A phoxonic crystal waveguide with the glide symmetry is designed,in which both electromagnetic and elastic waves can propagate along the glide plane at the same time.Due to the glide symmetry,the bands of the phoxonic...A phoxonic crystal waveguide with the glide symmetry is designed,in which both electromagnetic and elastic waves can propagate along the glide plane at the same time.Due to the glide symmetry,the bands of the phoxonic crystal super-cell degenerate in pairs at the boundary of the Brillouin zone.This is the so-called band-sticking effect and it causes the appearance of gapless guided-modes.By adjusting the magnitude of the glide dislocation the edge bandgaps,the bandgap of the guided-modes at the boundary of the Brillouin zone,can be further adjusted.The photonic and phononic guided-modes can then possess only one mode for a certain frequency with relatively low group velocities,achieving single-mode guided-bands with relatively flat dispersion relationship.In addition,there exists acousto-optic interaction in the cavity constructed by the glide plane.The proposed waveguide has potential applications in the design of novel optomechanical devices.展开更多
The reactive diluent prepared by siloxane modified Trimethylene oxide can improve the performance of the UV curing system.Therefore,1,7-bis[(3-ethyl-3-methoxyoxacylobutane)propyl]octadecylosiloxane(BEMOPOMTS)was synth...The reactive diluent prepared by siloxane modified Trimethylene oxide can improve the performance of the UV curing system.Therefore,1,7-bis[(3-ethyl-3-methoxyoxacylobutane)propyl]octadecylosiloxane(BEMOPOMTS)was synthesized from diethyl carbonate,trimethylopropanes,allyl bromide,and 1,1,3,3,5,5,7,7-octadecylosiloxane as the main raw materials.BEMOPOMTS can be used as reactive diluents in the field of cationic UV curing.It has good thermal stability,and the addition of BEMOPOMTS significantly improves the tensile strength and elongation at break of epoxy resin.Compared with the pure epoxy resin,adding 20%BEMOPOMTS increased the elastic modulus by 25%to 677 MPa.展开更多
We investigate propagation of dust ion acoustic solitary wave(DIASW)in a multicomponent dusty plasma with adiabatic ions,superthermal electrons,and stationary dust.The reductive perturbation method is employed to deri...We investigate propagation of dust ion acoustic solitary wave(DIASW)in a multicomponent dusty plasma with adiabatic ions,superthermal electrons,and stationary dust.The reductive perturbation method is employed to derive the damped Korteweg-de Vries(DKdV)equation which describes DIASW.The result reveals that the adiabaticity of ions significantly modifies the basic features of the DIASW.The ionization effect makes the solitary wave grow,while collisions reduce the growth rate and even lead to the damping.With the increases in ionization cross sectionΔσ/σ_(0),ion-to-electron density ratioδ_(ie)and superthermal electrons parameterκ,the effect of ionization on DIASW enhances.展开更多
Nanosecond pulsed discharges at atmospheric pressure in a pin-to-pin electrode configuration are well reproducible in time and space, which is beneficial to the fundamentals and applications of low-temperature plasmas...Nanosecond pulsed discharges at atmospheric pressure in a pin-to-pin electrode configuration are well reproducible in time and space, which is beneficial to the fundamentals and applications of low-temperature plasmas. In this experiment, the discharges in helium(He) and He with 2.3%water vapor(H_(2)O) are driven by a series of 10 ns overvoltage pulses(~13 k V). Special attention is paid to the spectral characteristics obtained in the center of discharges by time-resolved optical emission spectroscopy. It is found that in helium, the emission of atomic and molecular helium during the afterglow is more intense than that in the active discharge, while in the He+2.3%H_(2)O mixture, helium emission is only observed during the discharge pulse and the molecular helium emission disappears. In addition, the emissions of OH(A-X) and Hα present similar behavior that increases sharply during the falling edge of the voltage pulse as the electrons cool down rapidly. The gas temperature is set to remain low at 540 K by fitting the OH(A-X) band. A comparative study on the emission of radiative species(He, He_(2), OH and H)is performed between these two discharge cases to derive their main production mechanisms. In both cases, the dominant primary ion is He^(+) at the onset of discharges, but their He^(+) charge transfer processes are quite different. Based on these experimental data and a qualitative discussion on the discharge kinetics, with regard to the present discharge conditions, it is shown that the electron-assisted three-body recombination processes appear to be the significant sources of radiative OH and H species in high-density plasmas.展开更多
We develop a numerical method for the time evolution of Gaussian wave packets on flat-band lattices in the presence of correlated disorder.To achieve this,we introduce a method to generate random on-site energies with...We develop a numerical method for the time evolution of Gaussian wave packets on flat-band lattices in the presence of correlated disorder.To achieve this,we introduce a method to generate random on-site energies with prescribed correlations.We verify this method with a one-dimensional(1D)cross-stitch model,and find good agreement with analytical results obtained from the disorder-dressed evolution equations.This allows us to reproduce previous findings,that disorder can mobilize 1D flat-band states which would otherwise remain localized.As explained by the corresponding disorder-dressed evolution equations,such mobilization requires an asymmetric disorder-induced coupling to dispersive bands,a condition that is generically not fulfilled when the flat-band is resonant with the dispersive bands at a Dirac point-like crossing.We exemplify this with the 1D Lieb lattice.While analytical expressions are not available for the two-dimensional(2D)system due to its complexity,we extend the numerical method to the 2D a–T3 model,and find that the initial flat-band wave packet preserves its localization when a=0,regardless of disorder and intersections.However,when a̸=0,the wave packet shifts in real space.We interpret this as a Berry phase controlled,disorder-induced wave-packet mobilization.In addition,we present density functional theory calculations of candidate materials,specifically Hg1−xCdxTe.The flat-band emerges near the G point(α=0)in the Brillouin zone.展开更多
