Giant electromagnetic pulses(EMPs) induced by high-power laser irradiating solid targets interfere with various experimental diagnoses and even damage equipment,so unveiling the evolution of EMPs inside the laser cham...Giant electromagnetic pulses(EMPs) induced by high-power laser irradiating solid targets interfere with various experimental diagnoses and even damage equipment,so unveiling the evolution of EMPs inside the laser chamber is crucial for designing effective EMP shielding.In this work,the transmission characteristics of EMPs as a function of distances from the target chamber center(TCC) are studied using B-dot probes.The mean EMP amplitude generated by picosecond laser-target interaction reaches 561 kV m^(-1),357 kV m^(-1),395 kV m^(-1),and 341 kV m^(-1)at 0.32 m,0.53 m,0.76 m,and 1 m from TCC,which decreases dramatically from 0.32 m to 0.53 m.However,it shows a fluctuation from 0.53 m to 1 m.The temporal features of EMPs indicate that time-domain EMP signals near the target chamber wall have a wider full width at half maximum compared to that close to TCC,mainly due to the echo oscillation of electromagnetic waves inside the target chamber based on simulation and experimentation.The conclusions of this study will provide a new approach to mitigate strong electromagnetic pulses by decreasing the echo oscillation of electromagnetic waves inside the target chamber during laser coupling with targets.展开更多
Photoneutron cross-section(PNCS)data are important in various current and emerging applications.Although a few sophis-ticated methods have been developed,there is still an urgent need to study the PNCS data.In this st...Photoneutron cross-section(PNCS)data are important in various current and emerging applications.Although a few sophis-ticated methods have been developed,there is still an urgent need to study the PNCS data.In this study,we propose the extraction of PNCS distributions using a combination of gamma activation and reaction yield ratio methods.To verify the validity of the proposed extraction method,experiments for generating^(62,64)Cu and^(85m,87m)Sr isotopes via laser-induced pho-toneutron reactions were performed,and the reaction yields of these isotopes were obtained.Using the proposed extraction method,the PNCS distributions of^(63)Cu and^(86)Sr isotopes(leading to^(85m)Sr isotope production)were successfully extracted.These extracted PNCS distributions were benchmarked against available PNCS data or TALYS calculations,demonstrating the validity of the proposed extraction method.Potential applications for predicting the PNCS distributions of the 30 iso-topes are further introduced.We conclude that the proposed extraction method is an effective complement to the available sophisticated methods for measuring and evaluating PNCS data.展开更多
Ultraintense short-period infrared laser pulses play an important role in frontier scientific research,but their power is quite low when generated using current technology.This paper demonstrates a scheme for generati...Ultraintense short-period infrared laser pulses play an important role in frontier scientific research,but their power is quite low when generated using current technology.This paper demonstrates a scheme for generating an ultraintense few-cycle infrared pulse by directly compressing a long infrared pulse.In this scheme,an infrared picosecond-to-nanosecond laser pulse counterpropagates with a rapidly extending plasma grating that is created by ionizing an undulated gas by a short laser pulse,and the infrared laser pulse is reflected by the rapidly extending plasma grating.Because of the high expansion velocity of the latter,the infrared laser pulse is compressed in the reflection process.One-and two-dimensional particle-in-cell simulations show that by this method,a pulse with a duration of tens of picoseconds in the mid-to far-infrared range can be compressed to a few cycles with an efficiency exceeding 60%,thereby making ultraintense few-cycle infrared pulses possible.展开更多
Low-noise terahertz(THz)radiation over 100 MV/cm generation by a linearly-polarized relativistic laser pulse interacting with a near-critical-density(NCD)plasma slab is studied by theory and particle-in-cell(PIC)simul...Low-noise terahertz(THz)radiation over 100 MV/cm generation by a linearly-polarized relativistic laser pulse interacting with a near-critical-density(NCD)plasma slab is studied by theory and particle-in-cell(PIC)simulations.A theoretical model is established to examine the dipole-like radiation emission.The THz radiation is attributed to the singlecycle low-frequency surface current,which is longitudinally constrained by the quasi-equilibrium established by the laser ponderomotive force and the ponderomotively induced electrostatic force.Through theoretical analysis,the spatiotemporal characteristics,polarization property of the THz radiation,and the relation between the radiation strength with the initial parameters of driving laser and plasma are obtained,which are in good consistence with the PIC simulation results.Furthermore,it is found by PIC simulations that the generation of thermal electrons can be suppressed within the appropriate parameter regime,resulting in a clear THz radiation waveform.The appropriate parameter region is given for generating a low-noise intense THz radiation with peak strength reaching 100 MV/cm,which could find potential applications in nonlinear THz physics.展开更多
