Sb_(2)Se_(3) with unique one-dimensional(1D) crystal structure exhibits exceptional deformation tolerance,demonstrating great application potential in flexible devices.However,the power conversion efficiency(PCE) of f...Sb_(2)Se_(3) with unique one-dimensional(1D) crystal structure exhibits exceptional deformation tolerance,demonstrating great application potential in flexible devices.However,the power conversion efficiency(PCE) of flexible Sb_(2)Se_(3) photovoltaic devices is temporarily limited by the complicated intrinsic defects and the undesirable contact interfaces.Herein,a high-quality Sb_(2)Se_(3) absorber layer with large crystal grains and benign [hkl] growth orientation can be first prepared on a Mo foil substrate.Then NaF intermediate layer is introduced between Mo and Sb_(2)Se_(3),which can further optimize the growth of Sb_(2)Se_(3)thin film.Moreover,positive Na ion diffusion enables it to dramatically lower barrier height at the back contact interface and passivate harmful defects at both bulk and heterojunction.As a result,the champion substrate structured Mo-foil/Mo/NaF/Sb_(2)Se_(3)/CdS/ITO/Ag flexible thin-film solar cell delivers an obviously higher efficiency of 8.03% and a record open-circuit voltage(V_(OC)) of 0.492 V.This flexible Sb_(2)Se_(3) device also exhibits excellent stability and flexibility to stand large bending radius and multiple bending times,as well as superior weak light photo-response with derived efficiency of 12.60%.This work presents an effective strategy to enhance the flexible Sb_(2)Se_(3) device performance and expand its potential photovoltaic applications.展开更多
Antimony selenide(Sb_(2)Se_(3))is a potential photovoltaic(PV)material for next-generation solar cells and has achieved great development in the last several years.The properties of Sb_(2)Se_(3)absorber and back conta...Antimony selenide(Sb_(2)Se_(3))is a potential photovoltaic(PV)material for next-generation solar cells and has achieved great development in the last several years.The properties of Sb_(2)Se_(3)absorber and back contact influence the PV performances of Sb_(2)Se_(3)solar cells.Hence,optimization of back contact characteristics and absorber orientation are crucial steps in raising the power conversion efficiency(PCE)of Sb_(2)Se_(3)solar cells.In this work,MoO2was introduced as an intermediate layer(IL)in Sb_(2)Se_(3)solar cells,and comparative investigations were conducted.The growth of(211)-oriented Sb_(2)Se_(3)with large grains was facilitated by introducing the MoO2IL with suitable thickness.The MoO2IL substantially lowered the back contact barrier and prevented the formation of voids at the back contact,which reduced the thickness of the MoSe2interface layer,inhibited carrier recombination,and minimized bulk and interfacial defects in devices.Subsequently,significant optimization enhanced the open-circuit voltage(VOC)of solar cells from 0.481 V to 0.487 V,short-circuit current density(JSC)from 23.81 m A/cm^(2)to 29.29 m A/cm^(2),and fill factor from 50.28%to 57.10%,which boosted the PCE from 5.75%to 8.14%.展开更多
The synthesis of new 4-imino-4H-chromeno[2,3-d]pyrimidin-3(5H)-amine in four steps including one step under microwave dielectric heating is reported. The structural identity of the synthesized compounds was establishe...The synthesis of new 4-imino-4H-chromeno[2,3-d]pyrimidin-3(5H)-amine in four steps including one step under microwave dielectric heating is reported. The structural identity of the synthesized compounds was established according to their spectroscopic analysis, such as FT-IR, NMR and mass spectroscopy. These new compounds were tested for their antiproliferative activities on seven representative human tumoral cell lines (Huh7 D12, Caco2, MDA-MB231, MDA-MB468, HCT116, PC3 and MCF7) and also on fibroblasts. Among them, only the compounds 6c showed micromolar cytotoxic activity on tumor cell lines (1.8 50 50 > 25 μM). Finally, in silico ADMET studies ware performed to investigate the possibility of using of the identified compound 6c as potential anti-tumor compound.展开更多
A general research program, focusing on activated carbon fiber cloths (ACFC) and felt for environmental protection was performed. The objectives were multiple: (i) a better understanding of the adsorption mecha- ...A general research program, focusing on activated carbon fiber cloths (ACFC) and felt for environmental protection was performed. The objectives were multiple: (i) a better understanding of the adsorption mecha- nisms of these kinds of materials; (ii) the specification and optimization of new processes using these adsorbents; (iii) the modeling of the adsorption of organic pollutants using both the usual and original approaches; (iv) applications of ACFC in industrial processes. The general question was: how can activated carbon fiber cloths and felts be used in air treatment processes for the protection of environment. In order to provide an answer, different approaches were adopted. The materials (ACFC) were characterized in terms of macro structure and internal porosity. Specific studies were performed to get the air flow pattern through the fabrics. Head loss data were generated and modeled as a fi.mction of air velocity. The performances of ACF to remove volatile organic compounds (VOCs) were approached with the adsorption isotherms and breakthrough curves in various operating conditions. Regenera- tion by Joule effect shows a homogenous heating of adsorber modules with rolled or pleated layers. Examples of industrial developments were presented showing an interesting technology for the removal of VOCs, such as dichloromethane, benzene, isopropyl alcohol and toluene, alone or in a complex mixture.展开更多
The first report of new 3-(tetrazol-5-yl)-2-iminocoumarin derivatives is described. The title compounds were prepared in two steps and were obtained in good yields (55-93%). They have been fully characterized by <s...The first report of new 3-(tetrazol-5-yl)-2-iminocoumarin derivatives is described. The title compounds were prepared in two steps and were obtained in good yields (55-93%). They have been fully characterized by <sup>1</sup>H, <sup>13</sup>C NMR, FTIR, UV-Visible and HRMS. They were tested for their antiproliferative activities against six representative human tumor cell lines (Huh 7-D12, Caco2, MDA-MB231, HCT 116, PC3 and NCI-H727) and HaCat keratinocytes. Among them, compound 5e was active on HCT 116 (IC<sub>50</sub> 15 μM).展开更多
