The delamination of birnessite MnO_(2) into nanosheets by freezing and thawing method was reported here.The proton⁃type birnessite manganese oxide(H⁃birnessite)was added to tetramethylammonium hydroxide(TMAOH)solution...The delamination of birnessite MnO_(2) into nanosheets by freezing and thawing method was reported here.The proton⁃type birnessite manganese oxide(H⁃birnessite)was added to tetramethylammonium hydroxide(TMAOH)solution in a polypropylene tube which was then sealed.Fifty cycles consisting of fast freezing(in liquid nitrogen for 30 s)and thawing(in 70℃ water for 30 min)were operated.The as⁃prepared slurry was characterized by X⁃ray diffraction(XRD)and transmission electron microscope(TEM).The XRD result showed the layered structural H⁃birnessite was delaminated.The TEM result revealed the product had a nanosheet⁃like morphology.Employed as an anode material for lithium⁃ion batteries,MnO_(2) nanosheets as⁃prepared delivered a specific charging capacity of 1040.6 mAh/g after 100 cycles at 100 mA/g.展开更多
基金Sponsored by the China Postdoctoral Science Foundation(Grant No.2016M592746).
文摘The delamination of birnessite MnO_(2) into nanosheets by freezing and thawing method was reported here.The proton⁃type birnessite manganese oxide(H⁃birnessite)was added to tetramethylammonium hydroxide(TMAOH)solution in a polypropylene tube which was then sealed.Fifty cycles consisting of fast freezing(in liquid nitrogen for 30 s)and thawing(in 70℃ water for 30 min)were operated.The as⁃prepared slurry was characterized by X⁃ray diffraction(XRD)and transmission electron microscope(TEM).The XRD result showed the layered structural H⁃birnessite was delaminated.The TEM result revealed the product had a nanosheet⁃like morphology.Employed as an anode material for lithium⁃ion batteries,MnO_(2) nanosheets as⁃prepared delivered a specific charging capacity of 1040.6 mAh/g after 100 cycles at 100 mA/g.