A novel synthetic aperture radar(SAR)image de-noising method based on the local pixel grouping(LPG)principal component analysis(PCA)and guided filter is proposed.This method contains two steps.In the first step,we pro...A novel synthetic aperture radar(SAR)image de-noising method based on the local pixel grouping(LPG)principal component analysis(PCA)and guided filter is proposed.This method contains two steps.In the first step,we process the noisy image by coarse filters,which can suppress the speckle effectively.The original SAR image is transformed into the additive noise model by logarithmic transform with deviation correction.Then,we use the pixel and its nearest neighbors as a vector to select training samples from the local window by LPG based on the block similar matching.The LPG method ensures that only the similar sample patches are used in the local statistical calculation of PCA transform estimation,so that the local features of the image can be well preserved after coefficients shrinkage in the PCA domain.In the second step,we do the guided filtering which can effectively eliminate small artifacts left over from the coarse filtering.Experimental results of simulated and real SAR images show that the proposed method outstrips the state-of-the-art image de-noising methods in the peak signalto-noise ratio(PSNR),the structural similarity(SSIM)index and the equivalent number of looks(ENLs),and is of perceived image quality.展开更多
Optical properties and responsive mechanisms of three newly synthesized fluorescent probes for hypochlorous acid (HOC1) are investigated by employing time-dependent density functional theory. The computational resul...Optical properties and responsive mechanisms of three newly synthesized fluorescent probes for hypochlorous acid (HOC1) are investigated by employing time-dependent density functional theory. The computational results show that the absorption and emission properties of these probes change obviously when they react with hypochlorous acid. It is found that the probe FHZ has the best performance according to the probing behavior. Moreover, the responsive mechanisms of the probes are studied by analyzing the distributions of molecular orbitals and charge transfer, which are shown as the photon- induced electron transfer (PET) for FHZ and the intramolecular charge transfer OCT) for the other two probes. Specially, solvent effect on optical properties of the probe FHZ before and after reaction is studied within the polarizable continuum model (PCM). It is shown that performance of the probe depends crucially on the solvent polarity. Our computational results agree well with the experimental measurement, and provide information for design of efficient two-photon fluorescent probes.展开更多
Two-photon fluorescence dyes have shown promising applications in biomedical imaging.However,the substitution site effect on geometric structures and photophysical properties of fluorescence dyes is rarely illustrated...Two-photon fluorescence dyes have shown promising applications in biomedical imaging.However,the substitution site effect on geometric structures and photophysical properties of fluorescence dyes is rarely illustrated in detail.In this work,a series of new lipid droplets detection dyes are designed and studied,molecular optical properties and non-radiative transitions are analyzed.The intramolecular weak interaction and electron-hole analysis reveal its inner mechanisms.All dyes are proven to possess excellent photophysical properties with high fluorescence quantum efficiency and large stokes shift as well as remarkable two-photon absorption cross section.Our work reasonably elucidates the experimental measurements and the effects of substitution site on two-photon absorption and excited states properties of lipid droplets detection NAPBr dyes are highlighted,which could provide a theoretical perspective for designing efficient organic dyes for lipid droplets detection in biology and medicine fields.展开更多
Influence of intramolecular π-π interaction on the luminescent properties of thermally activated delayed fluorescence(TADF) molecule(3, 5-bis(3,6-di-tert-butyl-9 H-carbazol-9-yl)-phenyl)(pyridin-4-yl) methan...Influence of intramolecular π-π interaction on the luminescent properties of thermally activated delayed fluorescence(TADF) molecule(3, 5-bis(3,6-di-tert-butyl-9 H-carbazol-9-yl)-phenyl)(pyridin-4-yl) methanone(DTCBPY) is theoretically studied by using the density functional theory(DFT) and time-dependent density functional theory(TD-DFT).Four conformations(named as A, B, C, and D) of the DTCBPY can be found by relax scanning, and the configuration C corresponds to the luminescent molecule detected experimentally. Besides, we calculate the proportion of each conformation by Boltzmann distribution, high configuration ratios(44% and 52%) can be found for C and D. Moreover, C and D are found to exist with an intramolecular π-π interaction between one donor and the acceptor; the intramolecular interaction brings a smaller Huang-Rhys factor and reduced reorganization energy. Our work presents a rational explanation for the experimental results and demonstrates the importance of the intramolecular π-π interaction to the photophysical properties of TADF molecules.展开更多