Abemaciclib (Verzerio<span style="white-space:nowrap;"><sup><span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">®</span>...Abemaciclib (Verzerio<span style="white-space:nowrap;"><sup><span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">®</span></sup></span>) is a cell cycle inhibitor of both CDK4 and CDK6. In 2017, abemaciclib was approved by the Food and Drug Administration (FDA) and, in 2018 by the European Medicines Agency (EMA) for the treatment of postmenopausal women with hormone receptor positive (HR<sup>+</sup>), human epidermal growth factor receptor 2 negative (HER2<sup><span style="white-space:nowrap;"><sup><span style="white-space:nowrap;">−</span></sup></span></sup>) advanced breast cancer. In this mini-review, we provide a series of information for respectively their targets and its selectivity, results on preclinical trial, clinical phase I, II and III trials, and some perspectives. We also describe the batch and flow steps used for the synthesis of this cancer drug.展开更多
This theoretical chemical reactivity study was conducted using the Density Functional Theory (DFT) method, at computational level B3LYP/6-31G (d). It involved a series of six (06) 5-arylidene rhodanines and allowed to...This theoretical chemical reactivity study was conducted using the Density Functional Theory (DFT) method, at computational level B3LYP/6-31G (d). It involved a series of six (06) 5-arylidene rhodanines and allowed to predict the chemical reactivity of these compounds. DFT global chemical reactivity descriptors (HOMO and LUMO energies, chemical hardness, softness, electronegativity) were examined to predict the relative stability and reactivity of rhodanin derivatives. Thus, the compound 6 which has an energy gap between the orbitals of ΔEgap = 3.004 eV is the most polarizable, the most reactive, the least stable, the best electron donor and the softest molecule. Calculation of the local indices of reactivity as well as dual descriptors revealed that the sulfur heteroatom of the Rhodanine ring is the privileged site of electrophilic attack in a state of sp3 hybridization and privileged site of nucleophilic attack in a state of sp2 hybridization.展开更多
The synthesis of 2-phenylimino-4<em>H</em>-chromene-3-carbonitriles <strong>6(a-d)</strong> in good overall yields using an efficient and practical methodology in 3 steps has been implemented i...The synthesis of 2-phenylimino-4<em>H</em>-chromene-3-carbonitriles <strong>6(a-d)</strong> in good overall yields using an efficient and practical methodology in 3 steps has been implemented in this present work. The first step was a heterocyclization between 2-hydroxybenzaldehyde <strong>1</strong> and propanedinitrile <strong>2</strong> which produced 2-iminocoumarin <strong>3</strong> which was submitted to nitrogen/nitrogen displacement in the presence of aromatic primary amine <strong>4</strong>. In the third step, reduction of <strong>5</strong> led to the desired 2-phenylimino-4<em>H</em>-chromene-3-carbonitriles <strong>6</strong>. Compounds <strong>5(a-d)</strong> and <strong>6(a-d)</strong> were evaluated for their potential <em>in vitro</em> cytotoxicity against six selected tumor cell lines (Huh7-D12, Caco2, MDA-MB231, HCT 116, PC3 and NCI-H727) and tested for their protein kinase inhibition on eight selected protein kinases. Among them, compounds <strong>5c</strong> and <strong>6b</strong> exhibited inhibition on HsCK1e (<strong>5c</strong>: 44% and <strong>6b</strong>: 42% at 1 μM) and <strong>5c </strong>for cytotoxicity on PC3 cell lines (63% at 25 μM).展开更多
Kesterite Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)has attracted considerable attention as a non-toxic and earthabundant solar cell material.During selenization of CZTSSe film at high temperature,the reaction between CZTSSe and Mo...Kesterite Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)has attracted considerable attention as a non-toxic and earthabundant solar cell material.During selenization of CZTSSe film at high temperature,the reaction between CZTSSe and Mo is one of the main reasons that result in unfavorable absorber and interface quality,which leads to large open circuit voltage deficit(VOC-def)and low fill factor(FF).Herein,a WO_(3)intermediate layer introduced at the back interface can effectually inhibit the unfavorable interface reaction between absorber and back electrode in the preliminary selenization progress;thus high-quality crystals are obtained.Through this back interface engineering,the traditional problems of phase segregation,voids in the absorber and over thick Mo(S,Se)_(2)at the back interface can be well solved,which greatly lessens the recombination in the bulk and at the interface.The increased minority carrier diffusion length,decreased barrier height at back interface contact and reduced deep acceptor defects give rise to systematic improvement in VOCand FF,finally a 12.66%conversion efficiency for CZTSSe solar cell has been achieved.This work provides a simple way to fabricate highly efficient solar cells and promotes a deeper understanding of the function of intermediate layer at back interface in kesterite-based solar cells.展开更多
The electrochemical behaviours of unrecrystallized and recrystallized Ti12Mo5Ta alloys were compared with those of the unrecrystallized Ti12 Mo alloy and commercial pure titanium(cp-Ti). Experiments were carried out...The electrochemical behaviours of unrecrystallized and recrystallized Ti12Mo5Ta alloys were compared with those of the unrecrystallized Ti12 Mo alloy and commercial pure titanium(cp-Ti). Experiments were carried out using physiological 0.9% NaCl solution(pH 2.3) at 37 °C. Very low passive current densities(in order of 10-6 A/cm2) were obtained from the anodic polarization curves, indicating high resistances of all samples in acidified 0.9% Na Cl solution. Scanning electron microscopy(SEM) was employed to observe the surface morphology and all sample surfaces were identically corroded, no pitting, cracks, or other defects appeared on the sample surfaces after anodic potentiodynamic polarization tests. Equivalent circuit was used for modeling the electrochemical impedance spectroscopy(EIS) data, in order to characterize the sample surface and better understand the effect of Mo and Ta addition on the cp-Ti and the effect of recrystallization. The EIS results confirm that all titanium samples exhibit passivity in physiological 0.9% NaCl solution(pH 2.3) at open circuit potential(polarization resistance is around 105 Ω·cm2). The corrosion resistance of these samples in physiological 0.9% NaCl solution(pH 2.3) at 37 °C is in the following order of recrystallized Ti12Mo5Ta〉 unrecrystallized Ti12Mo5Ta 〉 unrecrystallized Ti12Mo 〉 cp-Ti.展开更多