Dielectric laser accelerators(DLAs)are considered promising candidates for on-chip particle accelerators that can achieve high acceleration gradients.This study explores various combinations of dielectric materials an...Dielectric laser accelerators(DLAs)are considered promising candidates for on-chip particle accelerators that can achieve high acceleration gradients.This study explores various combinations of dielectric materials and accelerated structures based on the inverse Cherenkov effect.The designs utilize conventional processing methods and laser parameters currently in use.We optimize the structural model to enhance the gradient of acceleration and the electron energy gain.To achieve higher acceleration gradients and energy gains,the selection of materials and structures should be based on the initial electron energy.Furthermore,we observed that the variation of the acceleration gradient of the material is different at different initial electron energies.These findings suggest that on-chip accelerators are feasible with the help of these structures and materials.展开更多
Chirped wideband pump and seed pulses are usually considered for backward Raman amplification(BRA) in plasmas to achieve an extremely high-power laser pulse. However, current theoretical models only contain either a...Chirped wideband pump and seed pulses are usually considered for backward Raman amplification(BRA) in plasmas to achieve an extremely high-power laser pulse. However, current theoretical models only contain either a chirped pump or a chirped seed. In this paper, modified three-wave coupling equations are proposed for the BRA in the plasmas with both chirped wideband pump and seed. The simulation results can more precisely describe the experiments, such as the Princeton University experiment. The optimized chirp and bandwidth are determined based on the simulation to enhance the output intensity and efficiency.展开更多
Currently,with the advent of high-repetition-rate laser-plasma experiments,the demand for online diagnosis for the X-ray spectrum is increasing because the laser-plasma-generated X-ray spectrum is very important for c...Currently,with the advent of high-repetition-rate laser-plasma experiments,the demand for online diagnosis for the X-ray spectrum is increasing because the laser-plasma-generated X-ray spectrum is very important for characterizing electron dynamics and applications.In this study,scintillators and silicon PIN(P-type–intrinsic-N-type semiconductor)diodes were used to construct a wideband online filter stack spectrometer.The X-ray sensor and filter arrangement was optimized using a genetic algorithm to minimize the condition number of the response matrix.Consequently,the unfolding error was significantly reduced based on numerical experiments.The detector responses were quantitatively calibrated by irradiating the scintillator and PIN diode with various nuclides and comparing the measuredγ-ray peaks.A prototype 15-channel spectrometer was developed by integrating an X-ray detector with front-and back-end electronics.The prototype spectrometer could record X-ray pulse signals at a repetition rate of 1 kHz.Furthermore,an optimized spectrometer was employed to record the real-time spectra of laser-driven bremsstrahlung sources.This optimized spectrometer offers a compact solution for spectrum diagnostics of ultrashort X-ray pulses,exhibiting improved accuracy in terms of spectrum measurements and repetition rates,and could be widely used in next-generation high-repetition-rate high-power laser facilities.展开更多
A high-power laser ablating solid targets induces giant electromagnetic pulses(EMPs),which are intimately pertinent to laser parameters,such as energy and pulse width.In this study,we reveal the features of EMPs gener...A high-power laser ablating solid targets induces giant electromagnetic pulses(EMPs),which are intimately pertinent to laser parameters,such as energy and pulse width.In this study,we reveal the features of EMPs generated from a picosecond(ps)laser irradiating solid targets at the SG-Ⅱpicosecond petawatt(PSPW)laser facility.The laser energy and pulse,as well as target material and thickness,show determinative effects on the EMPs’amplitude.More intense EMPs are detected behind targets compared to those at the other three positions,and the EMP amplitude decreases from 90.09 kV/m to 17.8 kV/m with the gold target thickness increasing from 10μm to 20μm,which is suppressed when the laser pulse width is enlarged.The results are expected to provide more insight into EMPs produced by ps lasers coupling with targets and lay the foundation for an effective EMP shielding design in high-power laser infrastructures.展开更多
We present an application of short-pulse laser-generated hard x rays for the diagnosis of indirectly driven double shell targets. Coneinserted double shell targets were imploded through an indirect drive approach on t...We present an application of short-pulse laser-generated hard x rays for the diagnosis of indirectly driven double shell targets. Coneinserted double shell targets were imploded through an indirect drive approach on the upgraded SG-II laser facility. Then, based on thepoint-projection hard x-ray radiography technique, time-resolved radiography of the double shell targets, including that of their near-peakcompression, were obtained. The backlighter source was created by the interactions of a high-intensity short pulsed laser with a metalmicrowire target. Images of the target near peak compression were obtained with an Au microwire. In addition, radiation hydrodynamicsimulations were performed, and the target evolution obtained agrees well with the experimental results. Using the radiographic images, arealdensities of the targets were evaluated.展开更多
The structural, electronic, and optical properties of cubic perovskite NaMgF3 are calculated by plane-wave pseudopo- tential density functional theory. The calculated lattice constant a0, bulk modulus B0, and the deri...The structural, electronic, and optical properties of cubic perovskite NaMgF3 are calculated by plane-wave pseudopo- tential density functional theory. The calculated lattice constant a0, bulk modulus B0, and the derivative of bulk modulus B~ are 3.872/~, 78.2 GPa, and 3.97, respectively. The results are in good agreement with the available experimental and theo- retical values. The electronic structure shows that cubic NaMgF3 is an indirect insulator with a wide forbidden band gap of Eg = 5.90 eV. The contribution of the different bands is analyzed by total and partial density of states curves. Population analysis of NaMgF3 indicates that there is strong ionic bonding in the MgF2 unit, and a mixture of ionic and weak covalent bonding in the NaF unit. Calculations of dielectric function, absorption coefficient, refractive index, electronic energy loss spectroscopy, optical reflectivity, and conductivity are also performed in the energy range 0 to 70 eV.展开更多
