In China, the research and development of vermicular graphite cast iron (VGCI) as a new type of engineering material, were started in the same period as in other developed countries; however, its actual industrial app...In China, the research and development of vermicular graphite cast iron (VGCI) as a new type of engineering material, were started in the same period as in other developed countries; however, its actual industrial application was even earlier. In China, the deep and intensive studies on VGCI began as early as the 1960s. According to the incomplete statistics to date, more than 600 papers on VGCI have been published by Chinese researchers and scholars at national and international conferences, and in technical journals. More than ten types of production methods and more than thirty types of treatment alloy have been studied. Formulae for calculating the critical addition of treatment alloy required to produce VGCI have been put forward, and mechanisms for explaining the formation of dross during treatment were brought forward. The casting properties, metallographic structure, mechanical and physical properties and machining performance of VGCI, as well as the relationships between them, have all been studied in detail. The Chinese Standards for VGCI and VGCI metallographic structure have been issued. In China, the primary crystallization of VGCI has been studied by many researchers and scholars. The properties of VGCI can be improved by heat treatment and addition of alloying elements enabling its applications to be further expanded. Hundreds of kinds of VGCI castings have been produced and used in vehicles, engines, mining equipment, metallurgical products serviced under alternating thermal load, machinery, hydraulic components, textile machine parts and military applications. The heaviest VGCI casting produced is 38 tons and the lightest is only 1 kg. Currently, the annual production of the VGCI in China is about 200 000 tons. The majority of castings are made from cupola iron without pre-treatment, however, they are also produced from electric furnaces and by duplex melting from cupola-electric furnaces or blast furnace-electric furnace. Examples of typical applications for VGCI castings are introduced in this paper. In China, the technologies such as rapid testing of the molten metal and non-destructive testing of casting microstructure still need to be improved. Several proposals are put forward in this paper in order to improve the production of VGCI. Generally speaking, in China, the research, production, and application of vermicular graphite cast iron are at the same level as in other developed countries and in some fields China even takes lead. (332 references and 5 Tables)展开更多
Based on the fundamentals of“new engineering”construction,this article briefly introduces the development standards of local colleges and universities,analyzes the significance of the collaborative education system ...Based on the fundamentals of“new engineering”construction,this article briefly introduces the development standards of local colleges and universities,analyzes the significance of the collaborative education system of local universities under the fundamentals of“new engineering”construction,and explores the fundamentals of“new engineering.”The specific implementation strategy of the collaborative education system of industry-university collaboration in local colleges and universities.展开更多
5 Heat treatment of VGCIResearch work has shown that the microstructure of VGCI can be modified by heat treatment to give improved properties; martensitic, bainitic, sorbitic and pearlitic structures can be produced b...5 Heat treatment of VGCIResearch work has shown that the microstructure of VGCI can be modified by heat treatment to give improved properties; martensitic, bainitic, sorbitic and pearlitic structures can be produced by quenching, quenching plus tempering, austempering and normalisation respectively. The surface properties of VGCI can also be improved by high frequency induction hardening, tufftriding and ion nitriding to meet special requirements.展开更多
By introducing the radial basis functions(RBFs)into the reproducing kernel particle method(RKPM),the calculating accuracy and stability of the RKPM can be improved,and a novel meshfree method of the radial basis RKPM(...By introducing the radial basis functions(RBFs)into the reproducing kernel particle method(RKPM),the calculating accuracy and stability of the RKPM can be improved,and a novel meshfree method of the radial basis RKPM(meshfree RRKPM)is proposed.Meanwhile,the meshfree RRKPM is applied to transient heat conduction problems(THCP),and the corresponding equations of the meshfree RRKPM for the THCP are derived.The twopoint time difference scheme is selected to discretize the time of the THCP.Finally,the numerical results illustrate the effectiveness of the meshfree RRKPM for the THCP.展开更多