The electrochemical conversion of sunlight by photoelectrochemical cells(PECs)is based on semiconductor electrodes that are interfaced with a liquid electrolyte.This approach is highly promising,first,because it can b...The electrochemical conversion of sunlight by photoelectrochemical cells(PECs)is based on semiconductor electrodes that are interfaced with a liquid electrolyte.This approach is highly promising,first,because it can be employed for the generation of a chemical fuel(e.g.,H2)to store solar energy that can be used on-demand to generate electricity when the sun is not available.Second,it can be seen as a concept reminiscent of photosynthesis,where CO_(2) is converted into a valuable feedstock by solar energy.Thus,photoelectrochemical cells are sometimes referred to as“artificial leaves”.Silicon,being the main semiconductor in the electronics and photovoltaic sector,is a prime candidate to be used as the light absorber and the substrate for building photoelectrochemical cells.However,Si alone has“poor-to-no photoelectrochemical performance”.This is caused by its weak electrocatalytic activity for cathodic reactions(namely,the hydrogen evolution reaction(HER),the CO_(2) reduction reaction(CDRR),and the N2 reduction reaction)and by its deactivation in the anodic regime,prohibiting its use for the oxygen evolution reaction(OER).This latter reaction is essential for supplying electrons to generate a solar fuel.Due to these problems,layers that both protect and are catalytically active are typically employed on Si photoelectrodes but require rather sophisticated manufacturing processes(e.g.,atomic layer or electron beam deposition),which hinders research and innovation in this field.Nevertheless,our group and others have demonstrated that these layers are not always required and that highly active and stable Si-based photoelectrodes can be manufactured using simple wet processes,such as drop casting,electroless deposition,or aqueous electrodeposition.In this Account,we first introduce the topic and the possible structures that can be easily obtained starting from commercial Si wafers.Then,we discuss strategies that have been employed to manufacture photocathodes based on p-type Si.Among these,we describe Si photocathodes coated with metal,inorganic compounds such as metal sulfides,and more original constructs,such as those based on macromolecules composed of a catalytic Mo3S4 core and a polyoxometallate macrocycle.Also,we discuss the elaboration and the advantages of Si photocathodes obtained by grafting organometallic catalysts which are promising candidates for reaching excellent selectivity for the CDRR.Then,the manufacturing of photoanodes based on n-Si is reviewed with an emphasis on those prepared by electrodeposition of a transition metal such as Ni and Fe.The effect of the catalyst morphology,density,and Si structuration is discussed,and future developments are proposed.展开更多
A new metal-organic hybrid compound?[Fe(O3C4)(COO)]·H2O I has been hydrothermally synthesized and characterized by single-crystal X-ray diffraction. Rust crystals crystallize in the monoclinic system, space group...A new metal-organic hybrid compound?[Fe(O3C4)(COO)]·H2O I has been hydrothermally synthesized and characterized by single-crystal X-ray diffraction. Rust crystals crystallize in the monoclinic system, space group I2/a, a = 6.9651(2) A, b = 8.12630(10) A, c = 19.4245(2) A, β = 92.6600(10)°;V = 1098.25(4) A3;Z = 2 and Dx =3.63g/cm3. The refinement converged into R = 0.042;Rw = 0.058. The structure, determined by single crystal X-ray diffraction, consists of a network of FeO6 centers, octahedral coordinated by btec (btec = 1,2,4,5-benzenetetracarboxylic acid) anions giving rise to a two-dimensional sheet structure. In the compound I,?[Fe(O3C4)(COO)]·H2O, the FeO6 group bridged by the 1,2,4,5-benzenetetracarboxyl anion exist in a unit cell, with each anion lying about an inversion centre. One of the FeO2 adistance [1.965(2)] significantly corresponds to the shortest distance as the other and the distances found in the axial direction of compound I.展开更多
In recent years,the development of an environmentally friendly quantum dots(QDs)embedded luminous solid by a simple method has attracted considerable attention.In this study,semiconductor ZnS QDs were successfully pre...In recent years,the development of an environmentally friendly quantum dots(QDs)embedded luminous solid by a simple method has attracted considerable attention.In this study,semiconductor ZnS QDs were successfully prepared in an inorganic matrix of amorphous glass,which yielded beneficial broadband emission in the long-wavelength region of the visible range.The strong red emission belonged to the defect state energy level of the ZnS QDs,which could be enhanced by incorporation of nickel ions into the fixed matrix to regulate the defects state.The novel material had a small self-absorption,wide excitation and emission ranges,and thus potential applications in light-conversion devices,luminescent solar concentrators,and solar cell cover glasses.展开更多
