An infrared (IR) imaging simulation framework based on the strap-down platform is proposed for midcourse ballistic targets. It overcomes the shortcoming of the existing algorithms, which cannot simulate IR imaging f...An infrared (IR) imaging simulation framework based on the strap-down platform is proposed for midcourse ballistic targets. It overcomes the shortcoming of the existing algorithms, which cannot simulate IR imaging from the entire midcourse process. The proposed framework includes three steps, target characteristic modeling, motion modeling, and imaging modeling. In imaging modeling, the staring focal plane is taken into account due to its wide employment. In order to obtain IR images of high fidelity, especially that the fluctuation of the target signal-to-noise ratio (SNR) is reasonably similar to the actual one, this paper proposes an improved IR imaging simulation method. The proposed method considers two critical factors of the pixel plane, occupy-empty ratio and defect elements, which affect the imaging of targets markedly but are neglected in previous work. Finally, the IR image sequence of high fidelity is obtained. And the correlative parameters of simulation can be set according to the given scene. Thus the generated images can satisfy the needs of algorithms validation for tracking and recognition.展开更多
A fast algorithm based on the grayscale distribution of infrared target and the weighted kernel function was proposed for the moving target detection(MTD) in dynamic scene of image series. This algorithm is used to de...A fast algorithm based on the grayscale distribution of infrared target and the weighted kernel function was proposed for the moving target detection(MTD) in dynamic scene of image series. This algorithm is used to deal with issues like the large computational complexity, the fluctuation of grayscale, and the noise in infrared images. Four characteristic points were selected by analyzing the grayscale distribution in infrared image, of which the series was quickly matched with an affine transformation model. The image was then divided into 32×32 squares and the gray-weighted kernel(GWK) for each square was calculated. At last, the MTD was carried out according to the variation of the four GWKs. The results indicate that the MTD can be achieved in real time using the algorithm with the fluctuations of grayscale and noise can be effectively suppressed. The detection probability is greater than 90% with the false alarm rate lower than 5% when the calculation time is less than 40 ms.展开更多
Detection and tracking of multi-target with unknown and varying number is a challenging issue, especially under the condition of low signal-to-noise ratio(SNR). A modified multi-target track-before-detect(TBD) method ...Detection and tracking of multi-target with unknown and varying number is a challenging issue, especially under the condition of low signal-to-noise ratio(SNR). A modified multi-target track-before-detect(TBD) method was proposed to tackle this issue using a nonstandard point observation model. The method was developed from sequential Monte Carlo(SMC)-based probability hypothesis density(PHD) filter, and it was implemented by modifying the original calculation in update weights of the particles and by adopting an adaptive particle sampling strategy. To efficiently execute the SMC-PHD based TBD method, a fast implementation approach was also presented by partitioning the particles into multiple subsets according to their position coordinates in 2D resolution cells of the sensor. Simulation results show the effectiveness of the proposed method for time-varying multi-target tracking using raw observation data.展开更多
This paper focuses on the recognition rate comparison for competing recognition algorithms, which is a common problem of many pattern recognition research areas. The paper firstly reviews some traditional recognition ...This paper focuses on the recognition rate comparison for competing recognition algorithms, which is a common problem of many pattern recognition research areas. The paper firstly reviews some traditional recognition rate comparison procedures and discusses their limitations. A new method, the posterior probability calculation(PPC) procedure is then proposed based on Bayesian technique. The paper analyzes the basic principle, process steps and computational complexity of the PPC procedure. In the Bayesian view, the posterior probability represents the credible degree(equal to confidence level) of the comparison results. The posterior probability of correctly selecting or sorting the competing recognition algorithms is derived, and the minimum sample size requirement is also pre-estimated and given out by the form of tables. To further illustrate how to use our method, the PPC procedure is used to prove the rationality of the experiential choice in one application and then to calculate the confidence level with the fixed-size datasets in another application. These applications reveal the superiority of the PPC procedure, and the discussions about the stopping rule further explain the underlying statistical causes. Finally we conclude that the PPC procedure achieves all the expected functions and be superior to the traditional methods.展开更多
We derive a modified analytical expression of a quantum radar cross section (QRCS). Subsequently, we present a comparison between the QRCS and a classical radar cross section (RCS) and analyze the factors that can...We derive a modified analytical expression of a quantum radar cross section (QRCS). Subsequently, we present a comparison between the QRCS and a classical radar cross section (RCS) and analyze the factors that can affect the intensity of the peak and side lobes. Simulation results on a flat rectangular plate demonstrate that QRCS has a similar structure to that of RCS. The analysis of side-lobe structure can benefit the design of quantum stealth platforms as well as the research on quantum radars.展开更多