The Cu2O and Au-doped Cu2O films are prepared on MgO (001) substrates by pulsed laser deposition. The X-ray photoelectron spectroscopy proves that the films are of Au-doped Cu2O. The optical absorption edge decrease...The Cu2O and Au-doped Cu2O films are prepared on MgO (001) substrates by pulsed laser deposition. The X-ray photoelectron spectroscopy proves that the films are of Au-doped Cu2O. The optical absorption edge decreases by 1.6% after Au doping. The electronic and optical properties of pure and Au-doped cuprite Cu2O films are investigated by the first principles. The calculated results indicate that Cu2O is a direct band-gap semiconductor. The scissors operation of 1.64 eV has been carried out. After correcting, the band gaps for pure and Au doped Cu2O are about 2.17 eV and 2.02 eV, respectively, decreasing by 6.9%. All of the optical spectra are closely related to the dielectric function. The optical spectrum red shift corresponding to the decreasing of the band gap, and the additional absorption, are observed in the visible region for Au doped Cu2O film. The experimental results are generally in agreement with the calculated results. These results indicate that Au doping could become one of the more important factors influencing the photovoltaic activity of Cu2O film.展开更多
The strong anisotropy beryllium (Be) films are fabricated at different sputtering pressures by direct current magnetron sputtering. With the increase of pressure, the deposition rate of Be film first increases, and ...The strong anisotropy beryllium (Be) films are fabricated at different sputtering pressures by direct current magnetron sputtering. With the increase of pressure, the deposition rate of Be film first increases, and when the pressure exceeds 0.8 Pa, it gradually descends. The X-ray diffraction analysis indicates that Be film is of α-Be phase, its surface always reveals the (101) crystal plane possessing the low surface energy. As for the growth morphology of Be film, the surface is mainly characterized by the fibrous grains, while the cross section shows a transition from a columnar grain to a mixed grain consisting of a cone-shaped grain and a columnar grain as the sputtering pressure increases. The large grain fraction decays exponentially from 75.0% to 59.3% with the increase of sputtering pressure p, which can improve the grain size uniformity. The surface roughness increases due to the insufficient atom diffusion, which is comparable to its decrease due to the etching effect at p 〈 0.8 Pa, while it increases drastically at p 〉 0.8 Pa, and this increase is dominated by the atom diffusion. The electrical resistivity values of Be films range from 1.7 μΩ m to 2.7 μΩ m in the range 0.4 Pa-1.2 Pa, which is 50 times larger than the bulk resistivity.展开更多
In this work,the gas-Cherenkov detector with an off-axis parabolic reflector(Opr GCD)is designed using the Geant4 Monte Carlo simulation toolkit,which is helpful to improve the collection efficiency of Cherenkov photo...In this work,the gas-Cherenkov detector with an off-axis parabolic reflector(Opr GCD)is designed using the Geant4 Monte Carlo simulation toolkit,which is helpful to improve the collection efficiency of Cherenkov photons.The method to study the performance of Opr GCD based on femtosecond laser-wakefield-accelerated electron beams is presented.Cherenkov signals with high signal-to-noise ratio were obtained,and the measured Cherenkov signals changing with the CO2 pressure were consistent well with the simulation results.The design and study of this Opr GCD system lay the foundation for the application of fusion gamma diagnostics system in large laser facilities of China.展开更多
NiCr micron-resistor was designed and prepared by magnetron sputtering and lithography on the substrate of silicon with different powers. It is found that there exists a big gap in the TCR between the annealed group a...NiCr micron-resistor was designed and prepared by magnetron sputtering and lithography on the substrate of silicon with different powers. It is found that there exists a big gap in the TCR between the annealed group and the un-annealed group. A series of tests were made to figure out the reasons lying behind the gap in the TCR between the annealed group and the un-annealed group. UV reflection results show that there is no increase in the concentration of free electrons after annealing. However, the data obtained from XRD reveal that the annealing does not have an obvious influence on the strain of thin films, but really increases the grain size of thin films. Therefore, the grain boundary scattering plays a dominant role in explaining the obvious difference in the TCR. Finally through appropriate methods, a micron-resistor for heating-up with a low TCR value was obtained.展开更多