We have carried out the Galactic Plane Pulsar Snapshot(GPPS)survey by using the Five-hundred-meter Aperture Spherical radio Telescope(FAST),the most sensitive systematic pulsar survey in the Galactic plane.In addition...We have carried out the Galactic Plane Pulsar Snapshot(GPPS)survey by using the Five-hundred-meter Aperture Spherical radio Telescope(FAST),the most sensitive systematic pulsar survey in the Galactic plane.In addition to more than 500 pulsars already discovered through normal periodical search,we report here the discovery of 76 new transient radio sources with sporadic strong pulses,detected by using the newly developed module for a sensitive single-pulse search.Their small DM values suggest that they all are Galactic rotating radio transients(RRATs).They show different properties in the follow-up observations.More radio pulses have been detected from 26 transient radio sources but no periods can be found due to a limited small number of pulses from all FAST observations.The followup observations show that 16 transient sources are newly identified as being the prototypes of RRATs with a period already determined from more detected sporadic pulses,and 10 sources are extremely nulling pulsars,and 24 sources are weak pulsars with sparse strong pulses.On the other hand,48 previously known RRATs have been detected by the FAST,either during verification observations for the GPPS survey or through targeted observations of applied normal FAST projects.Except for one RRAT with four pulses detected in a session of 5-minute observation and four RRATs with only one pulse detected in a session,sensitive FAST observations reveal that 43 RRATs are just generally weak pulsars with sporadic strong pulses or simply very nulling pulsars,so that the previously known RRATs always have an extreme emission state together with a normal hardly detectable weak emission state.This is echoed by the two normal pulsars J1938+2213 and J1946+1449 with occasional brightening pulses.Though strong pulses of RRATs are very outstanding in the energy distribution,their polarization angle variations follow the polarization angle curve of the averaged normal pulse profile,suggesting that the predominant sparse pulses of RRATs are emitted in the same region with the same geometry as normal weak pulsars.展开更多
Recently another long period radio pulsar GPM J1839-10 has been reported,similar to GLEAM-X J162759.5-523504.3.Previously,the energy budget and rotational evolution of long period radio pulsars had been considered.Thi...Recently another long period radio pulsar GPM J1839-10 has been reported,similar to GLEAM-X J162759.5-523504.3.Previously,the energy budget and rotational evolution of long period radio pulsars had been considered.This time,the death line and pulse width for neutron star and white dwarf pulsars are investigated.The pulse width is included as the second criterion for neutron star and white dwarf pulsars.It is found that:(1)PSR J0250+5854 and PSR J0901-4046 etc.should be normal radio pulsars.They have narrow pulse width and they lie near the radio emission death line.(2)The two long period radio pulsars GLEAM-X J162759.5-523504.3 and GPM J1839-10 are unlikely to be normal radio pulsars.Their possible pulse width is relatively large.They lie far below the fiducial death line on the P-P^(·)diagram.(3)GLEAM-X J162759.5-523504.3 and GPM J1839-10 may be magnetars or white dwarf radio pulsars.At present,there are many parameters and uncertainties in both of these possibilities.展开更多
Recently,SnPS_(3) has gained attention as an impressive sodium-ion battery anode material because of its significant theoretical specific capacity derived from the conversion-alloying reaction mechanism.Nevertheless,i...Recently,SnPS_(3) has gained attention as an impressive sodium-ion battery anode material because of its significant theoretical specific capacity derived from the conversion-alloying reaction mechanism.Nevertheless,its practical applicability is restricted by insufficient rate ability,and severe capacity loss due to inadequate electrical conductivity and dramatic volume expansion.Inspired by the electrochemical enhancement effect of MXene substrates and the innovative Lewis acidic etching for MXene preparation,SnPS_(3)/Ti_(3)C_(2)T_(x) MXene(T=-Cl and-O) is constructed by synchronously phospho-sulfurizing Sn/Ti_(3)C_(2)T_(x) precursor.Benefiting from the boosted Na^(+) diffusion and electron transfer rates,as well as the mitigated stress expansion,the synthesized SnPS_(3/)Ti_(3)C_(2)T_(x) composite demonstrates enhanced rate capability(647 mA h g^(-1) at 10 A g^(-1)) alongside satisfactory long-term cycling stability(capacity retention of 94.6% after 2000 cycles at 5 A g^(-1)).Importantly,the assembled sodium-ion full cell delivers an impressive capacity retention of 97.7% after undergoing 1500 cycles at 2 A g^(-1).Moreover,the sodium storage mechanism of the SnPS_(3/)Ti_(3)C_(2)T_(x) electrode is elucidated through in-situ and ex-situ characterizations.This work proposes a novel approach to ameliorate the energy storage performance of thiophosphites by facile in-situ construction of composites with MXene.展开更多
Terahertz metamaterial biosensors have attracted significant attention in the biological field due to their advantages of label-free,real-time and in situ detection.In this paper,a highly sensitive metamaterial sensor...Terahertz metamaterial biosensors have attracted significant attention in the biological field due to their advantages of label-free,real-time and in situ detection.In this paper,a highly sensitive metamaterial sensor with semi-ring mirror symmetry based on toroidal dipole resonance is designed for a new metamaterial biosensor.It is shown that a refractive index sensitivity of 337.5 GHz per refractive index unit can be achieved under an analyte of saturated thickness near a 1.33 THz transmission dip.For biosensor samples where aflatoxin B1 is dropped on the metamaterial surface in our experiment,dip amplitudes of transmission varying from 0.1904 to 0.203 and 0.2093 are observed as aflatoxin B1 concentrations are altered from 0 to 0.001μg·ml-1 and to 0.01μg·ml-1,respectively.Furthermore,when aflatoxin B1 concentrations are 0.1μg·ml-1,1μg·ml-1,10μg·ml-1 and 100μg·ml-1,dip amplitudes of 0.2179,0.226,0.2384 and 0.2527 and dip redshifts of 10.1 GHz,20.1 GHz,27.7 GHz and 37.6 GHz are respectively observed.These results illustrate high-sensitivity,label-free detection of aflatoxin B1,enriching the applications of sensors in the terahertz domain.展开更多
A spatial template is important to study nearby supernova remnants(SNRs).For SNR G332.5-5.6,we report a Gaussian disk with a radius of about 1°.06 to be a potential good spatial model in the γ-ray band.Employing...A spatial template is important to study nearby supernova remnants(SNRs).For SNR G332.5-5.6,we report a Gaussian disk with a radius of about 1°.06 to be a potential good spatial model in the γ-ray band.Employing this new Gaussian disk,its GeV lightcurve shows a significant variability of about seven sigma.The γ-ray observations of this SNR could be explained well either by a leptonic model or a hadronic model,in which a flat spectrum for the ejected electrons/protons is required.展开更多
This review paper explores the efficacy of magnesium ferrite-based catalysts in photocatalytic degradation of organic contaminates(antibiotic and dyes).We report the influence of different doping strategies,synthesis ...This review paper explores the efficacy of magnesium ferrite-based catalysts in photocatalytic degradation of organic contaminates(antibiotic and dyes).We report the influence of different doping strategies,synthesis methods,and composite materials on the degradation efficiency of these pollutants.Our analysis reveals the versatile and promising nature of magnesium ferrite-based catalysts,offering the valuable insights into their practical application for restoring the environment.Due to the smaller band gap and magnetic nature of magnesium ferrite,it holds the benefit of utilising the broader spectrum of light while also being recoverable.The in-depth analysis of magnesium ferrites'photocatalytic mechanism could lead to the development of cheap and reliable photocatalyst for the wastewater treatment.This concise review offers a thorough summary of the key advancements in this field,highlighting the pivotal role of the magnesium ferrite based photocatalysts in addressing the pressing global issue of organic pollutants in wastewater.展开更多
