期刊文献+
共找到59篇文章
< 1 2 3 >
每页显示 20 50 100
Interfacial engineering of holey platinum nanotubes for formic acid electrooxidation boosted water splitting
1
作者 Zi-Xin Ge Yu Ding +6 位作者 Tian-Jiao Wang Feng Shi Pu-Jun Jin Pei Chen Bin He Shi-Bin Yin Yu Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期209-216,I0006,共9页
Both structure and interface engineering are highly effective strategies for enhancing the catalytic activity and selectivity of precious metal nanostructures.In this work,we develop a facile pyrolysis strategy to syn... Both structure and interface engineering are highly effective strategies for enhancing the catalytic activity and selectivity of precious metal nanostructures.In this work,we develop a facile pyrolysis strategy to synthesize the high-quality holey platinum nanotubes(Pt-H-NTs)using nanorods-like Pt^(Ⅱ)-phenanthroline(PT)coordination compound as self-template and self-reduction precursor.Then,an up-bottom strategy is used to further synthesize polyallylamine(PA)modified Pt-H-NTs(Pt-HNTs@PA).PA modification sharply promotes the catalytic activity of Pt-H-NTs for the formic acid electrooxidation reaction(FAEOR)by the direct reaction pathway.Meanwhile,PA modification also elevates the catalytic activity of Pt-H-NTs for the hydrogen evolution reaction(HER)by the proton enrichment at electrolyte/electrode interface.Benefiting from the high catalytic activity of Pt-H-NTs@PA for both FAEOR and HER,a two-electrode FAEOR boosted water electrolysis system is fabricated by using Pt-H-NTs@PA as bifunctio nal electrocatalysts.Such FAEOR boosted water electrolysis system only requires the operational voltage of 0.47 V to achieve the high-purity hydrogen production,showing an energy-saving hydrogen production strategy compared to traditional water electrolysis system. 展开更多
关键词 Holey platinum nanotubes Chemical functionalization Formic acid oxidation reaction Hydrogen evolution reaction Water splitting
下载PDF
Anti-solvent engineering for efficient semitransparent CH3NH3PbBr3 perovskite solar cells for greenhouse applications 被引量:3
2
作者 Waqas Siddique Subhani Kai Wang +4 位作者 Minyong Du Xiuli Wang Ningyi Yuan Jianning Ding Shengzhong(Frank)Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第7期12-19,共8页
With ideal combination of benefits that selectively converts high photon energy spectrum into electricity while transmitting low energy photo ns for photos yn thesis,the CH3NH3PbBr3 perovskite solar cell(BPSC)is a pro... With ideal combination of benefits that selectively converts high photon energy spectrum into electricity while transmitting low energy photo ns for photos yn thesis,the CH3NH3PbBr3 perovskite solar cell(BPSC)is a promising candidate for efficient greenhouse based building integrated photovoltaic(BIPV)applications.However,the efficiency of BPSCs is still much lower than their theoretical efficiency.In general,interface band alignment is regarded as the vital factor of the BPSCs whereas only few reports on enhancing perovskite film quality.In this work,highly efficient BPSCs were fabricated by improving the crystallization process of CH3NH3PbBr3 with the assistance of anti-solvents.A new anti-solvent of diphenyl ether(DPE)was developed for its strong interaction with the solvents in the perovskite precursor solution.By using the anti-solvent of DPE,trap-state density of the CH3NH3PbBr3 film is reduced and the electron lifetime is enhanced along with the large-grain crystals compared with the samples from conventional anti-solvent of chlorobenzene.Upon preliminary optimization,the efficiencies of typical and semitransparent BPSCs are improved to as high as 9.54%and 7.51%,respectively.Optical absorption measurement demonstrates that the cell without metal electrode shows 80%transparency in the wavelength range of 550-1000 nm that is perfect for greenhouse vegetation.Considering that the cell absorbs light in the blue spectrum before 550 nm,it offers very high solar cell efficiency with only 17.8%of total photons,while over 60%of total photons can transm让through for photosynthesis if a transparent electrode can be obtained such as indium doped SnO2. 展开更多
关键词 CH3NH3PbBr3 SEMITRANSPARENT PEROVSKITE solar cell ANTI-SOLVENT GREENHOUSE
下载PDF
Dual interfacial engineering for efficient Cs_(2)AgBiBr_(6) based solar cells 被引量:3
3
作者 Tao Luo Yalan Zhang +7 位作者 Xiaoming Chang Junjie Fang Tianqi Niu Jing Lu Yuanyuan Fan Zicheng Ding Kui Zhao Shengzhong(Frank)Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第2期372-378,I0013,共8页