The elliptical reflection zone plate is a kind of optical element in soft x-ray and x-ray ranges and has focusing and dispersion properties. Compared with a transmission zone plate, the required dispersion ordei, can ...The elliptical reflection zone plate is a kind of optical element in soft x-ray and x-ray ranges and has focusing and dispersion properties. Compared with a transmission zone plate, the required dispersion ordei, can be easily separated from zeroth order diffraction. It is fabricated on a bulk substrate and does not have much difficulty in the fabrication process. We design a 1000-zone off-axis elliptical reflection zone plate for the rnonochromatization of the ultrafast betatron radiation at the low energy band, at the designed wavelength of 2.478 nm (500eV) which is an important spectral part of the betatron radiation, with high spatial resolution, high spectral resolution. Moreover, we simulate the designed reflection zone plate properties. The simulation results show that the spatial resolutions in the spatial direction and the spectral direction are 6.4μm and 7.3μm (full width half maximum), respectively,, and the spectral resolution reaches up to 496 for the well aligned point source system, which is in good agreement with the theoretical predictions. In addition, we discuss some factors influencing the spectral and spatial resolution, such as the zone number, zone area and the incidence wavelength. The elliptical reflection zone plate also has potential applications in investigating x-ray fluorescence spectra and other fields.展开更多
With the increasing interest in Cu2O-based devices for photovoltaic applications,the energy band alignment at the Cu2O/ZnO heterojunction has received more and more attention.In this work,a high-quality Cu2O/ZnO heter...With the increasing interest in Cu2O-based devices for photovoltaic applications,the energy band alignment at the Cu2O/ZnO heterojunction has received more and more attention.In this work,a high-quality Cu2O/ZnO heterojunction is fabricated on a c-Al2 O3 substrate by laser-molecular beam epitaxy,and the energy band alignment is determined by x-ray photoelectron spectroscopy.The valence band of ZnO is found to be 1.97 eV below that of Cu2O.A type-II band alignment exists at the Cu2O/ZnO heterojunction with a resulting conduction band offset of 0.77 eV,which is especially favorable for enhancing the efficiency of Cu2O/ZnO solar cells.展开更多
A series of Zn_(1-x)Cd_xO thin films have been fabricated on sapphire by pulsed-laser deposition(PLD), successfully. To investigate the effect of Cd concentration on structural and optical properties of Zn_(1-x)...A series of Zn_(1-x)Cd_xO thin films have been fabricated on sapphire by pulsed-laser deposition(PLD), successfully. To investigate the effect of Cd concentration on structural and optical properties of Zn_(1-x)Cd_xO films, x-ray diffraction(XRD),ultraviolet-visible spectroscopy(UV-vis), and x-ray photoelectron spectroscopy(XPS) are employed to characterize the films in detail. The XRD pattern indicates that the Zn_(1-x)Cd_xO thin films have high single-orientation of the c axis. The energy bandgap values of ZnCdO thin films decrease from 3.26 eV to 2.98 eV with the increasing Cd concentration(x)according to the(αhν)~2–hν curve. Furthermore, the band offsets of Zn_(1-x)Cd_xO/ZnO heterojunctions are determinated by XPS, indicating that a type-I alignment takes place at the interface and the value of band offset could be tuned by adjusting the Cd concentration.展开更多
Ionization of atoms in counter-rotating and co-rotating bicircular laser fields is studied using the S-matrix theory in both length and velocity gauges.We show that for both the bicircular fields,ionization rates are ...Ionization of atoms in counter-rotating and co-rotating bicircular laser fields is studied using the S-matrix theory in both length and velocity gauges.We show that for both the bicircular fields,ionization rates are enhanced when the two circularly polarized lights have comparable intensities.In addition,the curves of ionization rate versus the field amplitude ratio of the two colors for counter-rotating and co-rotating fields coincide with each other in the length gauge case at the total laser intensity 5×10^14 W/cm^2,which agrees with the experimental observation.Moreover,the degree of the coincidence between the ionization rate curves of the two bicircular fields decreases with the increasing field amplitude ratio and decreasing total laser intensity.With the help of the ADK theory,the above characteristics of the ionization rate curves can be well interpreted,which is related to the transition from the tunneling to multiphoton ionization mechanism.展开更多
Ternary metal chalcogenide semiconductor Ag8 Sn S6, which is an efficient photocatalyst under visible light radiation,is studied by plane-wave pseudopotential density functional theory. After geometry optimization, th...Ternary metal chalcogenide semiconductor Ag8 Sn S6, which is an efficient photocatalyst under visible light radiation,is studied by plane-wave pseudopotential density functional theory. After geometry optimization, the electronic and optical properties are studied. A scissor operator value of 0.81 e V is introduced to overcome the underestimation of the calculation band gaps. The contribution of different bands is analyzed by virtue of total and partial density of states. Furthermore, in order to understand the optical properties of Ag8 Sn S6, the dielectric function, absorption coefficient, and refractive index are also performed in the energy range from 0 to 11 e V. The absorption spectrum indicates that Ag8 Sn S6has a good absorbency in visible light area. Surface energies and work functions of(411),(4 13),(21 1), and(112) orientations have been calculated. These results reveal the reason for an outstanding photocatalytic activity of Ag8 Sn S6.展开更多
Laser paint removal in a water environment does not diffuse ablation pollution products into air.Characteristics of water,such as high specific heat and heat flux,generate different effects of the laser paint removal ...Laser paint removal in a water environment does not diffuse ablation pollution products into air.Characteristics of water,such as high specific heat and heat flux,generate different effects of the laser paint removal than in an air environment.In this study,the effects of air and water environments on the mechanism and effect of laser paint removal are analyzed and compared experimentally and theoretically.In air,thermodynamic ablation causes removal of paint,whereas in water,stress coupled with plasma shock waves cause tear and splash removal of paint layers after fracture and damage.Fracture and pressure thresholds of the paint and substrate,respectively,indicate the optimum energy density range for laser paint removal in water,providing a reference for engineering applications.展开更多