The effects of Y_(2)O_(3) on the microstructure, microhardness, wear resistance, high-temperature oxidation resistance, hot corrosion resistance, and electrochemical corrosion behaviour of CoCrFeNiTiNb high entropy al...The effects of Y_(2)O_(3) on the microstructure, microhardness, wear resistance, high-temperature oxidation resistance, hot corrosion resistance, and electrochemical corrosion behaviour of CoCrFeNiTiNb high entropy alloy coatings formed on Ti-6Al-4V alloy surfaces were studied. The results show that the addition of Y_(2)O_(3) changes the proportion of the phase but does not change its type. The average grain size is only 1/4.7 of that of the high entropy alloy(HEA) coating, and the fine-grained strengthening leads to increases in the microhardness and wear resistance of 21.8% and 26.9%, respectively. The addition of Y_(2)O_(3) enhances the denseness and bonding properties of the oxide and corrosion product layers, reducing the oxidation and hot corrosion rates by 60.3% and 40.3%, respectively. The addition of Y_(2)O_(3) doubles the corrosion resistance which is attributed to the refinement of the grains, the increased proportion of HCP and TiN, and the weakening of galvanic coupling corrosion.展开更多
Regular inspection of long-distance oil and gas pipelines plays an important role in ensuring the safe transportation of oil and gas,and inspection on welding defects is an important part of the inspection process.Mag...Regular inspection of long-distance oil and gas pipelines plays an important role in ensuring the safe transportation of oil and gas,and inspection on welding defects is an important part of the inspection process.Magnetic flux leakage(MFL)is an electromagnetic non-destructive testing technique which has been commonly utilized to detect welding defects in pipelines.In the present study,Maxwell electro-magnetic simulation software was used to carry out numerical study on the welding defects in pipelines,including incomplete penetration and undercut.TheФ406 pipeline with a wall thickness of 7 mm was selected as the study case to establish the numerical model.Setting the life-off value at 1 mm,the distribution of magnetic leakage field was investigated for pipeline without defect,pipeline with incomplete penetration defect and pipeline with undercut defect respectively,the characteristic values describing the depth and width of defects were found.Furthermore,quantified equations which can be used to describe the defect depth were proposed.Finally,experimental research was carried out to validate the effectiveness of the numerical model,and the experimental results showed good consistence with the numerical calculation results.The research results indicate that,it is technically feasible and reliable to diagnose the incomplete penetration and undercut welding defects in pipelines using MFL.展开更多
Since the discovery of ferromagnetic morphotropic phase boundary(MPB)in 2010,the connotation and extension of MPB have been becoming more and more abundant.Over the last dozen years,much experimental work has been don...Since the discovery of ferromagnetic morphotropic phase boundary(MPB)in 2010,the connotation and extension of MPB have been becoming more and more abundant.Over the last dozen years,much experimental work has been done to design magnetostrictive materials based on the MPB principle.However,due to the difficulty in direct experimental observations and the complexity of theoretical treatments,the insight into the microstructure property relationships and underlying mechanisms near the ferromagnetic MPB has not been fully revealed.Here,we have reviewed our recent computer simulation work about the super-magnetoelastic behavior near the critical region of several typical materials.Phase-field modeling and simulation are employed to explore the domain configuration and engineering in single crystals as well as the grain size effect in polycrystals.Besides,a general nano-embryonic mechanism for superelasticity is also introduced.Finally,some future perspectives and challenges are presented to stimulate a deeper consideration of the research paradigm between multiscale modeling and material development.展开更多
Animal models and static cultures of intestinal epithelial cells are commonly used platforms for exploring mercury ion(Hg(II))transport.However,they cannot reliably simulate the human intestinal microenvironment and m...Animal models and static cultures of intestinal epithelial cells are commonly used platforms for exploring mercury ion(Hg(II))transport.However,they cannot reliably simulate the human intestinal microenvironment and monitor cellular physiology in situ;thus,the mechanism of Hg(II)transport in the human intestine is still unclear.Here,a gut-on-a-chip integrated with transepithelial electrical resistance(TEER)sensors and electrochemical sensors is proposed for dynamically simulating the formation of the physical intestinal barrier and monitoring the transport and absorption of Hg(II)in situ.The cellular microenvironment was recreated by applying fluid shear stress(0.02 dyne/cm^(2))and cyclic mechanical strain(1%,0.15 Hz).Hg(II)absorption and physical damage to cells were simultaneously monitored by electrochemical and TEER sensors when intestinal epithelial cells were exposed to different concentrations of Hg(II)mixed in culture medium.Hg(II)absorption increased by 23.59%when tensile strain increased from 1%to 5%,and the corresponding expression of Piezo1 and DMT1 on the cell surface was upregulated.展开更多