The emerging lead-free halide double perovskite solar cells have attracted widespread attentions due to their long-term stability and non-toxicity, but suffer from the low device performance. One efficiencylimiting fa... The emerging lead-free halide double perovskite solar cells have attracted widespread attentions due to their long-term stability and non-toxicity, but suffer from the low device performance. One efficiencylimiting factor is the improper contacts between the halide double perovskite and anode/cathode electrodes. Here, we improve the efficiency and stability of the bismuth-halide double perovskite based solar cells by a synergistic interface design for both electron and hole transport layers(ETL/HTL). The results show that the modification of the TiO_2 ETL with a thin hydrophobic C60 layer and replacement of the lithium-doped small molecule HTL with an un-doped conjugated polymer lead to higher surface quality of perovskite film and better energy-level alignment at the contacts. As a result, the optimized device shows reduced trap density, suppressed charge recombination and enhanced charge extraction, leading to an increase of 69% in device efficiency. In addition, the device also exhibits superior stability in ambient environment, heat stress and light bias after interface optimization. This work provides an efficient strategy for the device optimization of the emerging lead-free perovskite solar cells. 展开更多
关键词 Perovskite solar cells Double perovskites Synergistic interfacial engineering Efficiency and stability
下载PDF
Green antisolvent additive engineering to improve the performance of perovskite solar cells
4
作者 Jiahui Li Xiaodong Hua +6 位作者 Fei Gao Xiaodong Ren Chaoqun Zhang Yu Han Yuanrui Li Bonan Shi Shengzhong(Frank)Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第3期1-8,I0001,共9页
High-quality perovskite films with larger grain size and fewer defects is a prerequisite for highperformance perovskite solar cells(PSCs).Antisolvent-assisted crystallization is an effective approach to obtain compact... High-quality perovskite films with larger grain size and fewer defects is a prerequisite for highperformance perovskite solar cells(PSCs).Antisolvent-assisted crystallization is an effective approach to obtain compact and uniform perovskite films;however,the majority of antisolvents currently applied have strong toxicity,and the control of perovskite crystallization is not easy through single antisolvent.In this work,a green antisolvent of ethyl acetate(EA)with acetylacetone(AA)additive is used to fine-tune perovskite crystallization and passivate defect,which produces uniform and compact CH;NH;PbI;perovskite films having larger grain and fewer grain boundaries and reduced defect density.Meanwhile,the interfacial hydrophobic characteristic of the perovskite films is enhanced.At the optimized concentration of AA in EA,the power conversion efficiency(PCE)of the CH;NH;PbI;PSCs was improved from 19.2%to 21.1%and their stability in air was also enhanced.These results present a green antisolvent additive engineering strategy to enhance the crystallinity,passivate defects,and fabricate efficient and stable PSCs. 展开更多
关键词 CH3NH3PbI3 films ANTISOLVENT ADDITIVE Defect passivation Perovskite solar cells
下载PDF
Bifunctional PdPt bimetallenes for formate oxidation-boosted water electrolysis
5
作者 Xi-Lai Liu Yu-Chuan Jiang +4 位作者 Jiang-Tao Huang Wei Zhong Bin He Pu-Jun Jin Yu Chen 《Carbon Energy》 SCIE EI CAS CSCD 2023年第12期175-186,共12页
Small-molecule electrooxidation-boosted water electrolysis(WE)is an energy-saving method for hydrogen(H2)production.Herein,PdPt bimetallenes(PdPt BMLs)are obtained through the simple galvanic replacement reaction.PdPt... Small-molecule electrooxidation-boosted water electrolysis(WE)is an energy-saving method for hydrogen(H2)production.Herein,PdPt bimetallenes(PdPt BMLs)are obtained through the simple galvanic replacement reaction.PdPt BMLs reveal 2.93-fold enhancement in intrinsic electroactivity and 4.53-fold enhancement in mass electroactivity for the formate oxidation reaction(FOR)with respect to Pd metallenes(Pd MLs)at 0.50 V potential due to the synergistic effect.Meanwhile,the introduction of Pt atoms also considerably increases the electroactivity of PdPt BMLs for hydrogen evolution reaction(HER)with respect to Pd MLs in an alkaline medium,which even exceeds that with the use of commercial Pt nanocrystals.Inspired by the outstanding FOR and HER electroactivity of bifunctional PdPt BMLs,a two-electrode FOR-boosted WE system(FOR-WE)is constructed by using PdPt BMLs as the cathode and the anode.The FOR-WE system only requires an operational voltage of 0.31 V to achieve H2 production,which is 1.48 V lower than that(ca.1.79 V)with the use of the traditional WE system. 展开更多
