In this study,hot compression tests of (Cu_(43)Zr_(48)Al_9)_(98)Y_2 bulk metallic glasses (BMGs) were performed,and their micro structure and thermal properties after the deformation were studied to explore the approp...In this study,hot compression tests of (Cu_(43)Zr_(48)Al_9)_(98)Y_2 bulk metallic glasses (BMGs) were performed,and their micro structure and thermal properties after the deformation were studied to explore the appropriate range of their optimum processing parameters. The experimental results show that the superplastic deformation of (Cu_(43)Zr_(48)Al_9)_(98)Y_2 bulk metallic glasses depends mainly on the temperature and strain rate. It is suitable for superplastic processing when the alloys are in the state of Newtonian flow and do not crystallise. The appropriate processing parameters of (Cu_(43)Zr_(48)Al_9)_(98)Y_2 BMGs are the temperatures and strain rates, which are below the "dividing line". And when the temperature is above733 K, the strain rate must be>1×10^(-3) s^(-1).展开更多
基金supported by the Principal Fund of Xi'an Technological University(0852-302021407)
文摘In this study,hot compression tests of (Cu_(43)Zr_(48)Al_9)_(98)Y_2 bulk metallic glasses (BMGs) were performed,and their micro structure and thermal properties after the deformation were studied to explore the appropriate range of their optimum processing parameters. The experimental results show that the superplastic deformation of (Cu_(43)Zr_(48)Al_9)_(98)Y_2 bulk metallic glasses depends mainly on the temperature and strain rate. It is suitable for superplastic processing when the alloys are in the state of Newtonian flow and do not crystallise. The appropriate processing parameters of (Cu_(43)Zr_(48)Al_9)_(98)Y_2 BMGs are the temperatures and strain rates, which are below the "dividing line". And when the temperature is above733 K, the strain rate must be>1×10^(-3) s^(-1).