A neurocomputing model for Genetic Algorithm (GA) to break the speed bottleneck of GA was proposed. With all genetic operations parallel implemented by NN-based sub-modules, the model integrates both the strongpoint o...A neurocomputing model for Genetic Algorithm (GA) to break the speed bottleneck of GA was proposed. With all genetic operations parallel implemented by NN-based sub-modules, the model integrates both the strongpoint of parallel GA (PGA) and those of hardware GA (HGA). Moreover a new crossover operator named universe crossover was also proposed to suit the NN-based realization. This model was tested with a benchmark function set, and the experimental results validated the potential of the neurocomputing model. The significance of this model means that HGA and PGA can be integrated and the inherent parallelism of GA can be explicitly and farthest realized, as a result, the optimization speed of GA will be accelerated by one or two magnitudes compered to the serial implementation with same speed hardware, and GA will be turned from an algorithm into a machine.展开更多
基金NationalNaturalScienceFoundationofChina (No .60 2 3 40 2 0 )
文摘A neurocomputing model for Genetic Algorithm (GA) to break the speed bottleneck of GA was proposed. With all genetic operations parallel implemented by NN-based sub-modules, the model integrates both the strongpoint of parallel GA (PGA) and those of hardware GA (HGA). Moreover a new crossover operator named universe crossover was also proposed to suit the NN-based realization. This model was tested with a benchmark function set, and the experimental results validated the potential of the neurocomputing model. The significance of this model means that HGA and PGA can be integrated and the inherent parallelism of GA can be explicitly and farthest realized, as a result, the optimization speed of GA will be accelerated by one or two magnitudes compered to the serial implementation with same speed hardware, and GA will be turned from an algorithm into a machine.