The excited state intramolecular proton transfer of four derivatives(FM, BFM, BFBC, CCM) of 3-hydroxychromone is investigated.The geometries of different substituents are optimized to study the substituent effects on ...The excited state intramolecular proton transfer of four derivatives(FM, BFM, BFBC, CCM) of 3-hydroxychromone is investigated.The geometries of different substituents are optimized to study the substituent effects on proton transfer.The mechanism of hydrogen bond enhancement is qualitatively elucidated by comparing the infrared spectra, the reduced density gradient, and the frontier molecular orbitals.The calculated electronic spectra are consistent with the experimental results.To quantify the proton transfer, the potential energy curves(PECs) of the four derivatives in S0 and S1 states are scanned.It is concluded that the ability of proton transfer follows the order: FM > BFM > BFBC > CCM.展开更多
First-principles calculations are applied for investigating influence of electron donating ability of donor groups in eight thermally activated delayed fluorescence(TADF) molecules on their geometrical structures an...First-principles calculations are applied for investigating influence of electron donating ability of donor groups in eight thermally activated delayed fluorescence(TADF) molecules on their geometrical structures and transition properties as well as reverse intersystem crossing(RISC) processes. Results show that the diphenylamine substitution in the donor part can slightly change the bond angle but decrease bond length between donor and acceptor unit except for the lowest triplet state(Ti) of carbazole-xanthone molecule. As the electron donating ability of donor groups is increased, the overlap between the highest occupied molecular orbital(HOMO) and the lowest unoccupied molecular orbital(LUMO) is decreased. As the diphenylamine groups are added in donor part, the delocalization of HOMO is enlarged,which brings a decreased energy gap(△ES1-T1) between the lowest singlet excited state(S1)and T1 state. Furthermore, with the calculated spin-orbit coupling coefficient(HSO), one finds that the larger value of ■ is, the faster the RISC is. The results show that all investigated molecules are promising candidates as TADF molecules. Overall, a wise molecular design strategy for TADF molecules,in which a small △ES1-T1 can be achieved by enlarging the delocalization of frontier molecular orbitals with large separation between HOMO and LUMO, is proposed.展开更多
Based on first-principles calculations,the bias-induced evolutions of hybrid interface states inπ-conjugated tricene and in insulating octane magnetic molecular junctions are investigated.Obvious bias-induced splitti...Based on first-principles calculations,the bias-induced evolutions of hybrid interface states inπ-conjugated tricene and in insulating octane magnetic molecular junctions are investigated.Obvious bias-induced splitting and energy shift of the spin-resolved hybrid interface states are observed in the two junctions.The recombination of the shifted hybrid interface states from different interfaces makes the spin polarization around the Fermi energy strongly bias-dependent.The transport calculations demonstrate that in theπ-conjugated tricene junction,the bias-dependent hybrid interface states work efficiently for large current,current spin polarization,and distinct tunneling magnetoresistance.But in the insulating octane junction,the spin-dependent transport via the hybrid interface states is inhibited,which is only slightly disturbed by the bias.This work reveals the phenomenon of bias-induced reconstruction of hybrid interface states in molecular spinterface devices,and the underlying role of conjugated molecular orbitals in the transport ability of hybrid interface states.展开更多