关键词 ELECTROCATALYST formate oxidation reaction hydrogen evolution reaction metallene water electrolysis
下载PDF
Polyethyleneimine modified AuPd@PdAu alloy nanocrystals as advanced electrocatalysts towards the oxygen reduction reaction 被引量:6
6
作者 Qi Xue Guangrui Xu +4 位作者 Rundong Mao Huimin Liu Jinghui Zeng Jiaxing Jiang Yu Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第6期1153-1159,共7页
Designing the low cost, active, durable, and alcohol-tolerant cathode catalysts towards the oxygen reduction reaction(ORR) is significant for the large-scale commercialization of direct alcohol fuel cells.Recently, Pd... Designing the low cost, active, durable, and alcohol-tolerant cathode catalysts towards the oxygen reduction reaction(ORR) is significant for the large-scale commercialization of direct alcohol fuel cells.Recently, Pd-based nanocrystals have attracted attention as Pt-alternative cathode catalysts towards the ORR in the alkaline electrolyte. Unfortunately, the pristine Pd-based nanocrystals lack the selectivity towards the ORR due to their inherent activity for the alcohol molecule oxidation reaction in the alkaline electrolyte. In this work, polyethyleneimine(PEI) modified Au Pd alloy nanocrystals with Au-rich Au Pd alloy cores and Pd-rich Pd Au alloy shells(AuPd@PdAu-PEI) are successfully synthesized using a traditional chemical reduction method in presence of PEI. The rotating disk electrode(RDE) technique is applied to evaluate the ORR performance of AuPd@PdAu-PEI nanocrystals. Compared with commercial Pd black,AuPd@PdAu-PEI nanocrystals show significantly enhanced activity and durability towards the ORR, and simultaneously exhibit particular alcohol tolerance towards the ORR in the alkaline electrolyte. 展开更多
关键词 Fuel cells PdAu alloy Surface modification Oxygen reduction reaction Alcohol tolerance
下载PDF
Two dimensional metal halide perovskites: Promising candidates for light-emitting diodes 被引量:5
7
作者 Lu Zhang Yucheng Liu +1 位作者 Zhou Yang Shengzhong(Frank)Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第10期97-110,共14页
Two dimensional halide perovskites are emerging as attractive electroluminescent materials for developing high-performance light-emitting devices owing to their unique structures and/or superior optoelectronic propert... Two dimensional halide perovskites are emerging as attractive electroluminescent materials for developing high-performance light-emitting devices owing to their unique structures and/or superior optoelectronic properties.This review begins with an introduction to the working principles of and the key figures for evaluating the performance of LEDs.Secondly,the structure and optoelectronic properties of two dimensional perovskites are summarized and discussed. Their advantages in LED application over their 3D counterparts are systematically analyzed.Following the theoretically discussion,the progresses on the preparation of two dimensional perovskite materials as well as their performances in LEDs have been summarized. At last,several challenges and prospects are presented for achieving high performance 2D perovskite-based LEDs. 展开更多
关键词 PEROVSKITE 2D LEDS EXTERNAL QUANTUM EFFICIENCY
下载PDF
Research advances in unsupported Pt-based catalysts for electrochemical methanol oxidation 被引量:6
8
作者 Xin Long Tian Lijuan Wang +2 位作者 Peilin Deng Yu Chen Bao Yu Xia 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第6期1067-1076,共10页
Direct methanol fuel cells are one of the most promising alternative energy technologies in the foreseeable future, but its successful commercialization in large scale is still heavily hindered by several technical sh... Direct methanol fuel cells are one of the most promising alternative energy technologies in the foreseeable future, but its successful commercialization in large scale is still heavily hindered by several technical shortfalls, especially the undesirable activity and durability issues of electrocatalysts toward methanol oxidation reaction. In light of these challenges, the inherent advantages of unsupported Pt based nanostructures demonstrate their great potentials as durable and efficient electrocatalysts for direct methanol fuel cells. This review will summarize recent achievements of unsupported Pt-based electrocatalysts toward methanol oxidation, with highlighting the interactions between the performance and structure tailoring and composition modulating. At last, a perspective is proposed for the upcoming challenges and possible opportunities to further prompt the practical application of unsupported Pt-based electrocatalysts for direct methanol fuel cells. 展开更多
