期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Numerical Simulation of Coal Deformation and Gas Flow Properties Around Borehole 被引量:2
1
作者 Yi Xue 《Computer Modeling in Engineering & Sciences》 SCIE EI 2017年第4期429-441,共13页
The lack of research on the effect of diffusion on methane extraction leads to low methane concentration and low utilization.The Comsol Multiphysics software is used to solve the numerical gas and solid coupled model ... The lack of research on the effect of diffusion on methane extraction leads to low methane concentration and low utilization.The Comsol Multiphysics software is used to solve the numerical gas and solid coupled model which considers the diffusion of coal matrix,fracture seepage,permeability evolution and coal deformation.The simulation results reveal the effect of diffusion process on methane migration.The gas diffusion rate is relatively high in the initial stage.With the increase in time,the difference between coal fractures and coal matrix blocks becomes lower and the gas diffusion rate decreases gradually.The gas seepage rate decreases significantly near the borehole and the decrease degree becomes small when it is far away from borehole.The influence of diffusion time on gas drainage rate is not obvious. 展开更多
关键词 Temperature PERMEABILITY POROSITY gas pressure HEAT INJECTION
下载PDF
Experimental study on the dynamic modulus of compacted loess under bidirectional dynamic load
2
作者 Liguo Yang Shengjun Shao +1 位作者 Qilong Sun Ping Wang 《Earthquake Research Advances》 CSCD 2022年第3期58-66,共9页
The dynamic characteristics of compacted loess are of great significance to the seismic construction of the Loess Plateau area in Northwest China,where earthquakes frequently occur.To study the change in the dynamic m... The dynamic characteristics of compacted loess are of great significance to the seismic construction of the Loess Plateau area in Northwest China,where earthquakes frequently occur.To study the change in the dynamic modulus of the foundation soil under the combined action of vertical and horizontal earthquakes,a hollow cy-lindrical torsion shear instrument capable of vibrating in four directions was used to perform two-way coupling of compression and torsion of Xi'an compacted loess under different dry density and deviator stress ratios.The results show that increasing the dry density can improve the initial dynamic compression modulus and initial dynamic shear modulus of compacted loess.With an increase in the deviator stress ratio,the initial dynamic compression modulus increases,to a certain extent,but the initial dynamic shear modulus decreases slightly.The dynamic modulus gradually decreases with the development of dynamic strain and tends to be stable,and the dynamic modulus that reaches the same strain increases with an increasing dry density.At the initial stage of dynamic loading,the attenuation of the dynamic shear modulus with the strain development is faster than that of the dynamic compression modulus.Compared with previous research results,it is determined that the dynamic modulus of loess under bidirectional dynamic loading is lower and the attenuation rate is faster than that under single-direction dynamic loading.The deviator stress ratio has a more obvious effect on the dynamic compression modulus.The increase in the deviator stress ratio can increase the dynamic compression modulus,to a certain extent.However,the deviator stress ratio has almost no effect on the dynamic shear modulus,and can therefore be ignored. 展开更多
关键词 Bidirectional dynamic load Compacted loess Dynamic modulus Dry density Deviator stress ratio Ground treatment
下载PDF
Determination of the constant m_(i) in the Hoek-Brown criterion of rock based on drilling parameters 被引量:4
3
作者 Haoteng Wang Mingming He +1 位作者 Zhiqiang Zhang Jiwei Zhu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第4期747-759,共13页
The constant m_(i) in the Hoek-Brown(H-B) criterion is a fundamental parameter required for determining the compressive strength of rock. In this paper, drilling parameters provide a new basis for determining the cons... The constant m_(i) in the Hoek-Brown(H-B) criterion is a fundamental parameter required for determining the compressive strength of rock. In this paper, drilling parameters provide a new basis for determining the constant mi. An analytical relationship between the drilling parameters and constant miis established in consideration of the contact response between the drilling bit and the cut rock in the crushed zone.New models are developed to predict the triaxial compressive strength(TCS), internal friction angle φand cohesion c of rock. Drilling tests are carried out on 6 rock types to study the correlation between φ and m_(i). A comparison between the predicted values of rock mechanical properties and the measured values from the laboratory is performed to verify the accuracy of the proposed model(yielding an error less than 10%). The TCSs and constant m_(i) values of fifteen rocks are cited to validate the accuracy of the proposed model. The result shows that the proposed model predicts the TCS and constant m_(i) within a maximum error of 20%. The method can be conveniently applied to the rock mechanical properties. 展开更多