Target tracking using non-threshold raw data with low signal-to-noise ratio is a very difficult task, and the model uncertainty introduced by target's maneuver makes it even more challenging. In this work, a multi...Target tracking using non-threshold raw data with low signal-to-noise ratio is a very difficult task, and the model uncertainty introduced by target's maneuver makes it even more challenging. In this work, a multiple-model based method was proposed to tackle such issues. The method was developed in the framework of Bernoulli filter by integrating the model probability parameter and implemented via sequential Monte Carlo(particle) technique. Target detection was accomplished through the estimation of target's existence probability, and the estimate of target state was obtained by combining the outputs of modeldependent filtering. The simulation results show that the proposed method performs better than the TBD method implemented by the conventional multiple-model particle filter.展开更多
A method and procedure is presented to reconstruct three-dimensional(3D) positions of scattering centers from multiple synthetic aperture radar(SAR) images. Firstly, two-dimensional(2D) attribute scattering centers of...A method and procedure is presented to reconstruct three-dimensional(3D) positions of scattering centers from multiple synthetic aperture radar(SAR) images. Firstly, two-dimensional(2D) attribute scattering centers of targets are extracted from 2D SAR images. Secondly, similarity measure is developed based on 2D attributed scatter centers' location, type, and radargrammetry principle between multiple SAR images. By this similarity, we can associate 2D scatter centers and then obtain candidate 3D scattering centers. Thirdly, these candidate scattering centers are clustered in 3D space to reconstruct final 3D positions. Compared with presented methods, the proposed method has a capability of describing distributed scattering center, reduces false and missing 3D scattering centers, and has fewer restrictionson modeling data. Finally, results of experiments have demonstrated the effectiveness of the proposed method.展开更多
As to the fact that it is difficult to obtain analytical form of optimal sampling density and tracking performance of standard particle probability hypothesis density(P-PHD) filter would decline when clustering algori...As to the fact that it is difficult to obtain analytical form of optimal sampling density and tracking performance of standard particle probability hypothesis density(P-PHD) filter would decline when clustering algorithm is used to extract target states,a free clustering optimal P-PHD(FCO-P-PHD) filter is proposed.This method can lead to obtainment of analytical form of optimal sampling density of P-PHD filter and realization of optimal P-PHD filter without use of clustering algorithms in extraction target states.Besides,as sate extraction method in FCO-P-PHD filter is coupled with the process of obtaining analytical form for optimal sampling density,through decoupling process,a new single-sensor free clustering state extraction method is proposed.By combining this method with standard P-PHD filter,FC-P-PHD filter can be obtained,which significantly improves the tracking performance of P-PHD filter.In the end,the effectiveness of proposed algorithms and their advantages over other algorithms are validated through several simulation experiments.展开更多
Multi-view laser radar (ladar) data registration in obscure environments is an important research field of obscured target detection from air to ground. There are few overlap regions of the observational data in dif...Multi-view laser radar (ladar) data registration in obscure environments is an important research field of obscured target detection from air to ground. There are few overlap regions of the observational data in different views because of the occluder, so the multi-view data registration is rather difficult. Through indepth analyses of the typical methods and problems, it is obtained that the sequence registration is more appropriate, but needs to improve the registration accuracy. On this basis, a multi-view data registration algorithm based on aggregating the adjacent frames, which are already registered, is proposed. It increases the overlap region between the pending registration frames by aggregation and further improves the registration accuracy. The experiment results show that the proposed algorithm can effectively register the multi-view ladar data in the obscure environment, and it also has a greater robustness and a higher registration accuracy compared with the sequence registration under the condition of equivalent operating efficiency.展开更多
Parameter estimation of the attributed scattering center(ASC) model is significant for automatic target recognition(ATR). Sparse representation based parameter estimation methods have developed rapidly. Construction o...Parameter estimation of the attributed scattering center(ASC) model is significant for automatic target recognition(ATR). Sparse representation based parameter estimation methods have developed rapidly. Construction of the separable dictionary is a key issue for sparse representation technology. A compressive time-domain dictionary(TD) for ASC model is presented. Two-dimensional frequency domain responses of the ASC are produced and transformed into the time domain. Then these time domain responses are cutoff and stacked into vectors. These vectored time-domain responses are amalgamated to form the TD. Compared with the traditional frequency-domain dictionary(FD), the TD is a matrix that is quite spare and can markedly reduce the data size of the dictionary. Based on the basic TD construction method, we present four extended TD construction methods, which are available for different applications. In the experiments, the performance of the TD, including the basic model and the extended models, has been firstly analyzed in comparison with the FD. Secondly, an example of parameter estimation from SAR synthetic aperture radar(SAR) measurements of a target collected in an anechoic room is exhibited. Finally, a sparse image reconstruction example is from two apart apertures. Experimental results demonstrate the effectiveness and efficiency of the proposed TD.展开更多