Achieving color-tunable emission in single-component organic emitters with multistage stimuli-responsiveness is of vital significance for intelligent optoelectronic applications,but remains enormously challenging.Here...Achieving color-tunable emission in single-component organic emitters with multistage stimuli-responsiveness is of vital significance for intelligent optoelectronic applications,but remains enormously challenging.Herein,we present an unprecedented example of a color-tunable single-component smart organic emitter(DDOP)that simultaneously exhibits multistage stimuli-responsiveness and multimode emissions.DDOP based on a highly twisted amide-bridged donor-tcceptor-donor structure has been found to facilitate intersystem crossing,form multimode emissions,and generate multiple emissive species with multistage stimuli-responsiveness.DDOP pristine crystalline powders exhibit abnormal excitation-dependent emissions from a monomer-dominated blue emission centered at 470 nm to a dimer-dominated yellow emission centered at 550 nm through decreasing the ultraviolet(UV)excitation wavelengths,whereas DDOP single crystals show a wide emission band with a main emission peak at 585 nm when excited at different wavelengths.The emission behaviors of pristine crystalline powders and single crystals are different,demonstrating emission features that are closely related to the aggregation states.The work has developed color-tunable single-component organic emitters with simultaneous multistage stimuli-responsiveness and multimode emissions,which is vital for expanding intelligent optoelectronic applications,including multilevel information encryption,multicolor emissive patterns,and visual monitoring of UV wavelengths.展开更多
Solution processability is a unique property of organic semiconductors. The compact and regular π-π stacking between molecules is paramount in the performance of organic optoelectronic devices. However, it is still ...Solution processability is a unique property of organic semiconductors. The compact and regular π-π stacking between molecules is paramount in the performance of organic optoelectronic devices. However, it is still a challenge to improve their stacking quality without sacrificing the solution-processability from the aspect of materials design. Here, delicately engineered additives are presented to promote the formation of ordered aggregation of conjugated molecules by regulating their nucleation and growth dynamics. Intriguingly, the long-chain BTP-eC9-4F molecules can realize ordered aggregation comparable to short-chain ones without sacrificing processability. The domain size of BTP-eC9-4F aggregation is enlarged from 24.2 to 32.2 nm in blend films.Thereby exciton diffusion and charge transport become faster, contributing to the suppression of recombination losses. As a result, a power conversion efficiency of 19.2% is achieved in D18:BTP-eC9-4F based organic photovoltaics. Our findings demonstrate a facile strategy to improve the packing quality of solution-processed organic semiconductors for high-efficiency photovoltaics and beyond photovoltaics.展开更多
Spin-dependent transport in ferromagnet/organic-ferromagnet/metal junctions is investigated theoretically.The results reveal a large tunneling magnetoresistance up to 3230%by controlling the relative magnetization ori...Spin-dependent transport in ferromagnet/organic-ferromagnet/metal junctions is investigated theoretically.The results reveal a large tunneling magnetoresistance up to 3230%by controlling the relative magnetization orientation between the ferromagnet and the central organic ferromagnet.The mechanism is explained by distinct efficient spin-resolved tunneling states in the ferromagnet between the parallel and antiparallel spin configurations.The key role of the organic ferromagnet in generating the large magnetoresistance is explored,where the spin selection effect is found to enlarge the difference of the tunneling states between the parallel and antiparallel configurations by comparing with the conventional organic spin valves.The effects of intrinsic interactions in the organic ferromagnet including electron–lattice interaction and spin coupling with radicals on the magnetoresistance are discussed.This work demonstrates a promising potential of organic ferromagnets in the design of high-performance organic spin valves.展开更多