Objectives: Traditional methods for evaluating aesthetic perceptions of the teeth have involved panels of people observing photographs, and the person commenting on the appearance of the teeth generally is aware that ...Objectives: Traditional methods for evaluating aesthetic perceptions of the teeth have involved panels of people observing photographs, and the person commenting on the appearance of the teeth generally is aware that his opinion of the dental appearance is being sought. The situation is artificial and may involve bias. We propose a novel method for evaluating the effect of dental imperfections on perceptions in which the participant is unaware of participating in a survey and in which his or her opinion is not sought. Rather, involvement in the study betrays the importance of dental aesthetics for the observer. Methods: Starting with a digitally manipulated photograph of a smiling young woman, two portrait photographs A and B were produced in which the only differences were in the dentition revealed by the smile. The two photographs were anonymously posted on an online dating service site covering two large cities in southwestern France. During a period of one month, all “hits” on each of the photographs and all attempts to make contact were counted. Results: There was no significant difference between the number of hits on each of the portraits A and B. On the other hand, the ratio of attempts to contact to hits showed a clear difference: the ratio was 4.8 times greater for Portrait A than for Portrait B展开更多
Kesterite Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)is a promising candidate for photodetector(PD)applications thanks to its excellent optoelectronic properties.In this work,a green solution-processed spin coating and selenization-...Kesterite Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)is a promising candidate for photodetector(PD)applications thanks to its excellent optoelectronic properties.In this work,a green solution-processed spin coating and selenization-processed thermodynamic or kinetic growth of high-quality narrow bandgap kesterite CZTSSe thin film is developed.A self-powered CZTSSe/CdS thin-film PD is then successfully fabricated.Under optimization of light absorber and heterojunction interface,especially tailoring the defect and carrier kinetics,it can achieve broadband response from300 to 1300 nm,accompaniedwith a high responsivity of 1.37A/W,specific detectivity(D*)up to 4.0×10^(14)Jones under 5 nW/cm^(2),a linear dynamic range(LDR)of 126 dB,and a maximum Ilight/Idark ratio of 1.3×10^(8)within the LDR,and ultrafast response speed(rise/decay time of 16 ns/85 ns),representing the leading-level performance to date,which is superior to those of commercial andwell-researched photodiodes.Additionally,an imaging system with a 905nm laser is built for weak light response evaluation,and can respond to 718 pW weak light and infrared imaging at a wavelength as low as 5 nW/cm2.It has also been employed for photoplethysmography detection of pulsating signals at both the finger and wrist,presenting obvious arterial blood volume changes,demonstrating great application potential in broadband and weak light photodetection scenarios.展开更多
Eu2+-doped oxyapatite SrxLalo-x (SiO4)6O3-x/2 phosphors are prepared by sofid-state reaction at high temper- atures under reducing atmosphere. Their crystal structures and photoluminescenee are investigated by x-ra...Eu2+-doped oxyapatite SrxLalo-x (SiO4)6O3-x/2 phosphors are prepared by sofid-state reaction at high temper- atures under reducing atmosphere. Their crystal structures and photoluminescenee are investigated by x-ray diffraction (XRD) and fluorescence spectroscopy, respectively. The XlZtD results indicate that the samples are pure oxyapatite phase (P63/m space group). The fluorescence spectra show two peaks corresponding to two sites (4f and 6h sites) for Eu2+ in the host lattice. As the Eu2+ content influences the intensity ratio of the two observed emission peaks, the photoluminescence mechanism is discussed.展开更多
Broadband mid-infrared(IR)supercontinuum laser sources are essential for spectroscopy in the molecular fingerprint region.Here,we report generation of octave-spanning and coherent mid-IR supercontinua in As_(2)S_(3)-s...Broadband mid-infrared(IR)supercontinuum laser sources are essential for spectroscopy in the molecular fingerprint region.Here,we report generation of octave-spanning and coherent mid-IR supercontinua in As_(2)S_(3)-silica nanospike hybrid waveguides pumped by a custom-built 2.8μm femtosecond fiber laser.The waveguides are formed by pressure-assisted melt-filling of molten As_(2)S_(3) into silica capillaries,allowing the dispersion and nonlinearity to be precisely tailored.Continuous coherent spectra spanning from 1.1μm to 4.8μm(30 dB level)are observed when the waveguide is designed so that 2.8μm lies in the anomalous dispersion regime.Moreover,linearly tapered millimeter-scale As_(2)S_(3)-silica waveguides are fabricated and investigated for the first time,to the best of our knowledge,showing much broader supercontinua than uniform waveguides,with improved spectral coherence.The waveguides are demonstrated to be long-term stable and water-resistant due to the shielding of the As_(2)S_(3) by the fused silica sheath.They offer an alternative route to generating broadband mid-IR supercontinua,with applications in frequency metrology and molecular spectroscopy,especially in humid and aqueous environments.展开更多
The adsorption capacities of new humic acids isolated from Yakouren forest (YHA) and Sahara (Tamenrasset: THA) soils (Algeria) and commercial humic acid (PFHA) on polyaniline emeraldine base (PEB) were stud...The adsorption capacities of new humic acids isolated from Yakouren forest (YHA) and Sahara (Tamenrasset: THA) soils (Algeria) and commercial humic acid (PFHA) on polyaniline emeraldine base (PEB) were studied at pH 6.6. Also the adsorption of heavy metals such as Cd 2+ , Zn 2+ and Ni 2+ on humic acid-polyaniline systems (HA-PEB) was investigated at the same conditions. HA-PEB compounds were characterized by scanning electron microscopy (SEM), infrared spectrometry and cavity microelectrode. In addition, batch adsorption and cavity microelectrode were used in the adsorption study of Cd 2+ , Zn 2+ and Ni 2+ on HA-PEB. To develop biocaptors of polluting metals using a cavity microelectrode modified by HA-PEB systems, the adsorption kinetic and adsorption capacity were investigated. The SEM analysis showed that the presence of humic acid affected the PEB surface and caused the formation of a granular morphology. The maximum adsorption capacities (q max ) of PFHA, THA and YHA determined by adsorption isotherms were 91.31, 132.1 and 151.0 mg/g, respectively. Batch adsorption results showed that q max of Cd 2+ , Zn 2+ and Ni 2+ on HA-PEB followed the order: THA-PEB YHA-PEB PFHA-PEB. The voltammograms obtained with HA-PEB modified cavity microelectrode showed the appearance of new redox couples reflecting the adsorption of HA on PEB. Metal-humic acid-polyaniline voltammograms were characterized by appearance of oxidation-reduction couples or reduction wave corresponding to metal. Finally, the result may be exploited to develop a biocaptor based on the cavity microelectrode amended by THA-PEB and YHA-PEB.