Theories of modified gravity suggest that the propagation speed of gravitational waves(GW)v_gmay deviate from the speed of light c.A constraint can be placed on the difference between c and v_gwith a simple method tha...Theories of modified gravity suggest that the propagation speed of gravitational waves(GW)v_gmay deviate from the speed of light c.A constraint can be placed on the difference between c and v_gwith a simple method that uses the arrival time delay between GW and electromagnetic wave simultaneously emitted from a burst event.We simulated the joint observation of GW and short gamma-ray burst signals from binary neutron star merger events in different observation campaigns,involving advanced LIGO(aLIGO)in design sensitivity and Einstein Telescope(ET)joint-detected with Fermi/GBM.As a result,the relative precision of constraint on v_gcan reach~10~(-17)(aLIGO)and~10^(-18)(ET),which are one and two orders of magnitude better than that from GW170817,respectively.We continue to obtain the bound of graviton mass m_g≤7.1(3.2)×10~(-20)eV with aLIGO(ET).Applying the Standard-Model Extension test framework,the constraint on v_gallows us to study the Lorentz violation in the nondispersive,nonbirefringent limit of the gravitational sector.We obtain the constraints of the dimensionless isotropic coefficients S_(00)^(4)at mass dimension d=4,which are-1×10^(-15)<S_(00)^(4)<9×10^(-17)for aLIGO and-4×10^(-16)<s_(00)^(4<8<10^(-18))for ET.展开更多
The polar magnetic fields of the Sun play an important role in governing solar activity and powering fast solar wind.However,because our view of the Sun is limited in the ecliptic plane,the polar regions remain largel...The polar magnetic fields of the Sun play an important role in governing solar activity and powering fast solar wind.However,because our view of the Sun is limited in the ecliptic plane,the polar regions remain largely uncharted.Using the high spatial resolution and polarimetric precision vector magnetograms observed by Hinode from 2012 to 2021,we investigate the long-term variation of the magnetic fields in polar caps at different latitudes.The Hinode magnetic measurements show that the polarity reversal processes in the north and south polar caps are non-simultaneous.The variation of the averaged radial magnetic flux density reveals that,in each polar cap,the polarity reversal is completed successively from the 70°latitude to the pole,reflecting a poleward magnetic flux migration therein.These results clarify the polar magnetic polarity reversal process at different latitudes.展开更多
Near-infrared(NIR)transparent inverted all-inorganic perovskite solar cells(PSCs)are excellent top cell candidates in tandem applications.An essential challenge is the replacement of metal contacts with transparent co...Near-infrared(NIR)transparent inverted all-inorganic perovskite solar cells(PSCs)are excellent top cell candidates in tandem applications.An essential challenge is the replacement of metal contacts with transparent conductive oxide(TCO)electrodes,which requires the introduction of a buffer layer to prevent sputtering damage.In this study,we show that the conventional buffers(i.e.,small organic molecules and atomic layer deposited metal oxides)used for organic-inorganic hybrid perovskites are not applicable to all-inorganic perovskites,due to non-uniform coverage of the vulnerable layers underneath,deterioration upon ion bombardment and moisture induced perovskite phase transition,A thin film of metal oxide nanoparticles by the spin-coating method serves as a non-destructive buffer layer for inorganic PSCs.All-inorganic inverted near-infrared-transparent PSCs deliver a PCE of 17.46%and an average transmittance of 73.7%between 780 and 1200 nm.In combination with an 18.56%Cu(In,Ga)Se_(2) bottom cell,we further demonstrate the first all-inorganic perovskite/CIGS 4-T tandem solar cell with a PCE of 24.75%,which exhibits excellent illumination stability by maintaining 86.7%of its initial efficiency after 1400 h.The non-destructive buffer lays the foundation for efficient and stable NIR-transparent inverted inorganic perovskite solar cells and perovskite-based tandems.展开更多
We revisited the vortex states of 2H-NbSe_(2) towards zero fields by a low-temperature scanning tunneling microscope.Fine structures of the anisotropic vortex states were distinguished, one is a spatially non-splittin...We revisited the vortex states of 2H-NbSe_(2) towards zero fields by a low-temperature scanning tunneling microscope.Fine structures of the anisotropic vortex states were distinguished, one is a spatially non-splitting zero bias peak, and the other is an in-gap conductance anomaly resembling evolved crossing features around the center of the three nearest vortices.Both of them distribute solely along the next nearest neighboring direction of the vortex lattice and become unresolved in much higher magnetic fields, implying an important role played by the vortex–vortex interactions. To clarify these issues,we have studied the intrinsic vortex states of the isolated trapped vortex in zero fields at 0.45 K. It is concluded that the anisotropic zero bias peak is attributed to the superconducting gap anisotropy, and the spatially evolved crossing features are related to the vortex–vortex interaction. The vortex core size under the zero-field limit is determined. These results provide a paradigm for studying the inherent vortex states of type-II superconductors especially based on an isolated vortex.展开更多
As a type of energy storage device between traditional capacitors and batteries,the supercapacitor has the advantages of energy saving and environmental protection,high power density,fast charging and discharging spee...As a type of energy storage device between traditional capacitors and batteries,the supercapacitor has the advantages of energy saving and environmental protection,high power density,fast charging and discharging speed,long cycle life,and so forth.One of the key factors affecting the performance of supercapacitor is the electrode material.Carbon materials,such as carbon nanotube,graphene,activated carbon,and carbon nanocage,are most widely concerned in the application of supercapacitors.The synergistic effect of composites can often obtain excellent results,which is one of the common strategies to increase the electrochemical performance of supercapacitors.To further improve the performance of binary composites,it is a relatively simple method to increase the components as the“bridge”between the two materials to form the ternary composites.The review mainly introduces the current research progress of supercapacitors with pure carbon nanomaterials and multistage carbon nanostructures(composites)as electrodes.The characteristics and application directions of different pure carbon nanomaterials are introduced in detail.Different ways of multilevel structure(material)composite have their own effects on the development of high-performance supercapacitors.We also highlight the recent advances related to these fields and provide our insight into high-energy supercapacitors.展开更多
