The sandwich transducer structure is comprised of threecomponents along its main axis: the back metal cap, piezoelectricceramic stack and the horn. The purpose of this work is topresent a simplified method, referred a...The sandwich transducer structure is comprised of threecomponents along its main axis: the back metal cap, piezoelectricceramic stack and the horn. The purpose of this work is topresent a simplified method, referred as the equivalent lengthalgorithm, to design the actuator parameters including eachsegment length and the resonance frequency fs. The actuatorlength L and the propagation wavelength λ along its main axissatisfy the standing wave theory. So, define an equivalent lengthcoefficient for each part of the actuator, and then the sandwichstructure is regarded as a single material cylindrical rod withequivalent length L′. According to the standing wave theory, theequivalent length L′ of the actuator can be determined with thegiven resonance frequency fs, or vice versa. The phase length ofeach part of the actuator in the standing wave is optimized freelyin the design procedure. The actual length of each part of theactuator is determined by the equivalent length coefficient.Finally, the resonance frequencies of three given actuators arecalculated with this method. They are compared with thoseobtained through Ansys simulation and those measured by animpedance analyzer. The results show agreement.展开更多
基金supported by National NaturalScience Foundation of China [grant numbers 51475031 and51475029].
文摘The sandwich transducer structure is comprised of threecomponents along its main axis: the back metal cap, piezoelectricceramic stack and the horn. The purpose of this work is topresent a simplified method, referred as the equivalent lengthalgorithm, to design the actuator parameters including eachsegment length and the resonance frequency fs. The actuatorlength L and the propagation wavelength λ along its main axissatisfy the standing wave theory. So, define an equivalent lengthcoefficient for each part of the actuator, and then the sandwichstructure is regarded as a single material cylindrical rod withequivalent length L′. According to the standing wave theory, theequivalent length L′ of the actuator can be determined with thegiven resonance frequency fs, or vice versa. The phase length ofeach part of the actuator in the standing wave is optimized freelyin the design procedure. The actual length of each part of theactuator is determined by the equivalent length coefficient.Finally, the resonance frequencies of three given actuators arecalculated with this method. They are compared with thoseobtained through Ansys simulation and those measured by animpedance analyzer. The results show agreement.