Niobium telluride(NbTe_(2)),an emerging transition metal dichalcogenide material,has been theoretically predicted to have nonlinear absorption properties and excellent optical response.However,only a few studies of th...Niobium telluride(NbTe_(2)),an emerging transition metal dichalcogenide material,has been theoretically predicted to have nonlinear absorption properties and excellent optical response.However,only a few studies of the utilization of NbTe_(2)in ultrafast photonics have been reported.In this work,a NbTe_(2)-based saturable absorber(SA)was applied in an erbium-doped fiber as a mode-locked device,and a vector soliton based on NbTe_(2)was obtained for the first time.NbTe_(2)-PVA film SA was successfully prepared by the liquid-phase exfoliation and spin coating methods,with a modulation depth of up to 10.87%.The nonlinear absorption coefficient of NbTe_(2)-based SA film tested through the open-aperture Z-scan laser measurement is 0.62×10^(−11) m/W.A conventional soliton with a pulse duration of 858 fs was generated using NbTe_(2)-based SA,which was demonstrated to be a kind of polarization-locked vector soliton in further investigation.Our experimental results reveal the nonlinear optical properties of NbTe_(2)and broaden its applications in ultrafast photonic devices.展开更多
In this study,titanium disulfide(TiS_(2))polyvinyl alcohol(PVA)film-type saturable absorber(SA)is synthesized with a modulation depth of 5.08%and a saturable intensity of 10.62 MW/cm^(2) by liquid-phase exfoliation an...In this study,titanium disulfide(TiS_(2))polyvinyl alcohol(PVA)film-type saturable absorber(SA)is synthesized with a modulation depth of 5.08%and a saturable intensity of 10.62 MW/cm^(2) by liquid-phase exfoliation and spin-coating methods.Since TiS2-based SA has a strong nonlinear saturable absorption property,two types of optical soliton were observed in a mode-locked Er-doped fiber laser.When the pump power was raised to 67.3 mW,a conventional mode-locked pulse train with a repetition rate of 1.716 MHz and a pulse width of 6.57 ps was generated,and the output spectrum centered at 1556.98 nm and 0.466 nm spectral width with obvious Kelly sidebands was obtained.Another type of mode-locked pulse train with the maximum output power of 3.92 mW and pulse energy of 2.28 nJ at the pump power of 517.2 mW was achieved when the polarization controllers were adjusted.Since TiS2-based SA has excellent nonlinear saturable absorption characteristics,broad applications in ultrafast photonic are expected.展开更多
Facing the body's EEG(electroencephalograph, 0.5–100 Hz, 5–100 μV) and ECG's(electrocardiogram,〈 100 Hz, 0.01–5 mV) micro signal detection requirement, this paper develops a pervasive application micro sign...Facing the body's EEG(electroencephalograph, 0.5–100 Hz, 5–100 μV) and ECG's(electrocardiogram,〈 100 Hz, 0.01–5 mV) micro signal detection requirement, this paper develops a pervasive application micro signal detection ASIC chip with the chopping modulation/demodulation method. The chopper-stabilization circuit with the RRL(ripple reduction loop) circuit is to suppress the ripple voltage, which locates at the single-stage amplifier's outputting terminal. The single-stage chopping core's noise has been suppressed too, and it is beneficial for suppressing noises of post-circuit. The chopping core circuit uses the PFB(positive feedback loop) to increase the inputting resistance, and the NFB(negative feedback loop) to stabilize the 40 dB intermediate frequency gain. The cascaded switch-capacitor sample/hold circuit has been used for deleting spike noises caused by non-ideal MOS switches, and the VGA/BPF(voltage gain amplifier/band pass filter) circuit is used to tune the chopper system's gain/bandwidth digitally. Assisted with the designed novel dry-electrode, the real test result of the chopping amplifying circuit gives some critical parameters: 8.1 μW/channel, 0.8 μVrms(@band-widthD100 Hz), 4216–11220 times digitally tuning gain range, etc. The data capture system uses the NI CO's data capturing DAQmx interface,and the captured micro EEG/ECG's waves are real-time displayed with the PC-Labview. The proposed chopper system is a unified EEG/ECG signal's detection instrument and has a critical real application value.展开更多
One major cause of Alzheimer’s disease(AD) is evidently due to the aggregation and deposition of amyloidβ peptides(Aβ) in the brain tissue of the patient. Preventing misfolding and self-aggregation of Aβ protein c...One major cause of Alzheimer’s disease(AD) is evidently due to the aggregation and deposition of amyloidβ peptides(Aβ) in the brain tissue of the patient. Preventing misfolding and self-aggregation of Aβ protein can reduce the formation of highly toxic polymer, which is important for the treatment of AD. Among them, the α-helix consisting of42 residues(Aβ42) is the main component of senile plaques in AD. In this paper, 500 ns accelerated molecular dynamics are performed at different temperatures(300 K, 350 K, 400 K, 450 K) to study of the effect of temperature-induced conformation changes of Aβ42 protein during the unfolding process respectively.展开更多