Dry sliding wear behaviour of stir-cast aluminium matrix composites(AMCs)containing LM13 alloy as matrix and ceramic particles as reinforcement was investigated.Two different ceramic particle reinforcements were used ...Dry sliding wear behaviour of stir-cast aluminium matrix composites(AMCs)containing LM13 alloy as matrix and ceramic particles as reinforcement was investigated.Two different ceramic particle reinforcements were used separately:synthetic ceramic particles(B_(4)C),and natural ceramic particles(ilmenite).Optical micrographs showed uniform dispersion of reinforced particles in the matrix material.Reinforced particles refined the grain size of eutectic silicon and changed its morphology to globular type.B_(4)C reinforced composites(BRCs)showed maximum improvement in hardness of AMCs.Ilmenite reinforced composites(IRCs)showed maximum reduction in coefficient of friction values due to strong matrix−reinforcement interfacial bonding caused by the formation of interfacial compounds.Dry sliding wear behaviour of composites was significantly improved as compared to base alloy.The low density and high hardness of B_(4)C particles resulted in high dislocation density around filler particles in BRCs.On the other hand,the low thermal conductivity of ilmenite particles resulted in early oxidation and formation of a tribo-layer on surface of IRCs.So,both types of reinforcements led to the improvement in wear properties of AMCs,though the mechanisms involved were very different.Thus,the low-cost ilmenite particles can be used as alternative fillers to the high-cost B_(4)C particles for processing of wear resistant composites.展开更多
Hydrogen flakes and elemental segregation are the main causes of steel rejection. To eliminate hydrogen flaking, the present study focuses on the manufacture of AMS-4340 ultra-high-strength steel through an alternate ...Hydrogen flakes and elemental segregation are the main causes of steel rejection. To eliminate hydrogen flaking, the present study focuses on the manufacture of AMS-4340 ultra-high-strength steel through an alternate route. AMS-4340 was prepared using three different processing routes. The primary processing route consisted of melting in an electric arc furnace, refining in a ladle refining furnace, and vacuum degassing. After primary processing, the heat processes(D1, D2, and D3) were cast into cylindrical electrodes. For secondary processing, electroslag remelting(ESR) was carried out on the primary heats to obtain four secondary heats: E1, E2, E3, and E4. Homogenization of ingots E1, E2, E3, and E4 was carried out at 1220°C for 14, 12, 12, and 30 h, respectively, followed by an antiflaking treatment at 680°C and air cooling. In addition, the semi-finished ESR ingot E4 was again homogenized at 1220°C for 6–8 h and a second antiflaking treatment was performed at 680°C for 130 h followed by air cooling. The chemical segregation of each heat was monitored through a spectroscopy technique. The least segregation was observed for heat E4. Macrostructure examination revealed the presence of hydrogen flakes in heats E1, E2, and E3, whereas no hydrogen flakes were observed in heat E4. Ultrasonic testing revealed no internal defects in heat E4, whereas internal defects were observed in the other heats. A grain size investigation revealed a finer grain size for E4 compared with those for the other heats. Steel produced in heat E4 also exhibited superior mechanical properties. Therefore, the processing route used for heat E4 can be used to manufacture an AMS-4340 ultra-high-strength steel with superior properties compared with those of AMS-4340 prepared by the other investigated routes.展开更多
The influence of soaking time on the nonlinear electrical behavior and dielectric properties of TiO2-based varistor ceramics was investigated. Based on single sintering process, six disk samples of (Sr, Bi, Si, Ta)-...The influence of soaking time on the nonlinear electrical behavior and dielectric properties of TiO2-based varistor ceramics was investigated. Based on single sintering process, six disk samples of (Sr, Bi, Si, Ta)-doped TiO2-based varistor ceramics were fabricated by sintering at 1 250 ℃ for 0.5-5.0 h. The samples were characterized by X-ray diffraction, voltage-current characteristics, energy spectra, metallographs, breakdown voltages, and apparent dielectric constant. It is found that the breakdown electrical field intensity at a current density of 10 mA/cma decreases from 5.5 to 4.1 V/mm first and then increases to 7.0 V/mm, the nonlinear coefficient increases from 2.39 to 2.62 first and then decreases to 2.42, and the apparent dielectric constant increases from 98 200 to 1l5 049 first and then decreases to 73 865 with the soaking time increasing from 0.5 to 5.0 h. These indicate that the optimal soaking time is 2.0-3.0 h considering both nonlinear electrical behavior and dielectric properties.展开更多
Dip-coated double-wall carbon nanotubes(DWCNTs) and titanium dioxide(TiO2) sol have been prepared and smeared onto the tip of a conductive iron needle which serves as the corona discharge anode in a needle-cylinder co...Dip-coated double-wall carbon nanotubes(DWCNTs) and titanium dioxide(TiO2) sol have been prepared and smeared onto the tip of a conductive iron needle which serves as the corona discharge anode in a needle-cylinder corona system.Compared with the discharge electrode of a CNT-coated needle tip, great advancements have been achieved with the TiO_2/CNT-coated electrode, including higher discharge current, ionic wind velocity, and energy conversion efficiency,together with lower corona onset voltage and power consumption.Several parameters related to the discharge have been phenomenologically and mathematically studied for comparison.Thanks to the morphology reorientation of the CNT layer and the anti-oxidation of TiO_2, better performance of corona discharge induced wind generation of the TiO2/CNT-coated electrode system has been achieved.This novel decoration may provide better thoughts about the corona discharge application and wind generation.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.12064025)the Natural Science Foundation of Jiangxi Province,China(Grant No.20212ACB202006)+1 种基金the Major Discipline Academic and Technical Leaders Training Program of Jiangxi Province,China(Grant No.20204BCJ22012)the Open Project of the Key Laboratory of Radar Imaging and Microwave Photonic Technology of the Education Ministry of China.
文摘A phoxonic crystal waveguide with the glide symmetry is designed,in which both electromagnetic and elastic waves can propagate along the glide plane at the same time.Due to the glide symmetry,the bands of the phoxonic crystal super-cell degenerate in pairs at the boundary of the Brillouin zone.This is the so-called band-sticking effect and it causes the appearance of gapless guided-modes.By adjusting the magnitude of the glide dislocation the edge bandgaps,the bandgap of the guided-modes at the boundary of the Brillouin zone,can be further adjusted.The photonic and phononic guided-modes can then possess only one mode for a certain frequency with relatively low group velocities,achieving single-mode guided-bands with relatively flat dispersion relationship.In addition,there exists acousto-optic interaction in the cavity constructed by the glide plane.The proposed waveguide has potential applications in the design of novel optomechanical devices.
