Avirtual wall thicknessmethod is developed to simulate the temperature field of turbine bladeswith thermal barrier coatings(TBCs),to simplify the modeling process and improve the calculation efficiency.The results sho...Avirtual wall thicknessmethod is developed to simulate the temperature field of turbine bladeswith thermal barrier coatings(TBCs),to simplify the modeling process and improve the calculation efficiency.The results show that the virtualwall thickness method can improve themesh quality by 20%,reduce the number ofmeshes by 76.7%and save the calculation time by 35.5%,compared with the traditional real wall thickness method.The average calculation error of the two methods is between 0.21%and 0.93%.Furthermore,the temperature at the blade leading edge is the highest and the average temperature of the blade pressure surface is higher than that of the suction surface under a certain service condition.The blade surface temperature presents a high temperature at both ends and a low temperature in themiddle height when the temperature of incoming gas is uniformand constant.The thermal insulation effect of TBCs is the worst near the air film hole,and the best at the blade leading edge.According to the calculated temperature field of the substrate-coating system,the highest thermal insulation temperature of the TC layer is 172.01 K,and the thermal insulation proportions of TC,TGO and BC are 93.55%,1.54%and 4.91%,respectively.展开更多
A small cubic closed vessel with schlieren measurement technique combined with high-speed video camera were used to study limit flame properties under microgravity conditions at atmospheric pressure and room temperatu...A small cubic closed vessel with schlieren measurement technique combined with high-speed video camera were used to study limit flame properties under microgravity conditions at atmospheric pressure and room temperature.The rich flammability limit of C3H8/air was determined to be 9.2% C3H8.Stretched flame propagation speeds,stretched laminar burning velocities and unstretched laminar burning velocities near rich C3H8/air flammability limits were measured at different equivalence ratios.Outwardly propagating spherical flames were used to study the sensitivities of the flame propagation speeds and laminar burning velocities to flame stretch using Markstein lengths.Unstretched laminar burning velocity at rich flammability limit was determined to be 1.09cm/s.Lewis numbers were less than unity in rich C3H8/air and negative Markstein lengths were concluded.Absolute values of Markstein lengths were found to decrease linearly with equivalence ratios increase.展开更多
This paper focuses on the interaction between a micro/nano curved surface and a particle located inside the surface (hereafter abbreviated as in-surface-particle).Based on the exponential pair potential (namely 1/R2k)...This paper focuses on the interaction between a micro/nano curved surface and a particle located inside the surface (hereafter abbreviated as in-surface-particle).Based on the exponential pair potential (namely 1/R2k) between particles,the interaction potential between the micro/nano curved surface and the in-surface-particle is derived.The following results are shown:(a) For an even number of exponents in the pair potential,the interaction potential between the micro/nano curved surface and the in-surface-particle can be expressed as a unified function of the mean curvature and Gaussian curvature of the curved surface;(b) the curvatures and the gradients of curvatures of the micro/nano curved surface are the essential factors that dominate the driving force acting on the particle.展开更多
We verify the accuracy of the curvature-based potential.By means of the idealized numerical experiment,we show that the curvature-based potential is in good agreement with the numerical experiment,and the errors are w...We verify the accuracy of the curvature-based potential.By means of the idealized numerical experiment,we show that the curvature-based potential is in good agreement with the numerical experiment,and the errors are within a reasonable range.Based on the curvature-based potential,the equipotential surfaces of particles are derived,and the intrinsic relations between the equipotential surfaces and Weingarten helicoids are shown.展开更多
Solar sail is used to achieve a geocentric sun-synchronous frozen orbit.This kind of orbit combines the characteristics of both sun-synchronous orbits and frozen orbits.Furthermore,the impossible orbits for a typical ...Solar sail is used to achieve a geocentric sun-synchronous frozen orbit.This kind of orbit combines the characteristics of both sun-synchronous orbits and frozen orbits.Furthermore,the impossible orbits for a typical spacecraft such as sun-synchronous orbits whose inclination is less than 90° are also possible for solar sail.To achieve a sun-synchronous frozen orbit,the characteristic acceleration of the sail is chosen properly.In addition,the attitude of the sail is adjusted to keep the sun-synchronous and frozen characteristics.The perturbations including atmosphere drag,third-body gravitational forces and shaded regions are discussed,where the atmosphere drag is cancelled by solar radiation pressure force,third-body gravitational forces have negligible effects on the orbit and the shaded region can be avoided by choosing the classical orbit elements of the sail.At last,a numerical example is employed to validate the sun-synchronous frozen characteristics of the sail.展开更多
