Progress with GaN-based light emitting diodes (LEDs) that incorporate nanostructures is reviewed, especially the re- cent achievements in our research group. Nano-patterned sapphire substrates have been used to grow...Progress with GaN-based light emitting diodes (LEDs) that incorporate nanostructures is reviewed, especially the re- cent achievements in our research group. Nano-patterned sapphire substrates have been used to grow an A1N template layer for deep-ultraviolet (DUV) LEDs. One efficient surface nano-texturing technology, hemisphere-cones-hybrid nanostruc- tures, was employed to enhance the extraction efficiency of InGaN flip-chip LEDs. Hexagonal nanopyramid GaN-based LEDs have been fabricated and show electrically driven color modification and phosphor-free white light emission because of the linearly increased quantum well width and indium incorporation from the shell to the core. Based on the nanostruc- tures, we have also fabricated surface plasmon-enhanced nanoporous GaN-based green LEDs using AAO membrane as a mask. Benefitting from the strong lateral SP coupling as well as good electrical protection by a passivation layer, the EL intensity of an SP-enhanced nanoporous LED was significantly enhanced by 380%. Furthermore, nanostructures have been used for the growth of GaN LEDs on amorphous substrates, the fabrication of stretchable LEDs, and for increasing the 3-dB modulation bandwidth for visible light communication.展开更多
p-GaN surfaces axe nano-roughened by plasma etching to improve the optical performance of GaN-based light emitting diodes (LEDs). The nano-roughened GaN present a relaxation of stress. The light extraction of the LE...p-GaN surfaces axe nano-roughened by plasma etching to improve the optical performance of GaN-based light emitting diodes (LEDs). The nano-roughened GaN present a relaxation of stress. The light extraction of the LEDs with nano-roughened surfaces is greatly improved when compared with that of the conventional LEDs without nano-roughening. PL-mapping intensities of the nano-roughened LED epi-wafers for different roughening times present two to ten orders of enhancement. The light output powers are also higher for the nano-roughened LED devices, This improvement is attributed to that nano-roughened surfaces can provide photons multiple chances to escape from the LED surfaces,展开更多
Metallic nanotextured reflectors have been widely used in light emitting diodes(LEDs) to enhance the light extraction efficiency. However, the light absorption loss for the metallic reflectors with nanotexture structu...Metallic nanotextured reflectors have been widely used in light emitting diodes(LEDs) to enhance the light extraction efficiency. However, the light absorption loss for the metallic reflectors with nanotexture structure is often neglected. Here, the influence of absorption loss of metallic nanotextured reflectors on the LED optoelectronic properties were studied. Two commonly used metal reflectors Ag and Al were applied to green GaN-based LEDs. By applying a Ag nanotextured reflector, the light output power of the LEDs was enhanced by 78% due to the improved light extraction. For an Al nanotextured reflector, however,only a 6% enhancement of the light output power was achieved. By analyzing the metal absorption using finite-difference timedomain(FDTD) and the metal reflectivity spectrum, it is shown that the surface plasmon(SP) intrinsic absorption of metallic reflectors with nanotexture structure play an important role. This finding will aid the design of the high-performance metal nanotextured reflectors and optoelectronics devices.展开更多
Rapid improvement in the efficiency of GaN-based LEDs not only speed up its applications for general illumination, but offer the possibilities for data transmission. This review is to provide an overview of current pr...Rapid improvement in the efficiency of GaN-based LEDs not only speed up its applications for general illumination, but offer the possibilities for data transmission. This review is to provide an overview of current progresses of GaN-based LEDs for light communications. The modulation bandwidth of GaN-based LEDs has been first improved by optimizing the LED epilayer structures and the modulation bandwidth of 73 MHz was achieved at the driving current density of 40 A/cm2 by changing the multi-quantum well structures. After that, in order to increase the current density tolerance, different parallel flip-chip micro-LED arrays were fabricated. With a high injected current density of ~7900 A/cm2, a maximum modulation bandwidth of ~227 MHz was obtained with optical power greater than 30 mW. Besides the increase of carrier concentrations, the radiative recombination coefficient B was also enhanced by modifying the photon surrounding environment based on some novel nanostructures such as resonant cavity, surface plasmon, and photonic crystals. The optical 3 dB modulation bandwidth of GaN-based nanostructure LEDs with Ag nanoparticles was enhanced by 2 times compared with GaN-based nanostructure LEDs without Ag nanoparticles.Our results demonstrate that using the QW-SP coupling can effectively help to enhance the carrier spontaneous emission rate and also increase the modulation bandwidth for LEDs, especially for LEDs with high intrinsic IQE. In addition, we discuss the progress of the faster color conversion stimulated by GaN-based LEDs.展开更多
The Fe-doped CuO nanopowder was synthesized by following the standard solid-state reaction method. The structure and magnetic properties of the Fe-doped CuO nanopowder were investigated. X-ray diffraction spec- tra co...The Fe-doped CuO nanopowder was synthesized by following the standard solid-state reaction method. The structure and magnetic properties of the Fe-doped CuO nanopowder were investigated. X-ray diffraction spec- tra confirmed the monoclinic structure of CuO and no secondary phase was detected, indicating that the Fe ions were incorporated into CuO. The ferromagnetism in Fe-doped CuO was studied and is believed to originate from the interaction between Fe ions and Cu ions via a super-exchange interaction or F-center mediated exchange interaction.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.61334009)the National High Technology Research and Development Program of China(Grant Nos.2015AA03A101 and 2014BAK02B08)+1 种基金China International Science and Technology Cooperation Program(Grant No.2014DFG62280)the"Import Outstanding Technical Talent Plan"and"Youth Innovation Promotion Association Program"of the Chinese Academy of Sciences