基金supported by National Grand Instrument Project (No.2019YFF01014404)the National Key Program for S & T Research and Development (No. 2022YFA1603202)+1 种基金National Natural Science Foundation of China (Nos.U2241281 and 11975037)the Foundation of Science and Technology on Plasma Physics Laboratory (No.6142A04220108)。
文摘Giant electromagnetic pulses(EMPs) induced by high-power laser irradiating solid targets interfere with various experimental diagnoses and even damage equipment,so unveiling the evolution of EMPs inside the laser chamber is crucial for designing effective EMP shielding.In this work,the transmission characteristics of EMPs as a function of distances from the target chamber center(TCC) are studied using B-dot probes.The mean EMP amplitude generated by picosecond laser-target interaction reaches 561 kV m^(-1),357 kV m^(-1),395 kV m^(-1),and 341 kV m^(-1)at 0.32 m,0.53 m,0.76 m,and 1 m from TCC,which decreases dramatically from 0.32 m to 0.53 m.However,it shows a fluctuation from 0.53 m to 1 m.The temporal features of EMPs indicate that time-domain EMP signals near the target chamber wall have a wider full width at half maximum compared to that close to TCC,mainly due to the echo oscillation of electromagnetic waves inside the target chamber based on simulation and experimentation.The conclusions of this study will provide a new approach to mitigate strong electromagnetic pulses by decreasing the echo oscillation of electromagnetic waves inside the target chamber during laser coupling with targets.
基金This work was supported by the National Key R&D Program of China(No.2022YFA1603300)the National Natural Science Foundation of China(Nos.U2230133)+2 种基金the Independent Research Project of the Key Laboratory of Plasma Physics,CAEP(No.JCKYS2021212009)the Open Fund of the Key Laboratory of Nuclear Data,CIAE(No.JCKY2022201C152)Hengyang Municipal Science and Technology Project(No.202150054076).
文摘Photoneutron cross-section(PNCS)data are important in various current and emerging applications.Although a few sophis-ticated methods have been developed,there is still an urgent need to study the PNCS data.In this study,we propose the extraction of PNCS distributions using a combination of gamma activation and reaction yield ratio methods.To verify the validity of the proposed extraction method,experiments for generating^(62,64)Cu and^(85m,87m)Sr isotopes via laser-induced pho-toneutron reactions were performed,and the reaction yields of these isotopes were obtained.Using the proposed extraction method,the PNCS distributions of^(63)Cu and^(86)Sr isotopes(leading to^(85m)Sr isotope production)were successfully extracted.These extracted PNCS distributions were benchmarked against available PNCS data or TALYS calculations,demonstrating the validity of the proposed extraction method.Potential applications for predicting the PNCS distributions of the 30 iso-topes are further introduced.We conclude that the proposed extraction method is an effective complement to the available sophisticated methods for measuring and evaluating PNCS data.
基金China Academy of Engineering Physics(Grant No.CX20200022)the National Key Program for S&T Research and Development(Grant No.2018YFA0404804)the National Natural Science Foundation of China(Grant No.11875240).
文摘Ultraintense short-period infrared laser pulses play an important role in frontier scientific research,but their power is quite low when generated using current technology.This paper demonstrates a scheme for generating an ultraintense few-cycle infrared pulse by directly compressing a long infrared pulse.In this scheme,an infrared picosecond-to-nanosecond laser pulse counterpropagates with a rapidly extending plasma grating that is created by ionizing an undulated gas by a short laser pulse,and the infrared laser pulse is reflected by the rapidly extending plasma grating.Because of the high expansion velocity of the latter,the infrared laser pulse is compressed in the reflection process.One-and two-dimensional particle-in-cell simulations show that by this method,a pulse with a duration of tens of picoseconds in the mid-to far-infrared range can be compressed to a few cycles with an efficiency exceeding 60%,thereby making ultraintense few-cycle infrared pulses possible.
基金the National Natural Science Foundation of China(Grant Nos.11774430,12075157,11775202,and 12175310)the Scientific Research Foundation of Hunan Provincial Education Department(Grant No.20A042).
文摘Low-noise terahertz(THz)radiation over 100 MV/cm generation by a linearly-polarized relativistic laser pulse interacting with a near-critical-density(NCD)plasma slab is studied by theory and particle-in-cell(PIC)simulations.A theoretical model is established to examine the dipole-like radiation emission.The THz radiation is attributed to the singlecycle low-frequency surface current,which is longitudinally constrained by the quasi-equilibrium established by the laser ponderomotive force and the ponderomotively induced electrostatic force.Through theoretical analysis,the spatiotemporal characteristics,polarization property of the THz radiation,and the relation between the radiation strength with the initial parameters of driving laser and plasma are obtained,which are in good consistence with the PIC simulation results.Furthermore,it is found by PIC simulations that the generation of thermal electrons can be suppressed within the appropriate parameter regime,resulting in a clear THz radiation waveform.The appropriate parameter region is given for generating a low-noise intense THz radiation with peak strength reaching 100 MV/cm,which could find potential applications in nonlinear THz physics.