关键词 Unsupported Pt nanostructures ALLOYS Core/Shell Methanol oxidation
下载PDF
Au core-PtAu alloy shell nanowires for formic acid electrolysis 被引量:5
9
作者 Qi Xue Xin-Yu Bai +8 位作者 Yue Zhao Ya-Nan Li Tian-Jiao Wang Hui-Ying Sun Fu-Min Li Pei Chen Pujun Jin Shi-Bin Yin Yu Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第2期94-102,共9页
Inefficient electrocatalysts and high-power consumption are two thorny problems for electrochemical hydrogen(H2)production from acidic water electrolysis.Herein we report the one-pot precise synthesis of ultrafine Au ... Inefficient electrocatalysts and high-power consumption are two thorny problems for electrochemical hydrogen(H2)production from acidic water electrolysis.Herein we report the one-pot precise synthesis of ultrafine Au core-Pt Au alloy shell nanowires(Au@PtxAu UFNWs).Among them,Au@Pt_(0.077) Au UFNWs exhibit the best performance for formic acid oxidation reaction(FAOR)and hydrogen evolution reaction(HER),which only require applied potentials of 0.29 V and-22.6 m V to achieve a current density of 10 m A cm^(-2),respectively.The corresponding formic acid electrolyzer realizes the electrochemical H2 production at a voltage of only 0.51 V with 10 m A cm^(-2) current density.Density functional theory(DFT)calculations reveal that the Au-riched Pt Au alloy structure can facilitates the direct oxidation pathway of FAOR and consequently elevates the FAOR activity of Au@Pt_(0.077) Au UFNWs.This work provides meaningful insights into the electrochemical H_(2) production from both the construction of advanced bifunctional electrocatalysts and the replacement of OER. 展开更多
关键词 Au core-PtAu alloy shell nanowires Formic acid oxidation reaction Reaction pathway Hydrogen evolution reaction Acidic water electrolysis
下载PDF
Porous palladium phosphide nanotubes for formic acid electrooxidation 被引量:4
10
作者 Tian-Jiao Wang Yu-Chuan Jiang +4 位作者 Jia-Wei He Fu-Min Li Yu Ding Pei Chen Yu Chen 《Carbon Energy》 SCIE CAS 2022年第3期283-293,共11页
The development of an efficient catalyst for formic acid electrocatalytic oxidation reaction(FAEOR)is of great significance to accelerate the commercial application of direct formic acid fuel cells(DFAFC).Herein,palla... The development of an efficient catalyst for formic acid electrocatalytic oxidation reaction(FAEOR)is of great significance to accelerate the commercial application of direct formic acid fuel cells(DFAFC).Herein,palladium phosphide(PdxPy)porous nanotubes(PNTs)with different phosphide content(i.e.,Pd3P and Pd5P2)are prepared by combining the self-template reduction method of dimethylglyoxime-Pd(II)complex nanorods and succedent phosphating treatment.During the reduction process,the self-removal of the template and the continual inside-outside Ostwald ripening phenomenon are responsible for the generation of the one-dimensional hollow and porous architecture.On the basis of the unique synthetic procedure and structural advantages,Pd3P PNTs with optimized phos phide content show outstanding electroactivity and stability for FAEOR.Im portantly,the strong electronic effect between Pd and P promotes the direct pathway of FAEOR and inhibits the occurrence of the formic acid decomposition reaction,which effectively enhances the FAEOR electroactivity of Pd3P PNTs.In view of the facial synthesis,excellent electroactivity,high stability,and unordinary selectivity,Pd3P PNTs have the potential to be an efficient anode electrocatalyst for DFAFC. 展开更多
关键词 electronic effect formic acid oxidation reaction palladium phosphide porous nanotubes self-template method
下载PDF
Improved perovskite solar cell efficiency by tuning the colloidal size and free ion concentration in precursor solution using formic acid additive 被引量:2
11
作者 Lina Meng Qingbo Wei +5 位作者 Zhou Yang Dong Yang Jiangshan Feng Xiaodong Ren Yucheng Liu Shengzhong(Frank)Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第2期43-51,共9页
