We conducted thermal tests using the reagent tetrabromobisphenol A (TBBPA) and various Pd compounds to study the chemical forms of Pd obtained during the pyrolytic and oxidative decomposition of TBBPA. Thermal testing...We conducted thermal tests using the reagent tetrabromobisphenol A (TBBPA) and various Pd compounds to study the chemical forms of Pd obtained during the pyrolytic and oxidative decomposition of TBBPA. Thermal testing was conducted in an electric furnace at temperatures of 280°C - 800°C in an Ar or Ar-O2 (5%) atmosphere for a heating period of 40 min. Scanning electron microscopy-energy dispersive X-ray spectroscopy results revealed that Pd bromide was formed in the mixture of TBBPA and PdO after heating to 450°C in the Ar atmosphere. In addition, thermogravimetry-differential thermal analysis showed that as the heating temperature was increased from 350°C to 730°C, weight loss occurred at a nearly constant rate, indicating that Pd bromide decomposed in this temperature range.展开更多
The excellent properties of SiC bring new challenges for the device packaging.In this study,the bonding strength,fracture behaviors and microstructural evolution of micron-porous Ag joint were elevated during thermal ...The excellent properties of SiC bring new challenges for the device packaging.In this study,the bonding strength,fracture behaviors and microstructural evolution of micron-porous Ag joint were elevated during thermal cycling(–50 ℃–250 ℃) in SiC/DBC(direct bonding copper) die attachment structure for different time.During harsh thermal shock test,the strength of sintered joint deceased gradually with the increase of cycling number,and the value just was half of the value of as-sintered after 1 000 cycles.Coarsening of Ag grains was observed in micron-porous joint with the structure inhomogeneity and defects increasing,which were the reasons of the strength decease.In addition,it was also found that the fracture behavior of sintered joints was changed from ductile deformation of Ag grain to brittle fracture of crack propagation after 1 000 cycles.This study will add the understanding in the mechanical properties of Ag sinter joining and its applications at high temperature.展开更多
With the development in next-generation semiconductor power devices,the power devices based on silicon carbide(SiC)and gallium nitride(GaN)are expected to replace the traditional Si-based power devices[1–6].However,t...With the development in next-generation semiconductor power devices,the power devices based on silicon carbide(SiC)and gallium nitride(GaN)are expected to replace the traditional Si-based power devices[1–6].However,the foreseeable harsh operating environment such as heavy thermal-load or extremely temperature cycle required more reliable interconnection technology[4,7-9].展开更多
文摘We conducted thermal tests using the reagent tetrabromobisphenol A (TBBPA) and various Pd compounds to study the chemical forms of Pd obtained during the pyrolytic and oxidative decomposition of TBBPA. Thermal testing was conducted in an electric furnace at temperatures of 280°C - 800°C in an Ar or Ar-O2 (5%) atmosphere for a heating period of 40 min. Scanning electron microscopy-energy dispersive X-ray spectroscopy results revealed that Pd bromide was formed in the mixture of TBBPA and PdO after heating to 450°C in the Ar atmosphere. In addition, thermogravimetry-differential thermal analysis showed that as the heating temperature was increased from 350°C to 730°C, weight loss occurred at a nearly constant rate, indicating that Pd bromide decomposed in this temperature range.
基金partly supported by the Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Scientific Research (Grant No. 19121587)supported by the Natural Science Foundation of Shaanxi Province (No.2021KW-25)。
文摘The excellent properties of SiC bring new challenges for the device packaging.In this study,the bonding strength,fracture behaviors and microstructural evolution of micron-porous Ag joint were elevated during thermal cycling(–50 ℃–250 ℃) in SiC/DBC(direct bonding copper) die attachment structure for different time.During harsh thermal shock test,the strength of sintered joint deceased gradually with the increase of cycling number,and the value just was half of the value of as-sintered after 1 000 cycles.Coarsening of Ag grains was observed in micron-porous joint with the structure inhomogeneity and defects increasing,which were the reasons of the strength decease.In addition,it was also found that the fracture behavior of sintered joints was changed from ductile deformation of Ag grain to brittle fracture of crack propagation after 1 000 cycles.This study will add the understanding in the mechanical properties of Ag sinter joining and its applications at high temperature.
文摘With the development in next-generation semiconductor power devices,the power devices based on silicon carbide(SiC)and gallium nitride(GaN)are expected to replace the traditional Si-based power devices[1–6].However,the foreseeable harsh operating environment such as heavy thermal-load or extremely temperature cycle required more reliable interconnection technology[4,7-9].