The effect of gain-phase perturbations and mutual coupling significantly degrades the performance of digital array radar (DAR). This paper investigates array calibration problems in the scenario where the true locatio...The effect of gain-phase perturbations and mutual coupling significantly degrades the performance of digital array radar (DAR). This paper investigates array calibration problems in the scenario where the true locations of auxiliary sources deviate from nominal values but the angle intervals are known. A practical algorithm is proposed to jointly calibrate gain-phase errors and mutual coupling errors. Firstly, a simplified model of the distortion matrix is developed based on its special structure in uniform linear array (ULA). Then the model is employed to derive the precise locations of the auxiliary sources by one-dimension search. Finally, the least-squares estimation of the distortion matrix is obtained. The algorithm has the potential of achieving considerable improvement in calibration accuracy due to the reduction of unknown parameters. In addition, the algorithm is feasible for practical applications, since it requires only one auxiliary source with the help of rotation platforms. Simulation results demonstrate the validity, robustness and high performance of the proposed algorithm. Experiments were carried out using an S-band DAR test-bed. The results of measured data show that the proposed algorithm is practical and effective in application. (C) 2016 Production and hosting by Elsevier Ltd. on behalf of Chinese Society of Aeronautics and Astronautics.展开更多
At present, most of the passive radar system researches utilize FM radios, TV broadcasts, navigation satellites,etc. as illuminators. The transmitted signals are not specifically designed radar waveforms. In this work...At present, most of the passive radar system researches utilize FM radios, TV broadcasts, navigation satellites,etc. as illuminators. The transmitted signals are not specifically designed radar waveforms. In this work, the frequency agile, phased array air surveillance radar(ASR) is used as the illuminator of opportunity to detect the weak target. The phased array technology can help realize beam agility to track targets from different aspects simultaneously. The frequency agility technology is widely employed in radar system design to increase the ability of anti-jamming and increase the detection probability. While the frequency bandwidth of radar signals is usually wide and the range resolution is high, the range cell migration effect is obvious during the long time integration of non-cooperative bistatic radar. In this context, coherent integration methods are not applicable. In this work, a parametric non-coherent integration algorithm based on task de-interweaving is proposed. Numerical experiments verify that this is effective in weak target detection.展开更多
文摘An infrared (IR) imaging simulation framework based on the strap-down platform is proposed for midcourse ballistic targets. It overcomes the shortcoming of the existing algorithms, which cannot simulate IR imaging from the entire midcourse process. The proposed framework includes three steps, target characteristic modeling, motion modeling, and imaging modeling. In imaging modeling, the staring focal plane is taken into account due to its wide employment. In order to obtain IR images of high fidelity, especially that the fluctuation of the target signal-to-noise ratio (SNR) is reasonably similar to the actual one, this paper proposes an improved IR imaging simulation method. The proposed method considers two critical factors of the pixel plane, occupy-empty ratio and defect elements, which affect the imaging of targets markedly but are neglected in previous work. Finally, the IR image sequence of high fidelity is obtained. And the correlative parameters of simulation can be set according to the given scene. Thus the generated images can satisfy the needs of algorithms validation for tracking and recognition.
基金Project(61101185)supported by the National Natural Science Foundation of China
文摘A fast algorithm based on the grayscale distribution of infrared target and the weighted kernel function was proposed for the moving target detection(MTD) in dynamic scene of image series. This algorithm is used to deal with issues like the large computational complexity, the fluctuation of grayscale, and the noise in infrared images. Four characteristic points were selected by analyzing the grayscale distribution in infrared image, of which the series was quickly matched with an affine transformation model. The image was then divided into 32×32 squares and the gray-weighted kernel(GWK) for each square was calculated. At last, the MTD was carried out according to the variation of the four GWKs. The results indicate that the MTD can be achieved in real time using the algorithm with the fluctuations of grayscale and noise can be effectively suppressed. The detection probability is greater than 90% with the false alarm rate lower than 5% when the calculation time is less than 40 ms.