Improving the quality of the perovskite active layer is crucial to obtaining high performance perovskite solar cells(PSCs). In this work, by introducing formic acid into the formamidinium lead iodide(FAPbI3)precursor ... Improving the quality of the perovskite active layer is crucial to obtaining high performance perovskite solar cells(PSCs). In this work, by introducing formic acid into the formamidinium lead iodide(FAPbI3)precursor solution, we managed to achieve reduced colloidal size in the solution, leading to more uniform deposition of FAPbI3 film with lower trap state density and higher carrier mobility. The solar cells based on the FAPbI3 absorber layer modified with formic acid show significantly better photovoltaic performance than that on the reference FAPbI3 film without formic acid. The device performance shows a close correlation with the colloidal size. Within the range studied from 6.7 to 1.0 nm, the smaller the colloidal size is, the higher the solar cell efficiency. More specifically, the cell efficiency is improved from17.82% for the control cell without formic acid to 19.81% when 0.764 M formic acid was used. Formic acid has also been added into a CH3NH3PbI3(MAPbI3) precursor solution, which exhibits a similar effect on the resulting MAPb I3 films and solar cells, with efficiency improved from 16.07% to 17.00%. 展开更多
关键词 PEROVSKITE SOLAR cell CRYSTALLIZATION Formic ACID ADDITIVE
下载PDF
Post-treatment by an ionic tetrabutylammonium hexafluorophosphate for improved efficiency and stability of perovskite solar cells 被引量:2
12
作者 Chaoqun Zhang Xiaodong Ren +7 位作者 Xilai He Yunxia Zhang Yucheng Liu Jiangshan Feng Fei Gao Ningyi Yuan Jianning Ding Shengzhong(Frank)Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第1期8-15,I0001,共9页
Interface engineering is an effective way to improve efficiency and long-term stability of perovskite solar cells(PSCs).Herein,an ionic compound tetrabutylammonium hexafluorophosphate(TP6)is adopted to passivate surfa... Interface engineering is an effective way to improve efficiency and long-term stability of perovskite solar cells(PSCs).Herein,an ionic compound tetrabutylammonium hexafluorophosphate(TP6)is adopted to passivate surface defects of the perovskite film.It is found that TP6 effectively reduced the surface defects,especially at the grain boundaries where the defects are abundant.Meanwhile,the exposed long alkyl chains and fluorine atoms in the TP6 enhanced the moisture stability of the perovskite film due to its strong hydrophobicity.In addition,the driving force of charge carrier separation and transport is increased by enlarged built-in potential.Consequently,the power conversion efficiency(PCE)of PSCs is significantly improved from 20.59% to 22.41%by increased open-circuit voltage(V_(oc))and fill factor(FF).The unencapsulated device with TP6 treatment exhibits better stability than the control device,and the PCE retains-80%of its initial PCE after 30 days under 15%-25%relative humidity in storage,while the PCE of the control device declines by more than 50%. 展开更多
关键词 Perovskite solar cell Interface engineering High hydrophobicity Ionic compound
下载PDF
Non-fullerene small molecule electron acceptors for high-performance organic solar cells 被引量:1
13
作者 Hao Lin Qiang Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第4期990-1016,共27页
Fullerenes and their derivatives are important types of electron acceptor materials and play a vital role in organic solar cell devices. However, the fullerene acceptor material has some difficulties to overcome the i... Fullerenes and their derivatives are important types of electron acceptor materials and play a vital role in organic solar cell devices. However, the fullerene acceptor material has some difficulties to overcome the intrinsic shortcomings, such as weak absorption in the visible range, difficulty in modification and high cost, which limit the performance of the device and the large-scale application of this type of acceptors. In recent years, non-fullerene electron acceptor material has attracted the attention of scientists due to the advantages of adjustable energy level, wide absorption, simple synthesis, low processing cost and good solubility. Researchers can use the rich chemical means to design and synthesize organic small molecules and their oligomers with specific aggregation morphology and excellent optoelectronic prop- erties. Great advances in the field of synthesis, device engineering, and device physics of non-fullerene acceptors have been achieved in the last few years. At present, non-fullerene small molecules based photovoltaic devices achieve the highest efficiency more than 13% and the efficiency gap between fullerenetype and non-fullerene-type photovoltaic devices is gradually narrowing. In this review, we explore recent progress of non-fullerene small molecule electron acceptors that have been developed and led to highefficiency photovoltaic devices and put forward the prospect of development in the future. 展开更多