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.62104156,62074102)the Guangdong Basic and Applied Basic Research Foundation(Grant Nos.2023A1515011256,2022A1515010979)China+1 种基金Science and Technology plan project of Shenzhen(Grant Nos.20220808165025003,20200812000347001)Chinasupported by the open foundation of Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials,State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures,Guangxi University(Grant No.2022GXYSOF13)。
文摘Sb_(2)Se_(3) with unique one-dimensional(1D) crystal structure exhibits exceptional deformation tolerance,demonstrating great application potential in flexible devices.However,the power conversion efficiency(PCE) of flexible Sb_(2)Se_(3) photovoltaic devices is temporarily limited by the complicated intrinsic defects and the undesirable contact interfaces.Herein,a high-quality Sb_(2)Se_(3) absorber layer with large crystal grains and benign [hkl] growth orientation can be first prepared on a Mo foil substrate.Then NaF intermediate layer is introduced between Mo and Sb_(2)Se_(3),which can further optimize the growth of Sb_(2)Se_(3)thin film.Moreover,positive Na ion diffusion enables it to dramatically lower barrier height at the back contact interface and passivate harmful defects at both bulk and heterojunction.As a result,the champion substrate structured Mo-foil/Mo/NaF/Sb_(2)Se_(3)/CdS/ITO/Ag flexible thin-film solar cell delivers an obviously higher efficiency of 8.03% and a record open-circuit voltage(V_(OC)) of 0.492 V.This flexible Sb_(2)Se_(3) device also exhibits excellent stability and flexibility to stand large bending radius and multiple bending times,as well as superior weak light photo-response with derived efficiency of 12.60%.This work presents an effective strategy to enhance the flexible Sb_(2)Se_(3) device performance and expand its potential photovoltaic applications.
基金supported by the National Natural Science Foundation of China(62074102)the Guangdong Basic and Applied Basic Research Foundation(2022A1515010979)+1 种基金the Key Project of Department of Education of Guangdong Province(2018KZDXM059)the Science and Technology plan project of Shenzhen(20220808165025003)。
文摘Antimony selenide(Sb_(2)Se_(3))is a potential photovoltaic(PV)material for next-generation solar cells and has achieved great development in the last several years.The properties of Sb_(2)Se_(3)absorber and back contact influence the PV performances of Sb_(2)Se_(3)solar cells.Hence,optimization of back contact characteristics and absorber orientation are crucial steps in raising the power conversion efficiency(PCE)of Sb_(2)Se_(3)solar cells.In this work,MoO2was introduced as an intermediate layer(IL)in Sb_(2)Se_(3)solar cells,and comparative investigations were conducted.The growth of(211)-oriented Sb_(2)Se_(3)with large grains was facilitated by introducing the MoO2IL with suitable thickness.The MoO2IL substantially lowered the back contact barrier and prevented the formation of voids at the back contact,which reduced the thickness of the MoSe2interface layer,inhibited carrier recombination,and minimized bulk and interfacial defects in devices.Subsequently,significant optimization enhanced the open-circuit voltage(VOC)of solar cells from 0.481 V to 0.487 V,short-circuit current density(JSC)from 23.81 m A/cm^(2)to 29.29 m A/cm^(2),and fill factor from 50.28%to 57.10%,which boosted the PCE from 5.75%to 8.14%.
文摘The synthesis of new 4-imino-4H-chromeno[2,3-d]pyrimidin-3(5H)-amine in four steps including one step under microwave dielectric heating is reported. The structural identity of the synthesized compounds was established according to their spectroscopic analysis, such as FT-IR, NMR and mass spectroscopy. These new compounds were tested for their antiproliferative activities on seven representative human tumoral cell lines (Huh7 D12, Caco2, MDA-MB231, MDA-MB468, HCT116, PC3 and MCF7) and also on fibroblasts. Among them, only the compounds 6c showed micromolar cytotoxic activity on tumor cell lines (1.8 50 50 > 25 μM). Finally, in silico ADMET studies ware performed to investigate the possibility of using of the identified compound 6c as potential anti-tumor compound.
文摘A general research program, focusing on activated carbon fiber cloths (ACFC) and felt for environmental protection was performed. The objectives were multiple: (i) a better understanding of the adsorption mecha- nisms of these kinds of materials; (ii) the specification and optimization of new processes using these adsorbents; (iii) the modeling of the adsorption of organic pollutants using both the usual and original approaches; (iv) applications of ACFC in industrial processes. The general question was: how can activated carbon fiber cloths and felts be used in air treatment processes for the protection of environment. In order to provide an answer, different approaches were adopted. The materials (ACFC) were characterized in terms of macro structure and internal porosity. Specific studies were performed to get the air flow pattern through the fabrics. Head loss data were generated and modeled as a fi.mction of air velocity. The performances of ACF to remove volatile organic compounds (VOCs) were approached with the adsorption isotherms and breakthrough curves in various operating conditions. Regenera- tion by Joule effect shows a homogenous heating of adsorber modules with rolled or pleated layers. Examples of industrial developments were presented showing an interesting technology for the removal of VOCs, such as dichloromethane, benzene, isopropyl alcohol and toluene, alone or in a complex mixture.
