)^(+)-N ratio of 2.5. The absolute abundance of anammox bateria increased to the highest value of 1.58 × 107copies/μL DNA;Comamonadaceae was predominant in the UBF at the optimal ratio. Meanwhile, ZSBR was initiated on day 115 as fast nitritation process to satisfy the influent requirement for the UBF. The combined process was started on day 140 and then lasted for 30 days, during the combined process, between the two reactors, the UBF was the main contributor for TN(66.5% ± 4.5%)and COD(71.8% ± 4.9%) removal. These results demonstrated that strong SAD occurred in the UBF when following a ZSBR with in-situ NOB elimination. This research presents insights into a novel biological nitrogen removal process for low C/N ratio wastewater treatment.
基金supported by the National Natural Science Foundation of China(Nos.22302154,U22A20391,22078256,22202043 and 82202355)Innovation Capability Support Program of Shanxi(No.2023-CX-TD-26)+3 种基金the Programme of Introducing Talents of Discipline to Universities(No.B23025)the“Young Talent Support Plan”of Xi’an Jiaotong University(No.HG6J030)the high-level innovation and entrepreneurship talent project of Qinchuangyuan(No.QCYRCXM-2023-98)the Young and Middle-aged Scholars Project of Fujian Province(No.JAT210368).
文摘Organic conjugated polymers have received extensive attention due to their unique electronic properties.However,there have been relatively few reports on the dark photocatalytic reactions utilizing organic conjugated polymers.Herein,we report the successful synthesis of an organic conjugated polymer based on poly(heptazine imide)nanocrystals(CNNCs)for H_(2)O_(2)evolution and biomedical applications using a simple salt molten method and sonication-centrifugation process.The results show that these colloid CNNCs have the characteristics of photogenerated electrons accumulation and realize dark photocatalysis with high reducibility under visible light irradiation.Notably,these accumulating photogenerated electrons can reduce O_(2)in darkness to produce H_(2)O_(2).In addition,cytotoxicity tests were conducted and it was found that H_(2)O_(2)produced under dark conditions could oxidize L-arginine(L-Arg)to NO,which effectively killed tumors in the dark.This work provides an important strategy to construct organic conjugated semiconductor nanocrystals and applying them to future energy and biomedical fields.
基金supported by the National Natural Science Foundation of China(31300551)the Start-up Grant of Scientific Research from Anqing Normal University(044-K05000130005)
文摘The paper provides descriptions and illustrations of the intemal reproductive systems in both sexes of a wide-spread species, Tipula (Yamatotipula) nova, and analyzes the possible usefulness of some internal reproductive structures for taxonomy in subgenus Tipula (Yamatotipula). The female ovipositor is described and illustrated for the first time. The original description of the male hypopygium is expanded upon the description of new morphological characters and detailed illustrations.
基金supported by grants from the National Natural Science Foundation of China(31300551)the start-up grant of scientific research from Anqing Normal University(044-K05000130005)
文摘The paper reports eight species from Mountain Huang, Anhui, China, including two new species, Nephrotoma huangshanensis sp. nov. and Tipula (Pterelachisus) pseudobiaciculifera sp. nov. The males of four species, Pselliophora xanthopimplina Enderlein, 1921, Tanyptera hubeiensis Yang & Yang, 1988, Tipula coxitalis Alexander, 1935 and Tipulodina xyris (Alexander, 1949) are redescribed and illustrated, with new morphological characters. All specimens are deposited in the animal specimen room, School of Life Sciences, Anqing Normal University, Anhui Province, China.
基金supported by the National Key R&D Program of China(No.2017YFC1600100)the National Natural Science Foundation of China(No.31772054)+2 种基金the project of the Department of Education of Henan Province(No.18A550010)the Science and Technology Department of Henan Province(No.182102110303)the Doctor Startup Fund(No.53000153)of Henan University of Animal Husbandry and Economy。
文摘Staphylococcal enterotoxin A(SEA)synthesized by Staphylococcus aureus is a foodborne and heatstable toxin,which is a great threat to human health(Pexara et al.,2010).Highly sensitive antibodies are a key factor in the immunological detection of SEA,which is one of the most effective ways to detect SEA because of its accuracy,agility,and efficiency(Nouri et al.,2018).