关键词 Organic solar cells Non-fullerene Electron acceptors Bulk heterojunction
下载PDF
Perovskite–A wonder catalyst for solar hydrogen production 被引量:1
14
作者 Hui Bian Deng Li +1 位作者 Junqing Yan Shengzhong(Frank)Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第6期325-340,I0008,共17页
Hydrogen generation via artificial photosynthesis paves a promising way to remit the ever-increasing energy crisis and deteriorative environmental issues.Among all the materials utilized for solar hydrogen production,... Hydrogen generation via artificial photosynthesis paves a promising way to remit the ever-increasing energy crisis and deteriorative environmental issues.Among all the materials utilized for solar hydrogen production,perovskite has emerged as a rising star due to its superior optoelectronic properties.This manuscript aims to provide a comprehensive review summarizing the recent inspiring advancements on perovskite-based solar hydrogen production systems,including the particulate photocatalysis,photoelectrochemical cells,and photovoltaic-electrocatalytic cells.We start with a brief introduction of the advantages of perovskites for solar hydrogen production and the basic principles of the three most prominent solar hydrogen production systems.The representative progresses in this field are then detailed with a special emphasis on the strategies to improve the efficiency and the stability of the systems.Finally,challenges and opportunities for the further development of the PVK-based solar hydrogen production systems are presented with perspective given on outlook,performance,cost and stability. 展开更多
关键词 PEROVSKITE Solar hydrogen production PHOTOCATALYSIS PHOTOELECTROCATALYSIS Photovoltaic-electrocatalysis
下载PDF
Fabrication of nanoporous Ni and NiO via a dealloying strategy for water oxidation catalysis 被引量:1
15
作者 Xiangrong Ren Yiyue Zhai +2 位作者 Qi Zhou Junqing Yan Shengzhong Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第11期125-134,共10页
Nickel oxides and(oxy)hydroxides are promising replacements for noble-metal-based catalysts owing to their high activity and good long-term stability for the oxygen evolution reaction(OER). Herein, we developed nanopo... Nickel oxides and(oxy)hydroxides are promising replacements for noble-metal-based catalysts owing to their high activity and good long-term stability for the oxygen evolution reaction(OER). Herein, we developed nanoporous Ni by a method of combined rapid solidification and chemical dealloying. Subsequently,nanoporous Ni O was obtained via heating treatment, the macropore and skeleton sizes of the NiO originated from Ni10Al90 alloy are 100–300 nm and 80–200 nm, respectively. Benefiting from the multi-stage nanoporous structure and high specific surface area, the nanoporous NiO demonstrates an outstanding OER, reaching 20 mA cm-2 at an overpotential of 356 mV in 1 M KOH. The corresponding Tafel slope and apparent activation energy are measured to be 76.73 mV dec-1 and 29.0 kJ mol-1, respectively. Moreover,kinetic analysis indicates that the Ni O catalyst shows pseudocapacitive characteristics, and the improved current is attributed to the high-rate pseudocapacitive behavior that efficiently maintains increased nickel redox cycling to accelerate the reaction rates. After 1000 cycles of voltammetry, the overpotential of the NiO decreases by 22 mV(j = 10 mA cm-2), exhibiting excellent stability and durability. 展开更多
关键词 Rapid solidification DEALLOYING Nanoporous Ni ELECTROCATALYST OER
下载PDF
A Special Additive Enables All Cations and Anions Passivation for Stable Perovskite Solar Cells with Efficiency over 23% 被引量:1
16
作者 Wenjing Zhao Jie Xu +7 位作者 Kun He Yuan Cai Yu Han Shaomin Yang Sheng Zhan Dapeng Wang Zhike Liu Shengzhong Liu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第11期142-154,共13页