Low-activation vanadium alloys,with the reference composition of V-4Cr-4Ti have been considered as one of the most promising candidate materials for structural components such as the blanket in future fusion reactors,...Low-activation vanadium alloys,with the reference composition of V-4Cr-4Ti have been considered as one of the most promising candidate materials for structural components such as the blanket in future fusion reactors,thanks to their excellent neutron irradiation resistance,superior high-temperature mechanical properties,and high compatibility with liquid lithium blankets.The self-cooled liquid lithium blanket using structural materials of vanadium alloys is an attractive concept because of the high heat transfer and high tritium breeding capability.After more than 2 decades of research,technological progress has been made in reducing the number of critical issues for application of vanadium alloys to fusion reactors.In this paper,the recent research and development activities of vanadium alloys are summarized,including significant progress achieved on fabrication technology and composition optimization,coating and corrosion,improved understanding of irradiation effects upon microstructure and material properties,retention of hydrogen isotopes,as well as advancements in joining and weld-ing.In particular,the fact that recent products from China,Japan,US and France showed similar properties which meant the fabrication technology has been almost standardized.展开更多
文摘In China, the research and development of vermicular graphite cast iron (VGCI) as a new type of engineering material, were started in the same period as in other developed countries; however, its actual industrial application was even earlier. In China, the deep and intensive studies on VGCI began as early as the 1960s. According to the incomplete statistics to date, more than 600 papers on VGCI have been published by Chinese researchers and scholars at national and international conferences, and in technical journals. More than ten types of production methods and more than thirty types of treatment alloy have been studied. Formulae for calculating the critical addition of treatment alloy required to produce VGCI have been put forward, and mechanisms for explaining the formation of dross during treatment were brought forward. The casting properties, metallographic structure, mechanical and physical properties and machining performance of VGCI, as well as the relationships between them, have all been studied in detail. The Chinese Standards for VGCI and VGCI metallographic structure have been issued. In China, the primary crystallization of VGCI has been studied by many researchers and scholars. The properties of VGCI can be improved by heat treatment and addition of alloying elements enabling its applications to be further expanded. Hundreds of kinds of VGCI castings have been produced and used in vehicles, engines, mining equipment, metallurgical products serviced under alternating thermal load, machinery, hydraulic components, textile machine parts and military applications. The heaviest VGCI casting produced is 38 tons and the lightest is only 1 kg. Currently, the annual production of the VGCI in China is about 200 000 tons. The majority of castings are made from cupola iron without pre-treatment, however, they are also produced from electric furnaces and by duplex melting from cupola-electric furnaces or blast furnace-electric furnace. Examples of typical applications for VGCI castings are introduced in this paper. In China, the technologies such as rapid testing of the molten metal and non-destructive testing of casting microstructure still need to be improved. Several proposals are put forward in this paper in order to improve the production of VGCI. Generally speaking, in China, the research, production, and application of vermicular graphite cast iron are at the same level as in other developed countries and in some fields China even takes lead. (332 references and 5 Tables)
文摘Based on the fundamentals of“new engineering”construction,this article briefly introduces the development standards of local colleges and universities,analyzes the significance of the collaborative education system of local universities under the fundamentals of“new engineering”construction,and explores the fundamentals of“new engineering.”The specific implementation strategy of the collaborative education system of industry-university collaboration in local colleges and universities.