文摘Progress with GaN-based light emitting diodes (LEDs) that incorporate nanostructures is reviewed, especially the re- cent achievements in our research group. Nano-patterned sapphire substrates have been used to grow an A1N template layer for deep-ultraviolet (DUV) LEDs. One efficient surface nano-texturing technology, hemisphere-cones-hybrid nanostruc- tures, was employed to enhance the extraction efficiency of InGaN flip-chip LEDs. Hexagonal nanopyramid GaN-based LEDs have been fabricated and show electrically driven color modification and phosphor-free white light emission because of the linearly increased quantum well width and indium incorporation from the shell to the core. Based on the nanostruc- tures, we have also fabricated surface plasmon-enhanced nanoporous GaN-based green LEDs using AAO membrane as a mask. Benefitting from the strong lateral SP coupling as well as good electrical protection by a passivation layer, the EL intensity of an SP-enhanced nanoporous LED was significantly enhanced by 380%. Furthermore, nanostructures have been used for the growth of GaN LEDs on amorphous substrates, the fabrication of stretchable LEDs, and for increasing the 3-dB modulation bandwidth for visible light communication.
文摘p-GaN surfaces axe nano-roughened by plasma etching to improve the optical performance of GaN-based light emitting diodes (LEDs). The nano-roughened GaN present a relaxation of stress. The light extraction of the LEDs with nano-roughened surfaces is greatly improved when compared with that of the conventional LEDs without nano-roughening. PL-mapping intensities of the nano-roughened LED epi-wafers for different roughening times present two to ten orders of enhancement. The light output powers are also higher for the nano-roughened LED devices, This improvement is attributed to that nano-roughened surfaces can provide photons multiple chances to escape from the LED surfaces,
基金supported by the National Key Research and Development Program of China (No. 2017YFB0402900)the National Natural Science Foundation of China (No. 61504132, 61505197)
文摘Metallic nanotextured reflectors have been widely used in light emitting diodes(LEDs) to enhance the light extraction efficiency. However, the light absorption loss for the metallic reflectors with nanotexture structure is often neglected. Here, the influence of absorption loss of metallic nanotextured reflectors on the LED optoelectronic properties were studied. Two commonly used metal reflectors Ag and Al were applied to green GaN-based LEDs. By applying a Ag nanotextured reflector, the light output power of the LEDs was enhanced by 78% due to the improved light extraction. For an Al nanotextured reflector, however,only a 6% enhancement of the light output power was achieved. By analyzing the metal absorption using finite-difference timedomain(FDTD) and the metal reflectivity spectrum, it is shown that the surface plasmon(SP) intrinsic absorption of metallic reflectors with nanotexture structure play an important role. This finding will aid the design of the high-performance metal nanotextured reflectors and optoelectronics devices.
基金supported by the National Natural Science Foundation of China(Grant No.11574306)the China International Science and Technology Cooperation Program(Grant No.2014DFG62280)the National High Technology Program of China(Grant No.2015AA03A101)
文摘Rapid improvement in the efficiency of GaN-based LEDs not only speed up its applications for general illumination, but offer the possibilities for data transmission. This review is to provide an overview of current progresses of GaN-based LEDs for light communications. The modulation bandwidth of GaN-based LEDs has been first improved by optimizing the LED epilayer structures and the modulation bandwidth of 73 MHz was achieved at the driving current density of 40 A/cm2 by changing the multi-quantum well structures. After that, in order to increase the current density tolerance, different parallel flip-chip micro-LED arrays were fabricated. With a high injected current density of ~7900 A/cm2, a maximum modulation bandwidth of ~227 MHz was obtained with optical power greater than 30 mW. Besides the increase of carrier concentrations, the radiative recombination coefficient B was also enhanced by modifying the photon surrounding environment based on some novel nanostructures such as resonant cavity, surface plasmon, and photonic crystals. The optical 3 dB modulation bandwidth of GaN-based nanostructure LEDs with Ag nanoparticles was enhanced by 2 times compared with GaN-based nanostructure LEDs without Ag nanoparticles.Our results demonstrate that using the QW-SP coupling can effectively help to enhance the carrier spontaneous emission rate and also increase the modulation bandwidth for LEDs, especially for LEDs with high intrinsic IQE. In addition, we discuss the progress of the faster color conversion stimulated by GaN-based LEDs.
文摘The Fe-doped CuO nanopowder was synthesized by following the standard solid-state reaction method. The structure and magnetic properties of the Fe-doped CuO nanopowder were investigated. X-ray diffraction spec- tra confirmed the monoclinic structure of CuO and no secondary phase was detected, indicating that the Fe ions were incorporated into CuO. The ferromagnetism in Fe-doped CuO was studied and is believed to originate from the interaction between Fe ions and Cu ions via a super-exchange interaction or F-center mediated exchange interaction.