基金supported by the National Natural Science Foundation of China(6200220861572063+1 种基金61603225)the Natural Science Foundation of Shandong Province(ZR2016FQ04)。
文摘A novel synthetic aperture radar(SAR)image de-noising method based on the local pixel grouping(LPG)principal component analysis(PCA)and guided filter is proposed.This method contains two steps.In the first step,we process the noisy image by coarse filters,which can suppress the speckle effectively.The original SAR image is transformed into the additive noise model by logarithmic transform with deviation correction.Then,we use the pixel and its nearest neighbors as a vector to select training samples from the local window by LPG based on the block similar matching.The LPG method ensures that only the similar sample patches are used in the local statistical calculation of PCA transform estimation,so that the local features of the image can be well preserved after coefficients shrinkage in the PCA domain.In the second step,we do the guided filtering which can effectively eliminate small artifacts left over from the coarse filtering.Experimental results of simulated and real SAR images show that the proposed method outstrips the state-of-the-art image de-noising methods in the peak signalto-noise ratio(PSNR),the structural similarity(SSIM)index and the equivalent number of looks(ENLs),and is of perceived image quality.
基金supported by the National Natural Science Foundation of China(Grant Nos.11374195 and 11404193)the Taishan Scholar Program of Shandong Province,China
文摘Optical properties and responsive mechanisms of three newly synthesized fluorescent probes for hypochlorous acid (HOC1) are investigated by employing time-dependent density functional theory. The computational results show that the absorption and emission properties of these probes change obviously when they react with hypochlorous acid. It is found that the probe FHZ has the best performance according to the probing behavior. Moreover, the responsive mechanisms of the probes are studied by analyzing the distributions of molecular orbitals and charge transfer, which are shown as the photon- induced electron transfer (PET) for FHZ and the intramolecular charge transfer OCT) for the other two probes. Specially, solvent effect on optical properties of the probe FHZ before and after reaction is studied within the polarizable continuum model (PCM). It is shown that performance of the probe depends crucially on the solvent polarity. Our computational results agree well with the experimental measurement, and provide information for design of efficient two-photon fluorescent probes.
基金This work was supported by the National Natural Science Foundation of China(No.11804196 and No.11904210)the Project funded by China Postdoctoral Science Foundation(No.2018M642689)the Open Fund of Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates,(South China University of Technology)(No.2019B030301003).
文摘Two-photon fluorescence dyes have shown promising applications in biomedical imaging.However,the substitution site effect on geometric structures and photophysical properties of fluorescence dyes is rarely illustrated in detail.In this work,a series of new lipid droplets detection dyes are designed and studied,molecular optical properties and non-radiative transitions are analyzed.The intramolecular weak interaction and electron-hole analysis reveal its inner mechanisms.All dyes are proven to possess excellent photophysical properties with high fluorescence quantum efficiency and large stokes shift as well as remarkable two-photon absorption cross section.Our work reasonably elucidates the experimental measurements and the effects of substitution site on two-photon absorption and excited states properties of lipid droplets detection NAPBr dyes are highlighted,which could provide a theoretical perspective for designing efficient organic dyes for lipid droplets detection in biology and medicine fields.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11374195 and 21403133)Taishan Scholar Project of Shandong Normal University,China+1 种基金the Promotive Research Fund for Excellent Young and Middle-aged Scientists of Shandong Province,China(Grant No.BS2014cl001)the China Postdoctoral Science Foundation(Grant No.2014M560571)