文摘5 Heat treatment of VGCIResearch work has shown that the microstructure of VGCI can be modified by heat treatment to give improved properties; martensitic, bainitic, sorbitic and pearlitic structures can be produced by quenching, quenching plus tempering, austempering and normalisation respectively. The surface properties of VGCI can also be improved by high frequency induction hardening, tufftriding and ion nitriding to meet special requirements.
基金supported by the Natural Science Foundation of Shandong Province(Grant No.ZR2017MA028)supported by the Natural Science Foundation of Shandong Province(Grant No.ZR2020MA059).
文摘By introducing the radial basis functions(RBFs)into the reproducing kernel particle method(RKPM),the calculating accuracy and stability of the RKPM can be improved,and a novel meshfree method of the radial basis RKPM(meshfree RRKPM)is proposed.Meanwhile,the meshfree RRKPM is applied to transient heat conduction problems(THCP),and the corresponding equations of the meshfree RRKPM for the THCP are derived.The twopoint time difference scheme is selected to discretize the time of the THCP.Finally,the numerical results illustrate the effectiveness of the meshfree RRKPM for the THCP.
基金Project supported by the National Natural Science Foundation of China(51805285,51605237)the projects of Shandong Province"Youth Innovation Science and Technology Support Plan"(2021KJ026)+1 种基金the Key Research and Development Project of Shandong Province(2018GGX103031)the Natural Science Foundation of Shandong Province(ZR2021ME023)。
文摘The effects of Y_(2)O_(3) on the microstructure, microhardness, wear resistance, high-temperature oxidation resistance, hot corrosion resistance, and electrochemical corrosion behaviour of CoCrFeNiTiNb high entropy alloy coatings formed on Ti-6Al-4V alloy surfaces were studied. The results show that the addition of Y_(2)O_(3) changes the proportion of the phase but does not change its type. The average grain size is only 1/4.7 of that of the high entropy alloy(HEA) coating, and the fine-grained strengthening leads to increases in the microhardness and wear resistance of 21.8% and 26.9%, respectively. The addition of Y_(2)O_(3) enhances the denseness and bonding properties of the oxide and corrosion product layers, reducing the oxidation and hot corrosion rates by 60.3% and 40.3%, respectively. The addition of Y_(2)O_(3) doubles the corrosion resistance which is attributed to the refinement of the grains, the increased proportion of HCP and TiN, and the weakening of galvanic coupling corrosion.
基金supported by Science,Education and Industry Integration Pilot Foundation Research Project(2022PX100)granted by Qilu University of Technology(Shandong Academy of Sciences)Young Innovative Talents Introduction&Cultivation Program for Colleges and Universities of Shandong Province(Sub-title:Innovative Research Team of Advanced Energy Equipment)granted by Department of Education of Shandong Province,and Natural Science Foundation ofShandong Province of China(No.ZR2020ME178).
文摘Regular inspection of long-distance oil and gas pipelines plays an important role in ensuring the safe transportation of oil and gas,and inspection on welding defects is an important part of the inspection process.Magnetic flux leakage(MFL)is an electromagnetic non-destructive testing technique which has been commonly utilized to detect welding defects in pipelines.In the present study,Maxwell electro-magnetic simulation software was used to carry out numerical study on the welding defects in pipelines,including incomplete penetration and undercut.TheФ406 pipeline with a wall thickness of 7 mm was selected as the study case to establish the numerical model.Setting the life-off value at 1 mm,the distribution of magnetic leakage field was investigated for pipeline without defect,pipeline with incomplete penetration defect and pipeline with undercut defect respectively,the characteristic values describing the depth and width of defects were found.Furthermore,quantified equations which can be used to describe the defect depth were proposed.Finally,experimental research was carried out to validate the effectiveness of the numerical model,and the experimental results showed good consistence with the numerical calculation results.The research results indicate that,it is technically feasible and reliable to diagnose the incomplete penetration and undercut welding defects in pipelines using MFL.