基金Funded by the National Natural Science Foundation of China(No.21865017)。
文摘The reactive diluent prepared by siloxane modified Trimethylene oxide can improve the performance of the UV curing system.Therefore,1,7-bis[(3-ethyl-3-methoxyoxacylobutane)propyl]octadecylosiloxane(BEMOPOMTS)was synthesized from diethyl carbonate,trimethylopropanes,allyl bromide,and 1,1,3,3,5,5,7,7-octadecylosiloxane as the main raw materials.BEMOPOMTS can be used as reactive diluents in the field of cationic UV curing.It has good thermal stability,and the addition of BEMOPOMTS significantly improves the tensile strength and elongation at break of epoxy resin.Compared with the pure epoxy resin,adding 20%BEMOPOMTS increased the elastic modulus by 25%to 677 MPa.
基金supported by the Project of Scientific and Technological Innovation Base of Jiangxi Province,China (Grant No.20203CCD46008)the Key R&D Plan of Jiangxi Province,China (Grant No.20223BBH80006)+1 种基金the Natural Science Foundation of Jiangxi Province,China (Grant No.20212BAB211025)the Jiangxi Province Key Laboratory of Fusion and Information Control (Grant No.20171BCD40005)。
文摘We investigate propagation of dust ion acoustic solitary wave(DIASW)in a multicomponent dusty plasma with adiabatic ions,superthermal electrons,and stationary dust.The reductive perturbation method is employed to derive the damped Korteweg-de Vries(DKdV)equation which describes DIASW.The result reveals that the adiabaticity of ions significantly modifies the basic features of the DIASW.The ionization effect makes the solitary wave grow,while collisions reduce the growth rate and even lead to the damping.With the increases in ionization cross sectionΔσ/σ_(0),ion-to-electron density ratioδ_(ie)and superthermal electrons parameterκ,the effect of ionization on DIASW enhances.
基金the funding provided by National Natural Science Foundation of China (No.12065019)Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 20KJB140025)+1 种基金the Open Fund of the Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province(No. JBGS032)the Scientific Research Project for the Introduction Talent of Yancheng Institute of Technology(Nos. XJR2020031 and XJR2021069)。
文摘Nanosecond pulsed discharges at atmospheric pressure in a pin-to-pin electrode configuration are well reproducible in time and space, which is beneficial to the fundamentals and applications of low-temperature plasmas. In this experiment, the discharges in helium(He) and He with 2.3%water vapor(H_(2)O) are driven by a series of 10 ns overvoltage pulses(~13 k V). Special attention is paid to the spectral characteristics obtained in the center of discharges by time-resolved optical emission spectroscopy. It is found that in helium, the emission of atomic and molecular helium during the afterglow is more intense than that in the active discharge, while in the He+2.3%H_(2)O mixture, helium emission is only observed during the discharge pulse and the molecular helium emission disappears. In addition, the emissions of OH(A-X) and Hα present similar behavior that increases sharply during the falling edge of the voltage pulse as the electrons cool down rapidly. The gas temperature is set to remain low at 540 K by fitting the OH(A-X) band. A comparative study on the emission of radiative species(He, He_(2), OH and H)is performed between these two discharge cases to derive their main production mechanisms. In both cases, the dominant primary ion is He^(+) at the onset of discharges, but their He^(+) charge transfer processes are quite different. Based on these experimental data and a qualitative discussion on the discharge kinetics, with regard to the present discharge conditions, it is shown that the electron-assisted three-body recombination processes appear to be the significant sources of radiative OH and H species in high-density plasmas.
基金the National Natural Sci-ence Foundation of China(Grant No.61988102)the Key Research and Development Program of Guangdong Province(Grant No.2019B090917007)+5 种基金the Science and Technology Planning Project of Guangdong Province(Grant No.2019B090909011)Q.L.acknowledges Guangzhou Basic and Applied Basic Research Project(Grant No.2023A04J0018)Z.L.acknowledges the support of fund-ing from Chinese Academy of Sciences E1Z1D10200 and E2Z2D10200from ZJ project 2021QN02X159 and from JSPS(Grant Nos.PE14052 and P16027)We gratefully ac-knowledge HZWTECH for providing computation facilities.Z.-X.H.was supported by the National Natural Science Foun-dation of China(Grant Nos.11974064 and 12147102)the Fundamental Research Funds for the Central Universities(Grant No.2020CDJQY-Z003).
文摘We develop a numerical method for the time evolution of Gaussian wave packets on flat-band lattices in the presence of correlated disorder.To achieve this,we introduce a method to generate random on-site energies with prescribed correlations.We verify this method with a one-dimensional(1D)cross-stitch model,and find good agreement with analytical results obtained from the disorder-dressed evolution equations.This allows us to reproduce previous findings,that disorder can mobilize 1D flat-band states which would otherwise remain localized.As explained by the corresponding disorder-dressed evolution equations,such mobilization requires an asymmetric disorder-induced coupling to dispersive bands,a condition that is generically not fulfilled when the flat-band is resonant with the dispersive bands at a Dirac point-like crossing.We exemplify this with the 1D Lieb lattice.While analytical expressions are not available for the two-dimensional(2D)system due to its complexity,we extend the numerical method to the 2D a–T3 model,and find that the initial flat-band wave packet preserves its localization when a=0,regardless of disorder and intersections.However,when a̸=0,the wave packet shifts in real space.We interpret this as a Berry phase controlled,disorder-induced wave-packet mobilization.In addition,we present density functional theory calculations of candidate materials,specifically Hg1−xCdxTe.The flat-band emerges near the G point(α=0)in the Brillouin zone.