Recent analytical solutions for peridynamic(PD)models of transient diffusion and elastodynamics allow us to revisit convergence of 1D PD models to their classical counterparts.We find and explain the reasons for some ...Recent analytical solutions for peridynamic(PD)models of transient diffusion and elastodynamics allow us to revisit convergence of 1D PD models to their classical counterparts.We find and explain the reasons for some interesting differences between the convergence behavior for transient diffusion and elastodynamics models.Except for very early times,PD models for transient diffusion converge monotonically to the classical one.In contrast,for elastodynamic problems this convergence is more complex,with some periodic/almost-periodic characteristics present.These special features are investigated for sine waves used as initial conditions.The analysis indicates that the convergence behavior of PD solutions to the classical one can be understood in terms of convergence properties for models using the Fourier series expansion terms of a particular initial condition.The results obtained show new connections between PD models and their corresponding classical versions.展开更多
We report an experimental study of the local temperature fluctuationsδT and heat transport in a partitioned supergravitational turbulent convection system.Due to the dynamics of zonal flow in the normal system withou...We report an experimental study of the local temperature fluctuationsδT and heat transport in a partitioned supergravitational turbulent convection system.Due to the dynamics of zonal flow in the normal system without partition walls,the probability density function(PDF)at a position in the mixing zone exhibits a downward bending shape,suggesting that the multi-plume clustering effect plays an important role.In partitioned system,zonal flow is suppressed and the PDFs indicate that the single-plume effect is dominant.Moreover,statistical analysis shows that the PDF ofδT is sensitive to supergravity.Additionally,the thermal spectra follow P(f)∼f^(-5) in the normal system,which is relevant to the zonal flow.The absolute value of the scaling exponent of P(f)and the scaling range become small in the partitioned system,which provides another evidence for the influence of zonal flow on the energy cascade.Further,heat transfer enhancement is found in the partitioned system,which may result from zonal flow being restricted and then facilitating the radial movement of thermal plumes to the opposite conducting cylinder.This work may provide insights into the flow and heat transport control of some engineering and geophysical flows.展开更多
基金supported by the National Science and Technology Major Project(J2019-IV-0003-0070)the National Natural Science Foundation of China(Grant No.12102320)+1 种基金the Advanced Aviation Power Innovation Workstation Project(HKCX2019-01-003)China Postdoc-toral Science Foundation(2021M692571).
文摘Avirtual wall thicknessmethod is developed to simulate the temperature field of turbine bladeswith thermal barrier coatings(TBCs),to simplify the modeling process and improve the calculation efficiency.The results show that the virtualwall thickness method can improve themesh quality by 20%,reduce the number ofmeshes by 76.7%and save the calculation time by 35.5%,compared with the traditional real wall thickness method.The average calculation error of the two methods is between 0.21%and 0.93%.Furthermore,the temperature at the blade leading edge is the highest and the average temperature of the blade pressure surface is higher than that of the suction surface under a certain service condition.The blade surface temperature presents a high temperature at both ends and a low temperature in themiddle height when the temperature of incoming gas is uniformand constant.The thermal insulation effect of TBCs is the worst near the air film hole,and the best at the blade leading edge.According to the calculated temperature field of the substrate-coating system,the highest thermal insulation temperature of the TC layer is 172.01 K,and the thermal insulation proportions of TC,TGO and BC are 93.55%,1.54%and 4.91%,respectively.
基金Supported by the Research Foundation of Beijing Institute of Technology(20070242004)
文摘A small cubic closed vessel with schlieren measurement technique combined with high-speed video camera were used to study limit flame properties under microgravity conditions at atmospheric pressure and room temperature.The rich flammability limit of C3H8/air was determined to be 9.2% C3H8.Stretched flame propagation speeds,stretched laminar burning velocities and unstretched laminar burning velocities near rich C3H8/air flammability limits were measured at different equivalence ratios.Outwardly propagating spherical flames were used to study the sensitivities of the flame propagation speeds and laminar burning velocities to flame stretch using Markstein lengths.Unstretched laminar burning velocity at rich flammability limit was determined to be 1.09cm/s.Lewis numbers were less than unity in rich C3H8/air and negative Markstein lengths were concluded.Absolute values of Markstein lengths were found to decrease linearly with equivalence ratios increase.