基金supported by the Natural Science Foundation of China(Nos.51701091,12174210 and 52174346)Shandong Provincial Natural Science Foundation,China(Nos.ZR2020QE028 and ZR2022ME030)+2 种基金the Innovation Team of Higher Educational Science and Technology Program in Shandong Province(No.2019KJA025)the Research Foundation of Liaocheng University(No.318012119)the Science and Technology Innovation Foundation of Liaocheng University(No.CXCY2021139)。
文摘Since the discovery of ferromagnetic morphotropic phase boundary(MPB)in 2010,the connotation and extension of MPB have been becoming more and more abundant.Over the last dozen years,much experimental work has been done to design magnetostrictive materials based on the MPB principle.However,due to the difficulty in direct experimental observations and the complexity of theoretical treatments,the insight into the microstructure property relationships and underlying mechanisms near the ferromagnetic MPB has not been fully revealed.Here,we have reviewed our recent computer simulation work about the super-magnetoelastic behavior near the critical region of several typical materials.Phase-field modeling and simulation are employed to explore the domain configuration and engineering in single crystals as well as the grain size effect in polycrystals.Besides,a general nano-embryonic mechanism for superelasticity is also introduced.Finally,some future perspectives and challenges are presented to stimulate a deeper consideration of the research paradigm between multiscale modeling and material development.
基金supported by the Taishan Scholars Program of Shandong Province (No.tsqn201812087)the National Natural Science Foundation of China (No.61901239)+1 种基金Qingchuang Science and Technology Plan Foundation for Colleges and Universities in Shandong Province (No.2019KJB009)the Young Ph.D.Cooperation Foundation of Qilu University of Technology (Shandong Academy of Sciences) (No.2019BSHZ002).
文摘Animal models and static cultures of intestinal epithelial cells are commonly used platforms for exploring mercury ion(Hg(II))transport.However,they cannot reliably simulate the human intestinal microenvironment and monitor cellular physiology in situ;thus,the mechanism of Hg(II)transport in the human intestine is still unclear.Here,a gut-on-a-chip integrated with transepithelial electrical resistance(TEER)sensors and electrochemical sensors is proposed for dynamically simulating the formation of the physical intestinal barrier and monitoring the transport and absorption of Hg(II)in situ.The cellular microenvironment was recreated by applying fluid shear stress(0.02 dyne/cm^(2))and cyclic mechanical strain(1%,0.15 Hz).Hg(II)absorption and physical damage to cells were simultaneously monitored by electrochemical and TEER sensors when intestinal epithelial cells were exposed to different concentrations of Hg(II)mixed in culture medium.Hg(II)absorption increased by 23.59%when tensile strain increased from 1%to 5%,and the corresponding expression of Piezo1 and DMT1 on the cell surface was upregulated.
基金financially supported by the National Natural Science Foundation of China (Grant Nos. 11474167 and 51501097)the Natural Science Foundation of Shandong Province (Grant No. ZR2014EMP005)+1 种基金the Innovation Team of Jinan (Grant No. 2019GXRC035)the Key R&D Program of Shandong Province of China (Grant No. 2019QYTPY057)
文摘Low-activation vanadium alloys,with the reference composition of V-4Cr-4Ti have been considered as one of the most promising candidate materials for structural components such as the blanket in future fusion reactors,thanks to their excellent neutron irradiation resistance,superior high-temperature mechanical properties,and high compatibility with liquid lithium blankets.The self-cooled liquid lithium blanket using structural materials of vanadium alloys is an attractive concept because of the high heat transfer and high tritium breeding capability.After more than 2 decades of research,technological progress has been made in reducing the number of critical issues for application of vanadium alloys to fusion reactors.In this paper,the recent research and development activities of vanadium alloys are summarized,including significant progress achieved on fabrication technology and composition optimization,coating and corrosion,improved understanding of irradiation effects upon microstructure and material properties,retention of hydrogen isotopes,as well as advancements in joining and weld-ing.In particular,the fact that recent products from China,Japan,US and France showed similar properties which meant the fabrication technology has been almost standardized.