基金This project,as one of five key projects,is being carried out by using FAST,a Chinese national mega-science facility built and operated by the National Astronomical Observatories,Chinese Academy of Sciencessupported by the National Natural Science Foundation of China(NSFC,Nos.11988101 and 11833009)+5 种基金the Key Research Program of the Chinese Academy of Sciences(grant No.QYZDJ-SSWSLH021)supported by the Cultivation Project for the FAST scientific Payoff and Research Achievement of CAMS-CASsupported by NSFC No.12133004,partially supported by NSFC No.U1731120partially supported by the NSFC No.11873058,partially supported by NSFC No.U2031115partially supported by the National SKA program of China No.2020SKA0120200partially supported by the Guangzhou Science and Technology Project No.202102010466。
文摘We have carried out the Galactic Plane Pulsar Snapshot(GPPS)survey by using the Five-hundred-meter Aperture Spherical radio Telescope(FAST),the most sensitive systematic pulsar survey in the Galactic plane.In addition to more than 500 pulsars already discovered through normal periodical search,we report here the discovery of 76 new transient radio sources with sporadic strong pulses,detected by using the newly developed module for a sensitive single-pulse search.Their small DM values suggest that they all are Galactic rotating radio transients(RRATs).They show different properties in the follow-up observations.More radio pulses have been detected from 26 transient radio sources but no periods can be found due to a limited small number of pulses from all FAST observations.The followup observations show that 16 transient sources are newly identified as being the prototypes of RRATs with a period already determined from more detected sporadic pulses,and 10 sources are extremely nulling pulsars,and 24 sources are weak pulsars with sparse strong pulses.On the other hand,48 previously known RRATs have been detected by the FAST,either during verification observations for the GPPS survey or through targeted observations of applied normal FAST projects.Except for one RRAT with four pulses detected in a session of 5-minute observation and four RRATs with only one pulse detected in a session,sensitive FAST observations reveal that 43 RRATs are just generally weak pulsars with sporadic strong pulses or simply very nulling pulsars,so that the previously known RRATs always have an extreme emission state together with a normal hardly detectable weak emission state.This is echoed by the two normal pulsars J1938+2213 and J1946+1449 with occasional brightening pulses.Though strong pulses of RRATs are very outstanding in the energy distribution,their polarization angle variations follow the polarization angle curve of the averaged normal pulse profile,suggesting that the predominant sparse pulses of RRATs are emitted in the same region with the same geometry as normal weak pulsars.
基金supported by National SKA Program of China(No.2020SKA0120300)the National Natural Science Foundation of China(NSFC,12133004)。
文摘Recently another long period radio pulsar GPM J1839-10 has been reported,similar to GLEAM-X J162759.5-523504.3.Previously,the energy budget and rotational evolution of long period radio pulsars had been considered.This time,the death line and pulse width for neutron star and white dwarf pulsars are investigated.The pulse width is included as the second criterion for neutron star and white dwarf pulsars.It is found that:(1)PSR J0250+5854 and PSR J0901-4046 etc.should be normal radio pulsars.They have narrow pulse width and they lie near the radio emission death line.(2)The two long period radio pulsars GLEAM-X J162759.5-523504.3 and GPM J1839-10 are unlikely to be normal radio pulsars.Their possible pulse width is relatively large.They lie far below the fiducial death line on the P-P^(·)diagram.(3)GLEAM-X J162759.5-523504.3 and GPM J1839-10 may be magnetars or white dwarf radio pulsars.At present,there are many parameters and uncertainties in both of these possibilities.
基金financially National Natural Science Foundation of China (Grant Number: 22265018)Key Project of Natural Science Foundation of Jiangxi Province (Grant Number: 20232ACB204010)。
文摘Recently,SnPS_(3) has gained attention as an impressive sodium-ion battery anode material because of its significant theoretical specific capacity derived from the conversion-alloying reaction mechanism.Nevertheless,its practical applicability is restricted by insufficient rate ability,and severe capacity loss due to inadequate electrical conductivity and dramatic volume expansion.Inspired by the electrochemical enhancement effect of MXene substrates and the innovative Lewis acidic etching for MXene preparation,SnPS_(3)/Ti_(3)C_(2)T_(x) MXene(T=-Cl and-O) is constructed by synchronously phospho-sulfurizing Sn/Ti_(3)C_(2)T_(x) precursor.Benefiting from the boosted Na^(+) diffusion and electron transfer rates,as well as the mitigated stress expansion,the synthesized SnPS_(3/)Ti_(3)C_(2)T_(x) composite demonstrates enhanced rate capability(647 mA h g^(-1) at 10 A g^(-1)) alongside satisfactory long-term cycling stability(capacity retention of 94.6% after 2000 cycles at 5 A g^(-1)).Importantly,the assembled sodium-ion full cell delivers an impressive capacity retention of 97.7% after undergoing 1500 cycles at 2 A g^(-1).Moreover,the sodium storage mechanism of the SnPS_(3/)Ti_(3)C_(2)T_(x) electrode is elucidated through in-situ and ex-situ characterizations.This work proposes a novel approach to ameliorate the energy storage performance of thiophosphites by facile in-situ construction of composites with MXene.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61927813,61865009,and 12104203)Jiangxi Provincial Natural Science Foundation(Grant No.20212ACB201007).
文摘Terahertz metamaterial biosensors have attracted significant attention in the biological field due to their advantages of label-free,real-time and in situ detection.In this paper,a highly sensitive metamaterial sensor with semi-ring mirror symmetry based on toroidal dipole resonance is designed for a new metamaterial biosensor.It is shown that a refractive index sensitivity of 337.5 GHz per refractive index unit can be achieved under an analyte of saturated thickness near a 1.33 THz transmission dip.For biosensor samples where aflatoxin B1 is dropped on the metamaterial surface in our experiment,dip amplitudes of transmission varying from 0.1904 to 0.203 and 0.2093 are observed as aflatoxin B1 concentrations are altered from 0 to 0.001μg·ml-1 and to 0.01μg·ml-1,respectively.Furthermore,when aflatoxin B1 concentrations are 0.1μg·ml-1,1μg·ml-1,10μg·ml-1 and 100μg·ml-1,dip amplitudes of 0.2179,0.226,0.2384 and 0.2527 and dip redshifts of 10.1 GHz,20.1 GHz,27.7 GHz and 37.6 GHz are respectively observed.These results illustrate high-sensitivity,label-free detection of aflatoxin B1,enriching the applications of sensors in the terahertz domain.
基金supported by the National Natural Science Foundation of China under grant 12065017the Jiangxi Provincial Natural Science Foundation of China under grant Nos.20224ACB211001 and 20212BAB201029。
文摘A spatial template is important to study nearby supernova remnants(SNRs).For SNR G332.5-5.6,we report a Gaussian disk with a radius of about 1°.06 to be a potential good spatial model in the γ-ray band.Employing this new Gaussian disk,its GeV lightcurve shows a significant variability of about seven sigma.The γ-ray observations of this SNR could be explained well either by a leptonic model or a hadronic model,in which a flat spectrum for the ejected electrons/protons is required.