基金Projects(61002022,61471370)supported by the National Natural Science Foundation of China
文摘Detection and tracking of multi-target with unknown and varying number is a challenging issue, especially under the condition of low signal-to-noise ratio(SNR). A modified multi-target track-before-detect(TBD) method was proposed to tackle this issue using a nonstandard point observation model. The method was developed from sequential Monte Carlo(SMC)-based probability hypothesis density(PHD) filter, and it was implemented by modifying the original calculation in update weights of the particles and by adopting an adaptive particle sampling strategy. To efficiently execute the SMC-PHD based TBD method, a fast implementation approach was also presented by partitioning the particles into multiple subsets according to their position coordinates in 2D resolution cells of the sensor. Simulation results show the effectiveness of the proposed method for time-varying multi-target tracking using raw observation data.
基金supported by the National Natural Science Foundation of China(61101179)
文摘This paper focuses on the recognition rate comparison for competing recognition algorithms, which is a common problem of many pattern recognition research areas. The paper firstly reviews some traditional recognition rate comparison procedures and discusses their limitations. A new method, the posterior probability calculation(PPC) procedure is then proposed based on Bayesian technique. The paper analyzes the basic principle, process steps and computational complexity of the PPC procedure. In the Bayesian view, the posterior probability represents the credible degree(equal to confidence level) of the comparison results. The posterior probability of correctly selecting or sorting the competing recognition algorithms is derived, and the minimum sample size requirement is also pre-estimated and given out by the form of tables. To further illustrate how to use our method, the PPC procedure is used to prove the rationality of the experiential choice in one application and then to calculate the confidence level with the fixed-size datasets in another application. These applications reveal the superiority of the PPC procedure, and the discussions about the stopping rule further explain the underlying statistical causes. Finally we conclude that the PPC procedure achieves all the expected functions and be superior to the traditional methods.
文摘We derive a modified analytical expression of a quantum radar cross section (QRCS). Subsequently, we present a comparison between the QRCS and a classical radar cross section (RCS) and analyze the factors that can affect the intensity of the peak and side lobes. Simulation results on a flat rectangular plate demonstrate that QRCS has a similar structure to that of RCS. The analysis of side-lobe structure can benefit the design of quantum stealth platforms as well as the research on quantum radars.
基金Projects(61002022,61471370)supported by the National Natural Science Foundation of China
文摘Target tracking using non-threshold raw data with low signal-to-noise ratio is a very difficult task, and the model uncertainty introduced by target's maneuver makes it even more challenging. In this work, a multiple-model based method was proposed to tackle such issues. The method was developed in the framework of Bernoulli filter by integrating the model probability parameter and implemented via sequential Monte Carlo(particle) technique. Target detection was accomplished through the estimation of target's existence probability, and the estimate of target state was obtained by combining the outputs of modeldependent filtering. The simulation results show that the proposed method performs better than the TBD method implemented by the conventional multiple-model particle filter.
文摘A method and procedure is presented to reconstruct three-dimensional(3D) positions of scattering centers from multiple synthetic aperture radar(SAR) images. Firstly, two-dimensional(2D) attribute scattering centers of targets are extracted from 2D SAR images. Secondly, similarity measure is developed based on 2D attributed scatter centers' location, type, and radargrammetry principle between multiple SAR images. By this similarity, we can associate 2D scatter centers and then obtain candidate 3D scattering centers. Thirdly, these candidate scattering centers are clustered in 3D space to reconstruct final 3D positions. Compared with presented methods, the proposed method has a capability of describing distributed scattering center, reduces false and missing 3D scattering centers, and has fewer restrictionson modeling data. Finally, results of experiments have demonstrated the effectiveness of the proposed method.