Passivating undercoordinated ions is an effective way to reduce the defect densities at the surface and grain boundaries(GBs)of perovskite materials for enhanced photovoltaic performance and stability of perovskite so... Passivating undercoordinated ions is an effective way to reduce the defect densities at the surface and grain boundaries(GBs)of perovskite materials for enhanced photovoltaic performance and stability of perovskite solar cells(PSCs).Here,(BBF)complex is chosen as a multifunctional additive,which contains both C7H9N and BF3 groups working as Lewis base and Lewis acid,respectively,can bond with Pb^(2+)/I^(−) and FA+on the surface and in the GBs in the perovskite film,affording passivation of both cation and anion defects.The synergistic effect of the C7H9N and BF3 complex slows the crystallization during the perovskite film deposition to improve the crystalline quality,which reduces the trap density and the recombination in the perovskite film to suppress nonradiative recombination loss and minimizes moisture permeation to improve the stability of the perovskite material.Meanwhile,such an additive improves the energy-level alignment between the valence band of the perovskite and the highest occupied molecular orbital of the hole-transporting material,Spiro-OMeTAD.Consequently,our work achieves power conversion efficiency of 23.24%,accompanied by enhanced stability under ambient conditions and light illumination and opens a new avenue for improving the performance of PSCs through the use of a multifunctional complex. 展开更多
关键词 ADDITIVES Simultaneous passivation Combined effects High efficiency Perovskite solar cells
下载PDF
In-situ photoisomerization of azobenzene to inhibit ion-migration for stable high-efficiency perovskite solar cells 被引量:1
17
作者 Xuejiao Zuo Yiyang He +10 位作者 Hongyu Ji Yong Li Xiuying Yang Binxun Yu Tao Wang Zhike Liu Wenliang Huang Jing Gou Ningyi Yuan Jianning Ding Shengzhong Frank Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第10期556-564,I0014,共10页
Ion migration is a notorious problem in perovskite solar cells(PSCs)that severely mutilates device performance.Herein,a strategy to inhibit ion migration in situ is developed by using photoisomerization of azobenzene(... Ion migration is a notorious problem in perovskite solar cells(PSCs)that severely mutilates device performance.Herein,a strategy to inhibit ion migration in situ is developed by using photoisomerization of azobenzene(AZO)to immobilize cations in the lattice.During the nucleation process,the photoisomerized cis-AZO reacts with FA^(+),MA^(+)and Pb2+cations in the perovskite precursor by synergistic cation-πinteraction and Lewis base coordination,leading to heterogeneous nucleation to produce uniform perovskite film.Meanwhile,it accelerates conversion of intermediate yellowδ-phase to desired black aphase of FAPb I3for improved crystallinity with well-passivated grain surface.Consequently,defect density is effectively reduced for the perovskite film to demonstrate suppressed carrier recombination and enhanced carrier extraction.Subsequently,the solar cell efficiency is elevated from 21.29%to 23.58%with negligible J-V hysteresis.Long-term stability is also improved,with the bare device without any encapsulation retaining 84%of its initial efficiency after aging 744 hours in ambient. 展开更多
关键词 PEROVSKITE Solar cell PHOTOVOLTAIC PHOTOISOMERIZATION
下载PDF
Secondary crystallization strategy for highly efficient inorganic CsPbI_(2)Br perovskite solar cells with efficiency approaching 17% 被引量:1
18
作者 Jing Ma Zhenhua Lin +7 位作者 Xing Guo Long Zhou Jian He Zhou Yang Jincheng Zhang Yue Hao Shengzhong Liu Jingjing Chang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第12期558-565,I0013,共9页
Inorganic CsPbI_(2) Br perovskite solar cells(PSCs) have a tremendous development in last few years due to the trade-off between the excellent optoelectronic properties and the relatively outstanding stability.Herein,... Inorganic CsPbI_(2) Br perovskite solar cells(PSCs) have a tremendous development in last few years due to the trade-off between the excellent optoelectronic properties and the relatively outstanding stability.Herein,we demonstrated a strategy of secondary crystallization(SC) for CsPbI_(2) Br film in a facile planar n-i-p structure(ITO/ZnO-SnO_(2)/CsPbI_(2) Br/Spiro-OMeTAD/Ag) at low-temperature(150℃).It is achieved through the method of post-treatment with guanidinium bromine(GABr) atop annealed CsPbI_(2) Br film.It was found that the secondary crystallization by GABr can not only regulate the crystal growth and passivate defects,but also serve as a charge collection center to effectively collect photogenerated carriers.In addition,due to the excess Br ions in GABr,the formation of the Br-rich region at the CsPbI_(2) Br perovskite surface can further lower the Fermi level,leading to more beneficial band alignment between the perovskite and the hole transport layer(HTL),while the phase stability was also improved.As a result,the champion cell shows a superb open-circuit voltage(V_(oc)) of 1.31 V,a satisfactory power conversion efficiency(PCE) of 16.97% and outstanding stabilities.As far as we know,this should be one of the highest PCEs reported among all-inorganic CsPbI_(2) Br based PSCs. 展开更多