基金the National Natural Science Foundation of China(Grant No.11975214)。
文摘Dielectric laser accelerators(DLAs)are considered promising candidates for on-chip particle accelerators that can achieve high acceleration gradients.This study explores various combinations of dielectric materials and accelerated structures based on the inverse Cherenkov effect.The designs utilize conventional processing methods and laser parameters currently in use.We optimize the structural model to enhance the gradient of acceleration and the electron energy gain.To achieve higher acceleration gradients and energy gains,the selection of materials and structures should be based on the initial electron energy.Furthermore,we observed that the variation of the acceleration gradient of the material is different at different initial electron energies.These findings suggest that on-chip accelerators are feasible with the help of these structures and materials.
基金Project supported by the National Natural Science Foundation of China(Grant No.11305157)the Development Foundation of China Academy of Engineering Physics Laboratory(CAEPL)(Grant No.2013A0401019)
文摘Chirped wideband pump and seed pulses are usually considered for backward Raman amplification(BRA) in plasmas to achieve an extremely high-power laser pulse. However, current theoretical models only contain either a chirped pump or a chirped seed. In this paper, modified three-wave coupling equations are proposed for the BRA in the plasmas with both chirped wideband pump and seed. The simulation results can more precisely describe the experiments, such as the Princeton University experiment. The optimized chirp and bandwidth are determined based on the simulation to enhance the output intensity and efficiency.
基金partially supported by the Natural Science Foundation of China(Nos.12004353,11975214,11991071,11905202,12175212,and 12120101005)the Key Laboratory Foundation of the Science and Technology on Plasma Physics Laboratory(Nos.6142A04200103 and 6142A0421010).
文摘Currently,with the advent of high-repetition-rate laser-plasma experiments,the demand for online diagnosis for the X-ray spectrum is increasing because the laser-plasma-generated X-ray spectrum is very important for characterizing electron dynamics and applications.In this study,scintillators and silicon PIN(P-type–intrinsic-N-type semiconductor)diodes were used to construct a wideband online filter stack spectrometer.The X-ray sensor and filter arrangement was optimized using a genetic algorithm to minimize the condition number of the response matrix.Consequently,the unfolding error was significantly reduced based on numerical experiments.The detector responses were quantitatively calibrated by irradiating the scintillator and PIN diode with various nuclides and comparing the measuredγ-ray peaks.A prototype 15-channel spectrometer was developed by integrating an X-ray detector with front-and back-end electronics.The prototype spectrometer could record X-ray pulse signals at a repetition rate of 1 kHz.Furthermore,an optimized spectrometer was employed to record the real-time spectra of laser-driven bremsstrahlung sources.This optimized spectrometer offers a compact solution for spectrum diagnostics of ultrashort X-ray pulses,exhibiting improved accuracy in terms of spectrum measurements and repetition rates,and could be widely used in next-generation high-repetition-rate high-power laser facilities.
基金Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA25020205)the program of Science and Technology on Plasma Physics Laboratory,China Academy of Engineering Physics(Grant No.6142A04220108)。
文摘A high-power laser ablating solid targets induces giant electromagnetic pulses(EMPs),which are intimately pertinent to laser parameters,such as energy and pulse width.In this study,we reveal the features of EMPs generated from a picosecond(ps)laser irradiating solid targets at the SG-Ⅱpicosecond petawatt(PSPW)laser facility.The laser energy and pulse,as well as target material and thickness,show determinative effects on the EMPs’amplitude.More intense EMPs are detected behind targets compared to those at the other three positions,and the EMP amplitude decreases from 90.09 kV/m to 17.8 kV/m with the gold target thickness increasing from 10μm to 20μm,which is suppressed when the laser pulse width is enlarged.The results are expected to provide more insight into EMPs produced by ps lasers coupling with targets and lay the foundation for an effective EMP shielding design in high-power laser infrastructures.
基金supported by the National Key R&D Program of China(Grant Nos.2022YFA1603300 and 2022YFA1603200)the Science Challenge Project(Grant No.TZ2018005)in China+1 种基金the National Natural Science Foundation of China(Grant Nos.11805188 and 12175209)the Laser Fusion Research Center Funds for Young Talents(Grant No.RCFPD6-2022-1).
文摘We present an application of short-pulse laser-generated hard x rays for the diagnosis of indirectly driven double shell targets. Coneinserted double shell targets were imploded through an indirect drive approach on the upgraded SG-II laser facility. Then, based on thepoint-projection hard x-ray radiography technique, time-resolved radiography of the double shell targets, including that of their near-peakcompression, were obtained. The backlighter source was created by the interactions of a high-intensity short pulsed laser with a metalmicrowire target. Images of the target near peak compression were obtained with an Au microwire. In addition, radiation hydrodynamicsimulations were performed, and the target evolution obtained agrees well with the experimental results. Using the radiographic images, arealdensities of the targets were evaluated.