文摘The first report of new 3-(tetrazol-5-yl)-2-iminocoumarin derivatives is described. The title compounds were prepared in two steps and were obtained in good yields (55-93%). They have been fully characterized by <sup>1</sup>H, <sup>13</sup>C NMR, FTIR, UV-Visible and HRMS. They were tested for their antiproliferative activities against six representative human tumor cell lines (Huh 7-D12, Caco2, MDA-MB231, HCT 116, PC3 and NCI-H727) and HaCat keratinocytes. Among them, compound 5e was active on HCT 116 (IC<sub>50</sub> 15 μM).
文摘Abemaciclib (Verzerio<span style="white-space:nowrap;"><sup><span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">®</span></sup></span>) is a cell cycle inhibitor of both CDK4 and CDK6. In 2017, abemaciclib was approved by the Food and Drug Administration (FDA) and, in 2018 by the European Medicines Agency (EMA) for the treatment of postmenopausal women with hormone receptor positive (HR<sup>+</sup>), human epidermal growth factor receptor 2 negative (HER2<sup><span style="white-space:nowrap;"><sup><span style="white-space:nowrap;">−</span></sup></span></sup>) advanced breast cancer. In this mini-review, we provide a series of information for respectively their targets and its selectivity, results on preclinical trial, clinical phase I, II and III trials, and some perspectives. We also describe the batch and flow steps used for the synthesis of this cancer drug.
文摘This theoretical chemical reactivity study was conducted using the Density Functional Theory (DFT) method, at computational level B3LYP/6-31G (d). It involved a series of six (06) 5-arylidene rhodanines and allowed to predict the chemical reactivity of these compounds. DFT global chemical reactivity descriptors (HOMO and LUMO energies, chemical hardness, softness, electronegativity) were examined to predict the relative stability and reactivity of rhodanin derivatives. Thus, the compound 6 which has an energy gap between the orbitals of ΔEgap = 3.004 eV is the most polarizable, the most reactive, the least stable, the best electron donor and the softest molecule. Calculation of the local indices of reactivity as well as dual descriptors revealed that the sulfur heteroatom of the Rhodanine ring is the privileged site of electrophilic attack in a state of sp3 hybridization and privileged site of nucleophilic attack in a state of sp2 hybridization.
文摘The synthesis of 2-phenylimino-4<em>H</em>-chromene-3-carbonitriles <strong>6(a-d)</strong> in good overall yields using an efficient and practical methodology in 3 steps has been implemented in this present work. The first step was a heterocyclization between 2-hydroxybenzaldehyde <strong>1</strong> and propanedinitrile <strong>2</strong> which produced 2-iminocoumarin <strong>3</strong> which was submitted to nitrogen/nitrogen displacement in the presence of aromatic primary amine <strong>4</strong>. In the third step, reduction of <strong>5</strong> led to the desired 2-phenylimino-4<em>H</em>-chromene-3-carbonitriles <strong>6</strong>. Compounds <strong>5(a-d)</strong> and <strong>6(a-d)</strong> were evaluated for their potential <em>in vitro</em> cytotoxicity against six selected tumor cell lines (Huh7-D12, Caco2, MDA-MB231, HCT 116, PC3 and NCI-H727) and tested for their protein kinase inhibition on eight selected protein kinases. Among them, compounds <strong>5c</strong> and <strong>6b</strong> exhibited inhibition on HsCK1e (<strong>5c</strong>: 44% and <strong>6b</strong>: 42% at 1 μM) and <strong>5c </strong>for cytotoxicity on PC3 cell lines (63% at 25 μM).
基金supported by the National Key R&D Program of China(no.2018YFE0203400)the National Natural Science Foundation of China(no.62074102)+1 种基金the Guangdong Basic and Applied Basic Research Foundation(no.2022A1515010979)the Science and Technology plan project of Shenzhen(nos.JCYJ20190808120001755 and 20220808165025003)。
文摘Kesterite Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)has attracted considerable attention as a non-toxic and earthabundant solar cell material.During selenization of CZTSSe film at high temperature,the reaction between CZTSSe and Mo is one of the main reasons that result in unfavorable absorber and interface quality,which leads to large open circuit voltage deficit(VOC-def)and low fill factor(FF).Herein,a WO_(3)intermediate layer introduced at the back interface can effectually inhibit the unfavorable interface reaction between absorber and back electrode in the preliminary selenization progress;thus high-quality crystals are obtained.Through this back interface engineering,the traditional problems of phase segregation,voids in the absorber and over thick Mo(S,Se)_(2)at the back interface can be well solved,which greatly lessens the recombination in the bulk and at the interface.The increased minority carrier diffusion length,decreased barrier height at back interface contact and reduced deep acceptor defects give rise to systematic improvement in VOCand FF,finally a 12.66%conversion efficiency for CZTSSe solar cell has been achieved.This work provides a simple way to fabricate highly efficient solar cells and promotes a deeper understanding of the function of intermediate layer at back interface in kesterite-based solar cells.