关键词 CsPbI_(2)Br Low temperature Secondary crystallization High performance
下载PDF
Self-assembled CoOOH on TiO_(2) for enhanced photoelectrochemical water oxidation 被引量:1
19
作者 Xiangrong Ren Yujin Ji +5 位作者 Yiyue Zhai Ningyi Yuan Jianning Ding Youyong Li Junqing Yan Shengzhong Frank Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第9期512-521,共10页
Providing efficient charge transfer through the interface between the semiconductor and co-catalyst is greatly desired in photoelectrocatalytic (PEC) energy conversion.Herein,we excogitate a novel and facile means,via... Providing efficient charge transfer through the interface between the semiconductor and co-catalyst is greatly desired in photoelectrocatalytic (PEC) energy conversion.Herein,we excogitate a novel and facile means,via electrochemical activation,to successfully load the amorphous CoOOH layer architecture onto the surface of TiO_(2).Intriguingly,the as-obtained 6%CoOOH-TiO_(2)photoelectrode manifests optimal PEC performance with a high photocurrent density of 1.3 mA/cm~2,3.5 times higher than that of pristine TiO_(2).Electrochemical impedance spectroscopy (EIS),Tafel analysis and cyclic voltammetry (CV) methods show that the carrier transfer barrier within the electrode and the transition of Co^(3+)OOH to Co^(4+)OOH have the dominating effects on the PEC performance.Theoretical calculation reveals that the interface between the CoOOH and TiO_(2)improves the homogeneity of effective d-orbital electronic-transfer ability among Co sites.This research sheds light on the water oxidation reaction and the design of more favorable PEC cocatalysts. 展开更多
关键词 AMORPHOUS CO-CATALYST Water oxidation Mechanism TiO_(2)
下载PDF
Pseudohalide induced tunable electronic and excitonic properties in two-dimensional single-layer perovskite for photovoltaics and photoelectronic applications
20
作者 Zhuo Xu Ming Chen Shengzhong(Frank)Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第9期106-113,共8页
Two-dimensional(2D) layered organic-inorganic hybrid perovskites have attracted much more attention for some applications than their three-dimensional(3D) perovskite counterparts due to their promising thermal and moi... Two-dimensional(2D) layered organic-inorganic hybrid perovskites have attracted much more attention for some applications than their three-dimensional(3D) perovskite counterparts due to their promising thermal and moisture stabilities.In particular, the 2D perovskite devices have shown better promise for optoelectronic applications.However, tunability of optoelectronic properties is often demanded to improve the device performance.Herein, we adopt a newly method to tune the electronic properties of 2D perovskite by introducing pseudohalide into the structure.In this work, we designed a pseudohalidesubstituted 2D perovskite by substituting the out-of-plane halide with pseudohalide and studied the electronic and excitonic properties of 2D-BA2MX4 and 2D-BA2MX2Ps2(M=Ge^(2+), Sn^(2+), and Pb^(2+);X=I;Ps=NCO, NCS, OCN, SCN, Se CN).We revealed the dependence of electronic properties including band gaps, composition of band edges, bonding characteristics, work functions, effective masses, and exciton binding energies on different pseudohalides substituted in 2D perovskite.Our results indicate that the substitution of pseudohalide in 2D perovskites is energetically favorable and can significantly affect the bonding characteristics as well as the CBM and VBM that often play major role in determining their performance in optoelectronic devices.It is expected that the pseudohalide substitution will be helpful in developing more advanced optoelectronic device based on 2D perovskite by optimizing band alignment and promoting charge extraction. 展开更多
关键词 Pseudohalide induced TUNABLE ELECTRONIC and excitonic PROPERTIES in TWO-DIMENSIONAL SINGLE-LAYER PEROVSKITE for photovoltaics and photoelectronic applications
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部