基金Project supported by the National Natural Science Foundation of China(Grant No.11176020)
文摘The structural, electronic, and optical properties of cubic perovskite NaMgF3 are calculated by plane-wave pseudopo- tential density functional theory. The calculated lattice constant a0, bulk modulus B0, and the derivative of bulk modulus B~ are 3.872/~, 78.2 GPa, and 3.97, respectively. The results are in good agreement with the available experimental and theo- retical values. The electronic structure shows that cubic NaMgF3 is an indirect insulator with a wide forbidden band gap of Eg = 5.90 eV. The contribution of the different bands is analyzed by total and partial density of states curves. Population analysis of NaMgF3 indicates that there is strong ionic bonding in the MgF2 unit, and a mixture of ionic and weak covalent bonding in the NaF unit. Calculations of dielectric function, absorption coefficient, refractive index, electronic energy loss spectroscopy, optical reflectivity, and conductivity are also performed in the energy range 0 to 70 eV.
文摘The Cu2O and Au-doped Cu2O films are prepared on MgO (001) substrates by pulsed laser deposition. The X-ray photoelectron spectroscopy proves that the films are of Au-doped Cu2O. The optical absorption edge decreases by 1.6% after Au doping. The electronic and optical properties of pure and Au-doped cuprite Cu2O films are investigated by the first principles. The calculated results indicate that Cu2O is a direct band-gap semiconductor. The scissors operation of 1.64 eV has been carried out. After correcting, the band gaps for pure and Au doped Cu2O are about 2.17 eV and 2.02 eV, respectively, decreasing by 6.9%. All of the optical spectra are closely related to the dielectric function. The optical spectrum red shift corresponding to the decreasing of the band gap, and the additional absorption, are observed in the visible region for Au doped Cu2O film. The experimental results are generally in agreement with the calculated results. These results indicate that Au doping could become one of the more important factors influencing the photovoltaic activity of Cu2O film.
基金supported by the National Natural Science Foundation of China(Grant No.11204280)
文摘The strong anisotropy beryllium (Be) films are fabricated at different sputtering pressures by direct current magnetron sputtering. With the increase of pressure, the deposition rate of Be film first increases, and when the pressure exceeds 0.8 Pa, it gradually descends. The X-ray diffraction analysis indicates that Be film is of α-Be phase, its surface always reveals the (101) crystal plane possessing the low surface energy. As for the growth morphology of Be film, the surface is mainly characterized by the fibrous grains, while the cross section shows a transition from a columnar grain to a mixed grain consisting of a cone-shaped grain and a columnar grain as the sputtering pressure increases. The large grain fraction decays exponentially from 75.0% to 59.3% with the increase of sputtering pressure p, which can improve the grain size uniformity. The surface roughness increases due to the insufficient atom diffusion, which is comparable to its decrease due to the etching effect at p 〈 0.8 Pa, while it increases drastically at p 〉 0.8 Pa, and this increase is dominated by the atom diffusion. The electrical resistivity values of Be films range from 1.7 μΩ m to 2.7 μΩ m in the range 0.4 Pa-1.2 Pa, which is 50 times larger than the bulk resistivity.
文摘In this work,the gas-Cherenkov detector with an off-axis parabolic reflector(Opr GCD)is designed using the Geant4 Monte Carlo simulation toolkit,which is helpful to improve the collection efficiency of Cherenkov photons.The method to study the performance of Opr GCD based on femtosecond laser-wakefield-accelerated electron beams is presented.Cherenkov signals with high signal-to-noise ratio were obtained,and the measured Cherenkov signals changing with the CO2 pressure were consistent well with the simulation results.The design and study of this Opr GCD system lay the foundation for the application of fusion gamma diagnostics system in large laser facilities of China.
文摘NiCr micron-resistor was designed and prepared by magnetron sputtering and lithography on the substrate of silicon with different powers. It is found that there exists a big gap in the TCR between the annealed group and the un-annealed group. A series of tests were made to figure out the reasons lying behind the gap in the TCR between the annealed group and the un-annealed group. UV reflection results show that there is no increase in the concentration of free electrons after annealing. However, the data obtained from XRD reveal that the annealing does not have an obvious influence on the strain of thin films, but really increases the grain size of thin films. Therefore, the grain boundary scattering plays a dominant role in explaining the obvious difference in the TCR. Finally through appropriate methods, a micron-resistor for heating-up with a low TCR value was obtained.
基金Supported by the National Natural Science Foundation of China under Grant No 1137516, and the Science Foundation of China Academy of Engineering Physics under Grant Nos 2009A0102003 and 2011B0102021.
文摘The elliptical reflection zone plate is a kind of optical element in soft x-ray and x-ray ranges and has focusing and dispersion properties. Compared with a transmission zone plate, the required dispersion ordei, can be easily separated from zeroth order diffraction. It is fabricated on a bulk substrate and does not have much difficulty in the fabrication process. We design a 1000-zone off-axis elliptical reflection zone plate for the rnonochromatization of the ultrafast betatron radiation at the low energy band, at the designed wavelength of 2.478 nm (500eV) which is an important spectral part of the betatron radiation, with high spatial resolution, high spectral resolution. Moreover, we simulate the designed reflection zone plate properties. The simulation results show that the spatial resolutions in the spatial direction and the spectral direction are 6.4μm and 7.3μm (full width half maximum), respectively,, and the spectral resolution reaches up to 496 for the well aligned point source system, which is in good agreement with the theoretical predictions. In addition, we discuss some factors influencing the spectral and spatial resolution, such as the zone number, zone area and the incidence wavelength. The elliptical reflection zone plate also has potential applications in investigating x-ray fluorescence spectra and other fields.