文摘Influence of intramolecular π-π interaction on the luminescent properties of thermally activated delayed fluorescence(TADF) molecule(3, 5-bis(3,6-di-tert-butyl-9 H-carbazol-9-yl)-phenyl)(pyridin-4-yl) methanone(DTCBPY) is theoretically studied by using the density functional theory(DFT) and time-dependent density functional theory(TD-DFT).Four conformations(named as A, B, C, and D) of the DTCBPY can be found by relax scanning, and the configuration C corresponds to the luminescent molecule detected experimentally. Besides, we calculate the proportion of each conformation by Boltzmann distribution, high configuration ratios(44% and 52%) can be found for C and D. Moreover, C and D are found to exist with an intramolecular π-π interaction between one donor and the acceptor; the intramolecular interaction brings a smaller Huang-Rhys factor and reduced reorganization energy. Our work presents a rational explanation for the experimental results and demonstrates the importance of the intramolecular π-π interaction to the photophysical properties of TADF molecules.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11874241,11847224,and 11804195)the Shandong Province Higher Educational Science and Technology Program,China(Grant No.J15LJ03)+1 种基金the Taishan Scholar Project of Shandong Province,China,China Post-Doctoral Foundation(Grant No.2018M630796)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2018BA034)
文摘The excited state intramolecular proton transfer of four derivatives(FM, BFM, BFBC, CCM) of 3-hydroxychromone is investigated.The geometries of different substituents are optimized to study the substituent effects on proton transfer.The mechanism of hydrogen bond enhancement is qualitatively elucidated by comparing the infrared spectra, the reduced density gradient, and the frontier molecular orbitals.The calculated electronic spectra are consistent with the experimental results.To quantify the proton transfer, the potential energy curves(PECs) of the four derivatives in S0 and S1 states are scanned.It is concluded that the ability of proton transfer follows the order: FM > BFM > BFBC > CCM.
基金This work was supported by the National Natural Science Foundation of China(No.11374195 and No.21403133),the Taishan Scholar Project of Shandong Province,the Promotive Research Fund for Excellent Young and Middle-aged Scientists of Shandong Province(No.BS2014CL001),and the General Financial Grant from the China Postdoctoral Science Foundation(No.2014M560571).
文摘First-principles calculations are applied for investigating influence of electron donating ability of donor groups in eight thermally activated delayed fluorescence(TADF) molecules on their geometrical structures and transition properties as well as reverse intersystem crossing(RISC) processes. Results show that the diphenylamine substitution in the donor part can slightly change the bond angle but decrease bond length between donor and acceptor unit except for the lowest triplet state(Ti) of carbazole-xanthone molecule. As the electron donating ability of donor groups is increased, the overlap between the highest occupied molecular orbital(HOMO) and the lowest unoccupied molecular orbital(LUMO) is decreased. As the diphenylamine groups are added in donor part, the delocalization of HOMO is enlarged,which brings a decreased energy gap(△ES1-T1) between the lowest singlet excited state(S1)and T1 state. Furthermore, with the calculated spin-orbit coupling coefficient(HSO), one finds that the larger value of ■ is, the faster the RISC is. The results show that all investigated molecules are promising candidates as TADF molecules. Overall, a wise molecular design strategy for TADF molecules,in which a small △ES1-T1 can be achieved by enlarging the delocalization of frontier molecular orbitals with large separation between HOMO and LUMO, is proposed.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11974215,21933002,and 11874242)the Shandong Provincial Natural Science Foundation,China(Grant No.ZR2019MA043)。
文摘Based on first-principles calculations,the bias-induced evolutions of hybrid interface states inπ-conjugated tricene and in insulating octane magnetic molecular junctions are investigated.Obvious bias-induced splitting and energy shift of the spin-resolved hybrid interface states are observed in the two junctions.The recombination of the shifted hybrid interface states from different interfaces makes the spin polarization around the Fermi energy strongly bias-dependent.The transport calculations demonstrate that in theπ-conjugated tricene junction,the bias-dependent hybrid interface states work efficiently for large current,current spin polarization,and distinct tunneling magnetoresistance.But in the insulating octane junction,the spin-dependent transport via the hybrid interface states is inhibited,which is only slightly disturbed by the bias.This work reveals the phenomenon of bias-induced reconstruction of hybrid interface states in molecular spinterface devices,and the underlying role of conjugated molecular orbitals in the transport ability of hybrid interface states.