基金supported by a grant from the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, project number PN-II-ID-PCE-20113-0218
文摘The electrochemical behaviours of unrecrystallized and recrystallized Ti12Mo5Ta alloys were compared with those of the unrecrystallized Ti12 Mo alloy and commercial pure titanium(cp-Ti). Experiments were carried out using physiological 0.9% NaCl solution(pH 2.3) at 37 °C. Very low passive current densities(in order of 10-6 A/cm2) were obtained from the anodic polarization curves, indicating high resistances of all samples in acidified 0.9% Na Cl solution. Scanning electron microscopy(SEM) was employed to observe the surface morphology and all sample surfaces were identically corroded, no pitting, cracks, or other defects appeared on the sample surfaces after anodic potentiodynamic polarization tests. Equivalent circuit was used for modeling the electrochemical impedance spectroscopy(EIS) data, in order to characterize the sample surface and better understand the effect of Mo and Ta addition on the cp-Ti and the effect of recrystallization. The EIS results confirm that all titanium samples exhibit passivity in physiological 0.9% NaCl solution(pH 2.3) at open circuit potential(polarization resistance is around 105 Ω·cm2). The corrosion resistance of these samples in physiological 0.9% NaCl solution(pH 2.3) at 37 °C is in the following order of recrystallized Ti12Mo5Ta〉 unrecrystallized Ti12Mo5Ta 〉 unrecrystallized Ti12Mo 〉 cp-Ti.
基金supported by ANR(projects EASi-NANO,ANR-16-CE09-0001-01CHALCO-CAT,ANR-15-CE06-0002-01)and by the Fondation Grand Ouest.
文摘The electrochemical conversion of sunlight by photoelectrochemical cells(PECs)is based on semiconductor electrodes that are interfaced with a liquid electrolyte.This approach is highly promising,first,because it can be employed for the generation of a chemical fuel(e.g.,H2)to store solar energy that can be used on-demand to generate electricity when the sun is not available.Second,it can be seen as a concept reminiscent of photosynthesis,where CO_(2) is converted into a valuable feedstock by solar energy.Thus,photoelectrochemical cells are sometimes referred to as“artificial leaves”.Silicon,being the main semiconductor in the electronics and photovoltaic sector,is a prime candidate to be used as the light absorber and the substrate for building photoelectrochemical cells.However,Si alone has“poor-to-no photoelectrochemical performance”.This is caused by its weak electrocatalytic activity for cathodic reactions(namely,the hydrogen evolution reaction(HER),the CO_(2) reduction reaction(CDRR),and the N2 reduction reaction)and by its deactivation in the anodic regime,prohibiting its use for the oxygen evolution reaction(OER).This latter reaction is essential for supplying electrons to generate a solar fuel.Due to these problems,layers that both protect and are catalytically active are typically employed on Si photoelectrodes but require rather sophisticated manufacturing processes(e.g.,atomic layer or electron beam deposition),which hinders research and innovation in this field.Nevertheless,our group and others have demonstrated that these layers are not always required and that highly active and stable Si-based photoelectrodes can be manufactured using simple wet processes,such as drop casting,electroless deposition,or aqueous electrodeposition.In this Account,we first introduce the topic and the possible structures that can be easily obtained starting from commercial Si wafers.Then,we discuss strategies that have been employed to manufacture photocathodes based on p-type Si.Among these,we describe Si photocathodes coated with metal,inorganic compounds such as metal sulfides,and more original constructs,such as those based on macromolecules composed of a catalytic Mo3S4 core and a polyoxometallate macrocycle.Also,we discuss the elaboration and the advantages of Si photocathodes obtained by grafting organometallic catalysts which are promising candidates for reaching excellent selectivity for the CDRR.Then,the manufacturing of photoanodes based on n-Si is reviewed with an emphasis on those prepared by electrodeposition of a transition metal such as Ni and Fe.The effect of the catalyst morphology,density,and Si structuration is discussed,and future developments are proposed.
文摘A new metal-organic hybrid compound?[Fe(O3C4)(COO)]·H2O I has been hydrothermally synthesized and characterized by single-crystal X-ray diffraction. Rust crystals crystallize in the monoclinic system, space group I2/a, a = 6.9651(2) A, b = 8.12630(10) A, c = 19.4245(2) A, β = 92.6600(10)°;V = 1098.25(4) A3;Z = 2 and Dx =3.63g/cm3. The refinement converged into R = 0.042;Rw = 0.058. The structure, determined by single crystal X-ray diffraction, consists of a network of FeO6 centers, octahedral coordinated by btec (btec = 1,2,4,5-benzenetetracarboxylic acid) anions giving rise to a two-dimensional sheet structure. In the compound I,?[Fe(O3C4)(COO)]·H2O, the FeO6 group bridged by the 1,2,4,5-benzenetetracarboxyl anion exist in a unit cell, with each anion lying about an inversion centre. One of the FeO2 adistance [1.965(2)] significantly corresponds to the shortest distance as the other and the distances found in the axial direction of compound I.
基金supported by the National Key Research and Development Project of China(2018YFE0207700)the National Natural Science Foundation of China(NSFC)(61975193,51872270 and U1909211).
文摘In recent years,the development of an environmentally friendly quantum dots(QDs)embedded luminous solid by a simple method has attracted considerable attention.In this study,semiconductor ZnS QDs were successfully prepared in an inorganic matrix of amorphous glass,which yielded beneficial broadband emission in the long-wavelength region of the visible range.The strong red emission belonged to the defect state energy level of the ZnS QDs,which could be enhanced by incorporation of nickel ions into the fixed matrix to regulate the defects state.The novel material had a small self-absorption,wide excitation and emission ranges,and thus potential applications in light-conversion devices,luminescent solar concentrators,and solar cell cover glasses.