基金supported by the National Natural Sciences Foundation of China (Grant Nos.11072125 and 10872114)the Natural Science Foundation of Jiangsu province (Grant No. SBK201140044)
文摘This paper focuses on the interaction between a micro/nano curved surface and a particle located inside the surface (hereafter abbreviated as in-surface-particle).Based on the exponential pair potential (namely 1/R2k) between particles,the interaction potential between the micro/nano curved surface and the in-surface-particle is derived.The following results are shown:(a) For an even number of exponents in the pair potential,the interaction potential between the micro/nano curved surface and the in-surface-particle can be expressed as a unified function of the mean curvature and Gaussian curvature of the curved surface;(b) the curvatures and the gradients of curvatures of the micro/nano curved surface are the essential factors that dominate the driving force acting on the particle.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11072125 and 10872114)the Natural Science Foundation of Jiangsu Province (Grant No. SBK201140044)
文摘We verify the accuracy of the curvature-based potential.By means of the idealized numerical experiment,we show that the curvature-based potential is in good agreement with the numerical experiment,and the errors are within a reasonable range.Based on the curvature-based potential,the equipotential surfaces of particles are derived,and the intrinsic relations between the equipotential surfaces and Weingarten helicoids are shown.
基金supported by the National Natural Science Foundation of China (Grants Nos.10902056 and 10832004)State Key Lab of Astronautical Dynamics of China (Grant No. 2011ADL-DW0201)
文摘Solar sail is used to achieve a geocentric sun-synchronous frozen orbit.This kind of orbit combines the characteristics of both sun-synchronous orbits and frozen orbits.Furthermore,the impossible orbits for a typical spacecraft such as sun-synchronous orbits whose inclination is less than 90° are also possible for solar sail.To achieve a sun-synchronous frozen orbit,the characteristic acceleration of the sail is chosen properly.In addition,the attitude of the sail is adjusted to keep the sun-synchronous and frozen characteristics.The perturbations including atmosphere drag,third-body gravitational forces and shaded regions are discussed,where the atmosphere drag is cancelled by solar radiation pressure force,third-body gravitational forces have negligible effects on the orbit and the shaded region can be avoided by choosing the classical orbit elements of the sail.At last,a numerical example is employed to validate the sun-synchronous frozen characteristics of the sail.
基金supported by the Fundamental Research Funds for the Central Universities(HUST:YCJJ202203014 and No.2021GCRC021)the Natural Science Foundation of China(No.11802098).
文摘Recent analytical solutions for peridynamic(PD)models of transient diffusion and elastodynamics allow us to revisit convergence of 1D PD models to their classical counterparts.We find and explain the reasons for some interesting differences between the convergence behavior for transient diffusion and elastodynamics models.Except for very early times,PD models for transient diffusion converge monotonically to the classical one.In contrast,for elastodynamic problems this convergence is more complex,with some periodic/almost-periodic characteristics present.These special features are investigated for sine waves used as initial conditions.The analysis indicates that the convergence behavior of PD solutions to the classical one can be understood in terms of convergence properties for models using the Fourier series expansion terms of a particular initial condition.The results obtained show new connections between PD models and their corresponding classical versions.
基金supported by the National Natural Science Foundation of China(Grant No.11988102)the New Cornerstone Science Foundation through the XPLORER PRIZE.
文摘We report an experimental study of the local temperature fluctuationsδT and heat transport in a partitioned supergravitational turbulent convection system.Due to the dynamics of zonal flow in the normal system without partition walls,the probability density function(PDF)at a position in the mixing zone exhibits a downward bending shape,suggesting that the multi-plume clustering effect plays an important role.In partitioned system,zonal flow is suppressed and the PDFs indicate that the single-plume effect is dominant.Moreover,statistical analysis shows that the PDF ofδT is sensitive to supergravity.Additionally,the thermal spectra follow P(f)∼f^(-5) in the normal system,which is relevant to the zonal flow.The absolute value of the scaling exponent of P(f)and the scaling range become small in the partitioned system,which provides another evidence for the influence of zonal flow on the energy cascade.Further,heat transfer enhancement is found in the partitioned system,which may result from zonal flow being restricted and then facilitating the radial movement of thermal plumes to the opposite conducting cylinder.This work may provide insights into the flow and heat transport control of some engineering and geophysical flows.