文摘This review paper explores the efficacy of magnesium ferrite-based catalysts in photocatalytic degradation of organic contaminates(antibiotic and dyes).We report the influence of different doping strategies,synthesis methods,and composite materials on the degradation efficiency of these pollutants.Our analysis reveals the versatile and promising nature of magnesium ferrite-based catalysts,offering the valuable insights into their practical application for restoring the environment.Due to the smaller band gap and magnetic nature of magnesium ferrite,it holds the benefit of utilising the broader spectrum of light while also being recoverable.The in-depth analysis of magnesium ferrites'photocatalytic mechanism could lead to the development of cheap and reliable photocatalyst for the wastewater treatment.This concise review offers a thorough summary of the key advancements in this field,highlighting the pivotal role of the magnesium ferrite based photocatalysts in addressing the pressing global issue of organic pollutants in wastewater.
基金supported by the National Natural Science Foundation of China under grant 12065017Jiangxi Provincial Natural Science Foundation under grant 20224ACB211001support from the Chinese Academy of Sciences(grant Nos.E329A3M1,E32983U8,and E3545KU2)。
文摘Theories of modified gravity suggest that the propagation speed of gravitational waves(GW)v_gmay deviate from the speed of light c.A constraint can be placed on the difference between c and v_gwith a simple method that uses the arrival time delay between GW and electromagnetic wave simultaneously emitted from a burst event.We simulated the joint observation of GW and short gamma-ray burst signals from binary neutron star merger events in different observation campaigns,involving advanced LIGO(aLIGO)in design sensitivity and Einstein Telescope(ET)joint-detected with Fermi/GBM.As a result,the relative precision of constraint on v_gcan reach~10~(-17)(aLIGO)and~10^(-18)(ET),which are one and two orders of magnitude better than that from GW170817,respectively.We continue to obtain the bound of graviton mass m_g≤7.1(3.2)×10~(-20)eV with aLIGO(ET).Applying the Standard-Model Extension test framework,the constraint on v_gallows us to study the Lorentz violation in the nondispersive,nonbirefringent limit of the gravitational sector.We obtain the constraints of the dimensionless isotropic coefficients S_(00)^(4)at mass dimension d=4,which are-1×10^(-15)<S_(00)^(4)<9×10^(-17)for aLIGO and-4×10^(-16)<s_(00)^(4<8<10^(-18))for ET.
基金supported by the National Key R&D Programs of China(2019YFA0405000,2022YFF0503800,2022YFF0503000)the Strategic Priority Research Programs of the Chinese Academy of Sciences(XDB0560000,XDB41000000)+1 种基金the National Natural Science Foundations of China(NSFC,Grant Nos.12173005,12273060,12350004,12273061,12222306,and 12073001)the Youth Innovation Promotion Association CAS,and Yunnan Academician Workstation of Wang Jingxiu(No.202005AF150025)。
文摘The polar magnetic fields of the Sun play an important role in governing solar activity and powering fast solar wind.However,because our view of the Sun is limited in the ecliptic plane,the polar regions remain largely uncharted.Using the high spatial resolution and polarimetric precision vector magnetograms observed by Hinode from 2012 to 2021,we investigate the long-term variation of the magnetic fields in polar caps at different latitudes.The Hinode magnetic measurements show that the polarity reversal processes in the north and south polar caps are non-simultaneous.The variation of the averaged radial magnetic flux density reveals that,in each polar cap,the polarity reversal is completed successively from the 70°latitude to the pole,reflecting a poleward magnetic flux migration therein.These results clarify the polar magnetic polarity reversal process at different latitudes.
基金financially supported by the National Natural Science Foundation of China (22279083,22109166,52202183)Guangdong Basic and Applied Basic Research Foundation (Grant No.2019A1515011136,2022B1515120006,2023B1515120041,2414050001473)+3 种基金Guangdong Province Higher Vocational Colleges and Schools Pearl River Scholar Funded SchemeGuangdong Provincial Key Laboratory Program (2021B1212040001)from the Department of Science and Technology of Guangdong ProvinceBeijing Institute of TechnologySongshan Lake Materials Laboratory。
文摘Near-infrared(NIR)transparent inverted all-inorganic perovskite solar cells(PSCs)are excellent top cell candidates in tandem applications.An essential challenge is the replacement of metal contacts with transparent conductive oxide(TCO)electrodes,which requires the introduction of a buffer layer to prevent sputtering damage.In this study,we show that the conventional buffers(i.e.,small organic molecules and atomic layer deposited metal oxides)used for organic-inorganic hybrid perovskites are not applicable to all-inorganic perovskites,due to non-uniform coverage of the vulnerable layers underneath,deterioration upon ion bombardment and moisture induced perovskite phase transition,A thin film of metal oxide nanoparticles by the spin-coating method serves as a non-destructive buffer layer for inorganic PSCs.All-inorganic inverted near-infrared-transparent PSCs deliver a PCE of 17.46%and an average transmittance of 73.7%between 780 and 1200 nm.In combination with an 18.56%Cu(In,Ga)Se_(2) bottom cell,we further demonstrate the first all-inorganic perovskite/CIGS 4-T tandem solar cell with a PCE of 24.75%,which exhibits excellent illumination stability by maintaining 86.7%of its initial efficiency after 1400 h.The non-destructive buffer lays the foundation for efficient and stable NIR-transparent inverted inorganic perovskite solar cells and perovskite-based tandems.
基金Project supported by the National Key R&D Program of China (Grant No. 2022YFA1403203)the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302802)+3 种基金the National Natural Science Foundation of China (Grant Nos. 12074002, 12374133, and 11804379)the Major Basic Program of Natural Science Foundation of Shandong Province (Grant No. ZR2021ZD01)the supports of the National Natural Science Foundation of China (Grant No. 12274001)the Natural Science Foundation of Anhui Province (Grant No. 2208085MA09)。
文摘We revisited the vortex states of 2H-NbSe_(2) towards zero fields by a low-temperature scanning tunneling microscope.Fine structures of the anisotropic vortex states were distinguished, one is a spatially non-splitting zero bias peak, and the other is an in-gap conductance anomaly resembling evolved crossing features around the center of the three nearest vortices.Both of them distribute solely along the next nearest neighboring direction of the vortex lattice and become unresolved in much higher magnetic fields, implying an important role played by the vortex–vortex interactions. To clarify these issues,we have studied the intrinsic vortex states of the isolated trapped vortex in zero fields at 0.45 K. It is concluded that the anisotropic zero bias peak is attributed to the superconducting gap anisotropy, and the spatially evolved crossing features are related to the vortex–vortex interaction. The vortex core size under the zero-field limit is determined. These results provide a paradigm for studying the inherent vortex states of type-II superconductors especially based on an isolated vortex.