文摘Objectives: Traditional methods for evaluating aesthetic perceptions of the teeth have involved panels of people observing photographs, and the person commenting on the appearance of the teeth generally is aware that his opinion of the dental appearance is being sought. The situation is artificial and may involve bias. We propose a novel method for evaluating the effect of dental imperfections on perceptions in which the participant is unaware of participating in a survey and in which his or her opinion is not sought. Rather, involvement in the study betrays the importance of dental aesthetics for the observer. Methods: Starting with a digitally manipulated photograph of a smiling young woman, two portrait photographs A and B were produced in which the only differences were in the dentition revealed by the smile. The two photographs were anonymously posted on an online dating service site covering two large cities in southwestern France. During a period of one month, all “hits” on each of the photographs and all attempts to make contact were counted. Results: There was no significant difference between the number of hits on each of the portraits A and B. On the other hand, the ratio of attempts to contact to hits showed a clear difference: the ratio was 4.8 times greater for Portrait A than for Portrait B
基金National Natural Science Foundation of China,Grant/Award Numbers:62074102,62104156,21961160720Open Research Fund of Songshan Lake Materials Laboratory,Grant/Award Number:2021SLABFK02+1 种基金Guangdong Basic and Applied Basic Research Foundation,Grant/Award Numbers:2022A1515010979,2023A1515011256Science and Technology Plan Project of Shenzhen,Grant/Award。
文摘Kesterite Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)is a promising candidate for photodetector(PD)applications thanks to its excellent optoelectronic properties.In this work,a green solution-processed spin coating and selenization-processed thermodynamic or kinetic growth of high-quality narrow bandgap kesterite CZTSSe thin film is developed.A self-powered CZTSSe/CdS thin-film PD is then successfully fabricated.Under optimization of light absorber and heterojunction interface,especially tailoring the defect and carrier kinetics,it can achieve broadband response from300 to 1300 nm,accompaniedwith a high responsivity of 1.37A/W,specific detectivity(D*)up to 4.0×10^(14)Jones under 5 nW/cm^(2),a linear dynamic range(LDR)of 126 dB,and a maximum Ilight/Idark ratio of 1.3×10^(8)within the LDR,and ultrafast response speed(rise/decay time of 16 ns/85 ns),representing the leading-level performance to date,which is superior to those of commercial andwell-researched photodiodes.Additionally,an imaging system with a 905nm laser is built for weak light response evaluation,and can respond to 718 pW weak light and infrared imaging at a wavelength as low as 5 nW/cm2.It has also been employed for photoplethysmography detection of pulsating signals at both the finger and wrist,presenting obvious arterial blood volume changes,demonstrating great application potential in broadband and weak light photodetection scenarios.
文摘Eu2+-doped oxyapatite SrxLalo-x (SiO4)6O3-x/2 phosphors are prepared by sofid-state reaction at high temper- atures under reducing atmosphere. Their crystal structures and photoluminescenee are investigated by x-ray diffraction (XRD) and fluorescence spectroscopy, respectively. The XlZtD results indicate that the samples are pure oxyapatite phase (P63/m space group). The fluorescence spectra show two peaks corresponding to two sites (4f and 6h sites) for Eu2+ in the host lattice. As the Eu2+ content influences the intensity ratio of the two observed emission peaks, the photoluminescence mechanism is discussed.
文摘Broadband mid-infrared(IR)supercontinuum laser sources are essential for spectroscopy in the molecular fingerprint region.Here,we report generation of octave-spanning and coherent mid-IR supercontinua in As_(2)S_(3)-silica nanospike hybrid waveguides pumped by a custom-built 2.8μm femtosecond fiber laser.The waveguides are formed by pressure-assisted melt-filling of molten As_(2)S_(3) into silica capillaries,allowing the dispersion and nonlinearity to be precisely tailored.Continuous coherent spectra spanning from 1.1μm to 4.8μm(30 dB level)are observed when the waveguide is designed so that 2.8μm lies in the anomalous dispersion regime.Moreover,linearly tapered millimeter-scale As_(2)S_(3)-silica waveguides are fabricated and investigated for the first time,to the best of our knowledge,showing much broader supercontinua than uniform waveguides,with improved spectral coherence.The waveguides are demonstrated to be long-term stable and water-resistant due to the shielding of the As_(2)S_(3) by the fused silica sheath.They offer an alternative route to generating broadband mid-IR supercontinua,with applications in frequency metrology and molecular spectroscopy,especially in humid and aqueous environments.
文摘The adsorption capacities of new humic acids isolated from Yakouren forest (YHA) and Sahara (Tamenrasset: THA) soils (Algeria) and commercial humic acid (PFHA) on polyaniline emeraldine base (PEB) were studied at pH 6.6. Also the adsorption of heavy metals such as Cd 2+ , Zn 2+ and Ni 2+ on humic acid-polyaniline systems (HA-PEB) was investigated at the same conditions. HA-PEB compounds were characterized by scanning electron microscopy (SEM), infrared spectrometry and cavity microelectrode. In addition, batch adsorption and cavity microelectrode were used in the adsorption study of Cd 2+ , Zn 2+ and Ni 2+ on HA-PEB. To develop biocaptors of polluting metals using a cavity microelectrode modified by HA-PEB systems, the adsorption kinetic and adsorption capacity were investigated. The SEM analysis showed that the presence of humic acid affected the PEB surface and caused the formation of a granular morphology. The maximum adsorption capacities (q max ) of PFHA, THA and YHA determined by adsorption isotherms were 91.31, 132.1 and 151.0 mg/g, respectively. Batch adsorption results showed that q max of Cd 2+ , Zn 2+ and Ni 2+ on HA-PEB followed the order: THA-PEB YHA-PEB PFHA-PEB. The voltammograms obtained with HA-PEB modified cavity microelectrode showed the appearance of new redox couples reflecting the adsorption of HA on PEB. Metal-humic acid-polyaniline voltammograms were characterized by appearance of oxidation-reduction couples or reduction wave corresponding to metal. Finally, the result may be exploited to develop a biocaptor based on the cavity microelectrode amended by THA-PEB and YHA-PEB.