关键词 Constant miin the H-B criterion Analytical model Friction angle Drilling parameters Triaxial compressive strength
下载PDF
Effect of layered joints on rockburst in deep tunnels 被引量:3
4
作者 Mingming He Jinrui Zhao +1 位作者 Bianyuan Deng Zhiqiang Zhang 《International Journal of Coal Science & Technology》 EI CAS CSCD 2022年第2期70-90,共21页
The existence of joints in the surrounding rock mass has a considerable efect on tunnel rockbursts.Herein,we studied the efect of layered joints with diferent inclination angles and spacings on rockburst in deep tunne... The existence of joints in the surrounding rock mass has a considerable efect on tunnel rockbursts.Herein,we studied the efect of layered joints with diferent inclination angles and spacings on rockburst in deep tunnels and investigated the failure area,deformation process of the surrounding rock mass,stress change inside the surrounding rock mass,velocity of the failed rock,and the kinetic energy of the failure.The failure type of the surrounding rock mass can thus be determined.The results showed that the intensity of rockburst increases as rock quality designation(RQD)decreases,while the deformation rate of the surrounding rock mass frst increases and then decreases.The deformation rate exhibits a turning point between RQD=50 and 70,below which the deformation rate of the surrounding rock mass gradually decreases,ultimately ceasing to be a rockburst.Rockburst always occurs perpendicular to the direction of the joint.Whenσ_(x)=σ_(y),as the joint inclination angle changes from 45°to 90°,the intensity of a rockburst frst decreases(from 45°to 60°),and then increases(from 60°to 90°).When combined with the evolution law of stress and strain energy,the rockburst process can be divided into four stages. 展开更多
关键词 ROCKBURST Jointed rock mass Numerical simulation Deep tunnel
下载PDF
Estimation of earth pressure against retaining walls with different limited displacement modes based on elastic theory
5
作者 ZHANG Le DANG Fa-ning +3 位作者 WANG Xu DING Jiu-long GAO Jun ZHANG Yu 《Journal of Mountain Science》 SCIE CSCD 2022年第1期289-304,共16页
The earth pressure acting on retaining walls due to creep and consolidation is under limited equilibrium conditions(limited displacement). Linear elastic constitutive theory can be applied to determine earth pressure ... The earth pressure acting on retaining walls due to creep and consolidation is under limited equilibrium conditions(limited displacement). Linear elastic constitutive theory can be applied to determine earth pressure distribution along retaining walls under limited displacement condition. In addition,tangent modulus in Duncan-Chang nonlinear elastic model was introduced to reflect the variations of soil modulus with confining pressure, and boundary strains were derived from Rankine active earth pressure, Rankine passive earth pressure, static earth pressure and principal stress direction deflection.According to the above four boundary strains, earth pressure on retaining walls was divided into five state zones. By comparing the calculation results obtained from the equations proposed in this paper with those of experimental tests, the following conclusions can be drawn: earth pressure distribution was always nonlinear along retaining walls for translation displacement(T mode), rotation displacement around wall base(RB mode), and translation + rotation displacement around wall base(RBT mode). Also,calculated earth pressure distributions along with the depth of wall were found to be consistent with measured values under three displacement modes.Additionally, a parametric study was carried out to evaluate the effects of internal friction angle and backfill soil cohesion on earth pressure. It could be seen from the above series of studies that the earth pressure equations derived in this work could be well applied in practical engineering in designing retaining walls. 展开更多