基金Project supported by the National Natural Science Foundation of China(Grant No.11404302)the Laser Fusion Research Center Funds for Young Talents,China(Grant No.RCFPD1-2017-9)
文摘With the increasing interest in Cu2O-based devices for photovoltaic applications,the energy band alignment at the Cu2O/ZnO heterojunction has received more and more attention.In this work,a high-quality Cu2O/ZnO heterojunction is fabricated on a c-Al2 O3 substrate by laser-molecular beam epitaxy,and the energy band alignment is determined by x-ray photoelectron spectroscopy.The valence band of ZnO is found to be 1.97 eV below that of Cu2O.A type-II band alignment exists at the Cu2O/ZnO heterojunction with a resulting conduction band offset of 0.77 eV,which is especially favorable for enhancing the efficiency of Cu2O/ZnO solar cells.
基金supported by the National Natural Science Foundation of China(Grant No.11404302)the Laser Fusion Research Center Funds for Young Talents(Grant No.RCFPD1-2017-9)
文摘A series of Zn_(1-x)Cd_xO thin films have been fabricated on sapphire by pulsed-laser deposition(PLD), successfully. To investigate the effect of Cd concentration on structural and optical properties of Zn_(1-x)Cd_xO films, x-ray diffraction(XRD),ultraviolet-visible spectroscopy(UV-vis), and x-ray photoelectron spectroscopy(XPS) are employed to characterize the films in detail. The XRD pattern indicates that the Zn_(1-x)Cd_xO thin films have high single-orientation of the c axis. The energy bandgap values of ZnCdO thin films decrease from 3.26 eV to 2.98 eV with the increasing Cd concentration(x)according to the(αhν)~2–hν curve. Furthermore, the band offsets of Zn_(1-x)Cd_xO/ZnO heterojunctions are determinated by XPS, indicating that a type-I alignment takes place at the interface and the value of band offset could be tuned by adjusting the Cd concentration.
基金Project supported by the Key Laboratory Project of Computational Physics of National Defense Science and Technology of China(Grant No.6142A05180401)the National Key Program for S&T Research and Development of China(Grant Nos.2019YFA0307700 and 2016YFA0401100)the National Natural Science Foundation of China(Grant Nos.11847307,11425414,11504215,11774361,and 11874246).
文摘Ionization of atoms in counter-rotating and co-rotating bicircular laser fields is studied using the S-matrix theory in both length and velocity gauges.We show that for both the bicircular fields,ionization rates are enhanced when the two circularly polarized lights have comparable intensities.In addition,the curves of ionization rate versus the field amplitude ratio of the two colors for counter-rotating and co-rotating fields coincide with each other in the length gauge case at the total laser intensity 5×10^14 W/cm^2,which agrees with the experimental observation.Moreover,the degree of the coincidence between the ionization rate curves of the two bicircular fields decreases with the increasing field amplitude ratio and decreasing total laser intensity.With the help of the ADK theory,the above characteristics of the ionization rate curves can be well interpreted,which is related to the transition from the tunneling to multiphoton ionization mechanism.
基金Project supported by the Science and Technology Development Foundation of China(Grant Nos.2012A0302015 and 2012B0302050)
文摘Ternary metal chalcogenide semiconductor Ag8 Sn S6, which is an efficient photocatalyst under visible light radiation,is studied by plane-wave pseudopotential density functional theory. After geometry optimization, the electronic and optical properties are studied. A scissor operator value of 0.81 e V is introduced to overcome the underestimation of the calculation band gaps. The contribution of different bands is analyzed by virtue of total and partial density of states. Furthermore, in order to understand the optical properties of Ag8 Sn S6, the dielectric function, absorption coefficient, and refractive index are also performed in the energy range from 0 to 11 e V. The absorption spectrum indicates that Ag8 Sn S6has a good absorbency in visible light area. Surface energies and work functions of(411),(4 13),(21 1), and(112) orientations have been calculated. These results reveal the reason for an outstanding photocatalytic activity of Ag8 Sn S6.
基金supported by the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics NSAF(No.U2030108)Sichuan Science and Technology Program(No.2021YFSY0027)the National Natural Science Foundation of China(No.U2004162)。
文摘Laser paint removal in a water environment does not diffuse ablation pollution products into air.Characteristics of water,such as high specific heat and heat flux,generate different effects of the laser paint removal than in an air environment.In this study,the effects of air and water environments on the mechanism and effect of laser paint removal are analyzed and compared experimentally and theoretically.In air,thermodynamic ablation causes removal of paint,whereas in water,stress coupled with plasma shock waves cause tear and splash removal of paint layers after fracture and damage.Fracture and pressure thresholds of the paint and substrate,respectively,indicate the optimum energy density range for laser paint removal in water,providing a reference for engineering applications.