期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Research progress on isotopic fractionation in the process of shale gas/coalbed methane migration 被引量:1
1
作者 LI Wenbiao LU Shuangfang +6 位作者 LI Junqian WEI Yongbo ZHAO Shengxian ZHANG Pengfei WANG Ziyi LI Xiao WANG Jun 《Petroleum Exploration and Development》 CSCD 2022年第5期1069-1084,共16页
The research progress of isotopic fractionation in the process of shale gas/coalbed methane migration has been reviewed from three aspects: characteristics and influencing factors, mechanism and quantitative character... The research progress of isotopic fractionation in the process of shale gas/coalbed methane migration has been reviewed from three aspects: characteristics and influencing factors, mechanism and quantitative characterization model, and geological application. It is found that the isotopic fractionation during the complete production of shale gas/coalbed methane shows a four-stage characteristic of “stable-lighter-heavier-lighter again”, which is related to the complex gas migration modes in the pores of shale/coal. The gas migration mechanisms in shale/coal include seepage, diffusion, and adsorption/desorption. Among them, seepage driven by pressure difference does not induce isotopic fractionation, while diffusion and adsorption/desorption lead to significant isotope fractionation. The existing characterization models of isotopic fractionation include diffusion fractionation model, diffusion-adsorption/desorption coupled model, and multi-scale and multi-mechanism coupled model. Results of model calculations show that the isotopic fractionation during natural gas migration is mainly controlled by pore structure, adsorption capacity, and initial/boundary conditions of the reservoir rock. So far, the isotope fractionation model has been successfully used to evaluate critical parameters, such as gas-in-place content and ratio of adsorbed/free gas in shale/coal etc. Furthermore, it has shown promising application potential in production status identification and decline trend prediction of gas well. Future research should focus on:(1) the co-evolution of carbon and hydrogen isotopes of different components during natural gas migration,(2) the characterization of isotopic fractionation during the whole process of gas generation-expulsion-migration-accumulation-dispersion, and(3) quantitative characterization of isotopic fractionation during natural gas migration in complex pore-fracture systems and its application. 展开更多
关键词 shale gas coalbed methane diffusive fractionation adsorption/desorption fractionation isotope fractionation model natural gas migration
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部