文摘As to the fact that it is difficult to obtain analytical form of optimal sampling density and tracking performance of standard particle probability hypothesis density(P-PHD) filter would decline when clustering algorithm is used to extract target states,a free clustering optimal P-PHD(FCO-P-PHD) filter is proposed.This method can lead to obtainment of analytical form of optimal sampling density of P-PHD filter and realization of optimal P-PHD filter without use of clustering algorithms in extraction target states.Besides,as sate extraction method in FCO-P-PHD filter is coupled with the process of obtaining analytical form for optimal sampling density,through decoupling process,a new single-sensor free clustering state extraction method is proposed.By combining this method with standard P-PHD filter,FC-P-PHD filter can be obtained,which significantly improves the tracking performance of P-PHD filter.In the end,the effectiveness of proposed algorithms and their advantages over other algorithms are validated through several simulation experiments.
文摘Multi-view laser radar (ladar) data registration in obscure environments is an important research field of obscured target detection from air to ground. There are few overlap regions of the observational data in different views because of the occluder, so the multi-view data registration is rather difficult. Through indepth analyses of the typical methods and problems, it is obtained that the sequence registration is more appropriate, but needs to improve the registration accuracy. On this basis, a multi-view data registration algorithm based on aggregating the adjacent frames, which are already registered, is proposed. It increases the overlap region between the pending registration frames by aggregation and further improves the registration accuracy. The experiment results show that the proposed algorithm can effectively register the multi-view ladar data in the obscure environment, and it also has a greater robustness and a higher registration accuracy compared with the sequence registration under the condition of equivalent operating efficiency.
基金Project(NCET-11-0866)supported by Education Ministry's new Century Excellent Talents Supporting Plan,China
文摘Parameter estimation of the attributed scattering center(ASC) model is significant for automatic target recognition(ATR). Sparse representation based parameter estimation methods have developed rapidly. Construction of the separable dictionary is a key issue for sparse representation technology. A compressive time-domain dictionary(TD) for ASC model is presented. Two-dimensional frequency domain responses of the ASC are produced and transformed into the time domain. Then these time domain responses are cutoff and stacked into vectors. These vectored time-domain responses are amalgamated to form the TD. Compared with the traditional frequency-domain dictionary(FD), the TD is a matrix that is quite spare and can markedly reduce the data size of the dictionary. Based on the basic TD construction method, we present four extended TD construction methods, which are available for different applications. In the experiments, the performance of the TD, including the basic model and the extended models, has been firstly analyzed in comparison with the FD. Secondly, an example of parameter estimation from SAR synthetic aperture radar(SAR) measurements of a target collected in an anechoic room is exhibited. Finally, a sparse image reconstruction example is from two apart apertures. Experimental results demonstrate the effectiveness and efficiency of the proposed TD.
基金supported by the National Natural Science Foundation of China (No. 61571449)
文摘The effect of gain-phase perturbations and mutual coupling significantly degrades the performance of digital array radar (DAR). This paper investigates array calibration problems in the scenario where the true locations of auxiliary sources deviate from nominal values but the angle intervals are known. A practical algorithm is proposed to jointly calibrate gain-phase errors and mutual coupling errors. Firstly, a simplified model of the distortion matrix is developed based on its special structure in uniform linear array (ULA). Then the model is employed to derive the precise locations of the auxiliary sources by one-dimension search. Finally, the least-squares estimation of the distortion matrix is obtained. The algorithm has the potential of achieving considerable improvement in calibration accuracy due to the reduction of unknown parameters. In addition, the algorithm is feasible for practical applications, since it requires only one auxiliary source with the help of rotation platforms. Simulation results demonstrate the validity, robustness and high performance of the proposed algorithm. Experiments were carried out using an S-band DAR test-bed. The results of measured data show that the proposed algorithm is practical and effective in application. (C) 2016 Production and hosting by Elsevier Ltd. on behalf of Chinese Society of Aeronautics and Astronautics.
基金supported by the National Natural Science Foundation of China(61401489)
文摘At present, most of the passive radar system researches utilize FM radios, TV broadcasts, navigation satellites,etc. as illuminators. The transmitted signals are not specifically designed radar waveforms. In this work, the frequency agile, phased array air surveillance radar(ASR) is used as the illuminator of opportunity to detect the weak target. The phased array technology can help realize beam agility to track targets from different aspects simultaneously. The frequency agility technology is widely employed in radar system design to increase the ability of anti-jamming and increase the detection probability. While the frequency bandwidth of radar signals is usually wide and the range resolution is high, the range cell migration effect is obvious during the long time integration of non-cooperative bistatic radar. In this context, coherent integration methods are not applicable. In this work, a parametric non-coherent integration algorithm based on task de-interweaving is proposed. Numerical experiments verify that this is effective in weak target detection.