关键词 Linear elasticity Limited earth pressure Translation displacement Rotation displacement around wall base Rotation displacement Earth pressure state zone
下载PDF
Seepage-Stress-Damage Coupled Model of Coal Under Geo-Stress Influence
6
作者 Yi Xue Faning Dang +4 位作者 Rongjian Li Liuming Fan Qin Hao Lin Mu Yuanyuan Xia 《Computers, Materials & Continua》 SCIE EI 2018年第1期43-59,共17页
In the seepage-stress-damage coupled process,the mechanical properties and seepage characteristics of coal are distinctly different between pre-peak stage and post-peak stage.This difference is mainly caused by damage... In the seepage-stress-damage coupled process,the mechanical properties and seepage characteristics of coal are distinctly different between pre-peak stage and post-peak stage.This difference is mainly caused by damage of coal.Therefore,in the process of seepage and stress analysis of coal under the influence of excavation or mining,we need to consider the weakening of mechanical properties and the development of fractures of damaged coal.Based on this understanding,this paper analyzes the influence of damage on mechanics and seepage behavior of coal.A coupled model is established to analyze the seepage-stress-damage coupled process of coal.This model implemented into COMSOL and MATLAB software to realize the numerical solving.Two examples are adopted to verify the correctness of the model and some useful conclusions are obtained.The numerical model establishes the relationship between microcosmic damage evolution and macroscopical fracture and simulates the whole process of coal from microcosmic damage to macroscopical fracture,and the dynamic simulation of fluid flow in this process.It provides a numerical tool for further research on the seepage-stress-damage analysis. 展开更多
关键词 PERMEABILITY POROSITY gas pressure DAMAGE coupled model
下载PDF
Novel Soil Strength Criterion Compared with Conventional Criteria
7
作者 Shuai Shao Shengjun Shao +1 位作者 Yu Zhang Changlu Chen 《Geomaterials》 2017年第1期25-39,共15页
A novel soil strength criterion is proposed based on the shear stress ratio on a new spatially mobilized plane, where the cube root of principal stresses is constant. The strength failure surface depicted in the princ... A novel soil strength criterion is proposed based on the shear stress ratio on a new spatially mobilized plane, where the cube root of principal stresses is constant. The strength failure surface depicted in the principal stress space by this criterion was smoothly conical, with a curved triangle shape on the octahedral plane. A comparative analysis of the strength failure surfaces of the Mohr-Coulomb (M-C), the Drucker-Prager (D-P), the Matsuoka-Nakai (M-N), the Lade-Duncan (L-D), the new criteria, and the shear strength laws of different criteria with parameter b on the π plane showed that the L-D criterion and the new spatially mobilized plane strength criterion were comparable, which revealed the physical essence of the L-D criterion. Comparing the new strength criterion with the measured results of true triaxial tests of 4 kinds of intact loess under conditions of consolidation and drain, the strength law of loess could be described by the new strength criterion under complex stress conditions, and the rationality and reliability of the strength criterion were verified by the correspondence between the criterion and experimental values. 展开更多
关键词 Spatially Mobilized Plane Physical ESSENCE of L-D CRITERION Strength of LOESS TRUE TRIAXIAL Test
下载PDF
Plastic Strain Energy Model for Rock Salt Under Fatigue Loading 被引量:1
8
作者 M.M.He N.Li +2 位作者 B.Q.Huang C.H.Zhu Y.S.Chen 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2018年第3期322-331,共10页
The fatigue test for rock salt is conducted to investigate the effects of stress amplitude, loading frequency and loading rate on the plastic strain energy, from which the evaluation rule of the plastic strain energy ... The fatigue test for rock salt is conducted to investigate the effects of stress amplitude, loading frequency and loading rate on the plastic strain energy, from which the evaluation rule of the plastic strain energy is analyzed, which is divided into three stages: cyclic hardening,saturation and cyclic softening. The total accumulated plastic strain energy only depends on the mechanical behavior of rock salt, but is immune to the loading conditions. A novel model for fatigue life prediction is proposed based on the invariance of the total plastic dissipation energy and the stability of the plastic energy per cycle. 展开更多
关键词 疲劳测试 力模型 塑料 装载 石盐 精力 周期 免疫力
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部