基金National Natural Science Foundation of China,Grant/Award Number:52102050Science&Technology Development Fund of Tianjin Education Commission for Higher Education,Grant/Award Number:2019KJ092。
文摘As a type of energy storage device between traditional capacitors and batteries,the supercapacitor has the advantages of energy saving and environmental protection,high power density,fast charging and discharging speed,long cycle life,and so forth.One of the key factors affecting the performance of supercapacitor is the electrode material.Carbon materials,such as carbon nanotube,graphene,activated carbon,and carbon nanocage,are most widely concerned in the application of supercapacitors.The synergistic effect of composites can often obtain excellent results,which is one of the common strategies to increase the electrochemical performance of supercapacitors.To further improve the performance of binary composites,it is a relatively simple method to increase the components as the“bridge”between the two materials to form the ternary composites.The review mainly introduces the current research progress of supercapacitors with pure carbon nanomaterials and multistage carbon nanostructures(composites)as electrodes.The characteristics and application directions of different pure carbon nanomaterials are introduced in detail.Different ways of multilevel structure(material)composite have their own effects on the development of high-performance supercapacitors.We also highlight the recent advances related to these fields and provide our insight into high-energy supercapacitors.
文摘Dry sliding wear behaviour of stir-cast aluminium matrix composites(AMCs)containing LM13 alloy as matrix and ceramic particles as reinforcement was investigated.Two different ceramic particle reinforcements were used separately:synthetic ceramic particles(B_(4)C),and natural ceramic particles(ilmenite).Optical micrographs showed uniform dispersion of reinforced particles in the matrix material.Reinforced particles refined the grain size of eutectic silicon and changed its morphology to globular type.B_(4)C reinforced composites(BRCs)showed maximum improvement in hardness of AMCs.Ilmenite reinforced composites(IRCs)showed maximum reduction in coefficient of friction values due to strong matrix−reinforcement interfacial bonding caused by the formation of interfacial compounds.Dry sliding wear behaviour of composites was significantly improved as compared to base alloy.The low density and high hardness of B_(4)C particles resulted in high dislocation density around filler particles in BRCs.On the other hand,the low thermal conductivity of ilmenite particles resulted in early oxidation and formation of a tribo-layer on surface of IRCs.So,both types of reinforcements led to the improvement in wear properties of AMCs,though the mechanisms involved were very different.Thus,the low-cost ilmenite particles can be used as alternative fillers to the high-cost B_(4)C particles for processing of wear resistant composites.
文摘Hydrogen flakes and elemental segregation are the main causes of steel rejection. To eliminate hydrogen flaking, the present study focuses on the manufacture of AMS-4340 ultra-high-strength steel through an alternate route. AMS-4340 was prepared using three different processing routes. The primary processing route consisted of melting in an electric arc furnace, refining in a ladle refining furnace, and vacuum degassing. After primary processing, the heat processes(D1, D2, and D3) were cast into cylindrical electrodes. For secondary processing, electroslag remelting(ESR) was carried out on the primary heats to obtain four secondary heats: E1, E2, E3, and E4. Homogenization of ingots E1, E2, E3, and E4 was carried out at 1220°C for 14, 12, 12, and 30 h, respectively, followed by an antiflaking treatment at 680°C and air cooling. In addition, the semi-finished ESR ingot E4 was again homogenized at 1220°C for 6–8 h and a second antiflaking treatment was performed at 680°C for 130 h followed by air cooling. The chemical segregation of each heat was monitored through a spectroscopy technique. The least segregation was observed for heat E4. Macrostructure examination revealed the presence of hydrogen flakes in heats E1, E2, and E3, whereas no hydrogen flakes were observed in heat E4. Ultrasonic testing revealed no internal defects in heat E4, whereas internal defects were observed in the other heats. A grain size investigation revealed a finer grain size for E4 compared with those for the other heats. Steel produced in heat E4 also exhibited superior mechanical properties. Therefore, the processing route used for heat E4 can be used to manufacture an AMS-4340 ultra-high-strength steel with superior properties compared with those of AMS-4340 prepared by the other investigated routes.
基金Project(50872001) supported by the National Natural Science Foundation of ChinaProjects(KJ2007B132, KJ2009A006Z) supported by the Scientific Research Foundation of Education Department of Anhui Province, ChinaProject(XJ200907) supported by the Foundation of Construction of Quality Project of Anhui University, China
文摘The influence of soaking time on the nonlinear electrical behavior and dielectric properties of TiO2-based varistor ceramics was investigated. Based on single sintering process, six disk samples of (Sr, Bi, Si, Ta)-doped TiO2-based varistor ceramics were fabricated by sintering at 1 250 ℃ for 0.5-5.0 h. The samples were characterized by X-ray diffraction, voltage-current characteristics, energy spectra, metallographs, breakdown voltages, and apparent dielectric constant. It is found that the breakdown electrical field intensity at a current density of 10 mA/cma decreases from 5.5 to 4.1 V/mm first and then increases to 7.0 V/mm, the nonlinear coefficient increases from 2.39 to 2.62 first and then decreases to 2.42, and the apparent dielectric constant increases from 98 200 to 1l5 049 first and then decreases to 73 865 with the soaking time increasing from 0.5 to 5.0 h. These indicate that the optimal soaking time is 2.0-3.0 h considering both nonlinear electrical behavior and dielectric properties.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61504042,61504098,and 61771198)the Natural Science Foundation of Shanghai,China(Grant No.17ZR1447000)the Fundamental Research Funds for the Central Universities,China
文摘Dip-coated double-wall carbon nanotubes(DWCNTs) and titanium dioxide(TiO2) sol have been prepared and smeared onto the tip of a conductive iron needle which serves as the corona discharge anode in a needle-cylinder corona system.Compared with the discharge electrode of a CNT-coated needle tip, great advancements have been achieved with the TiO_2/CNT-coated electrode, including higher discharge current, ionic wind velocity, and energy conversion efficiency,together with lower corona onset voltage and power consumption.Several parameters related to the discharge have been phenomenologically and mathematically studied for comparison.Thanks to the morphology reorientation of the CNT layer and the anti-oxidation of TiO_2, better performance of corona discharge induced wind generation of the TiO2/CNT-coated electrode system has been achieved.This novel decoration may provide better thoughts about the corona discharge application and wind generation.