基金support from the National Natural Science Foundation of China(21835003 and 62274097)the Natural Science Foundation of Jiangsu Province(BE2019120)+2 种基金the Program for Jiangsu Specially-Appointed Professor(RK030STP15001)the Leading Talent of Technological Innovation of National Ten-Thousands Talents Program of Chinathe Postgraduate Research and Practice Innovation Program of Jiangsu Province(KYCX18_0859).
文摘Achieving color-tunable emission in single-component organic emitters with multistage stimuli-responsiveness is of vital significance for intelligent optoelectronic applications,but remains enormously challenging.Herein,we present an unprecedented example of a color-tunable single-component smart organic emitter(DDOP)that simultaneously exhibits multistage stimuli-responsiveness and multimode emissions.DDOP based on a highly twisted amide-bridged donor-tcceptor-donor structure has been found to facilitate intersystem crossing,form multimode emissions,and generate multiple emissive species with multistage stimuli-responsiveness.DDOP pristine crystalline powders exhibit abnormal excitation-dependent emissions from a monomer-dominated blue emission centered at 470 nm to a dimer-dominated yellow emission centered at 550 nm through decreasing the ultraviolet(UV)excitation wavelengths,whereas DDOP single crystals show a wide emission band with a main emission peak at 585 nm when excited at different wavelengths.The emission behaviors of pristine crystalline powders and single crystals are different,demonstrating emission features that are closely related to the aggregation states.The work has developed color-tunable single-component organic emitters with simultaneous multistage stimuli-responsiveness and multimode emissions,which is vital for expanding intelligent optoelectronic applications,including multilevel information encryption,multicolor emissive patterns,and visual monitoring of UV wavelengths.
基金supported by the National Natural Science Foundation of China(52303239)the Natural Science Foundation of Shandong Province(ZR2022QB141,2023HWYQ-087)+1 种基金Jiangsu Key Laboratory for Carbon-Based Functional Materials&Devices,Soochow University(KJS2209)Sichuan Science and Technology Program(2023NSFSC0990)。
文摘Solution processability is a unique property of organic semiconductors. The compact and regular π-π stacking between molecules is paramount in the performance of organic optoelectronic devices. However, it is still a challenge to improve their stacking quality without sacrificing the solution-processability from the aspect of materials design. Here, delicately engineered additives are presented to promote the formation of ordered aggregation of conjugated molecules by regulating their nucleation and growth dynamics. Intriguingly, the long-chain BTP-eC9-4F molecules can realize ordered aggregation comparable to short-chain ones without sacrificing processability. The domain size of BTP-eC9-4F aggregation is enlarged from 24.2 to 32.2 nm in blend films.Thereby exciton diffusion and charge transport become faster, contributing to the suppression of recombination losses. As a result, a power conversion efficiency of 19.2% is achieved in D18:BTP-eC9-4F based organic photovoltaics. Our findings demonstrate a facile strategy to improve the packing quality of solution-processed organic semiconductors for high-efficiency photovoltaics and beyond photovoltaics.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11974215,11704230,11674197,and 11874242)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2019MA043)the Taishan Scholar Project of Shandong Province,China
文摘Spin-dependent transport in ferromagnet/organic-ferromagnet/metal junctions is investigated theoretically.The results reveal a large tunneling magnetoresistance up to 3230%by controlling the relative magnetization orientation between the ferromagnet and the central organic ferromagnet.The mechanism is explained by distinct efficient spin-resolved tunneling states in the ferromagnet between the parallel and antiparallel spin configurations.The key role of the organic ferromagnet in generating the large magnetoresistance is explored,where the spin selection effect is found to enlarge the difference of the tunneling states between the parallel and antiparallel configurations by comparing with the conventional organic spin valves.The effects of intrinsic interactions in the organic ferromagnet including electron–lattice interaction and spin coupling with radicals on the magnetoresistance are discussed.This work demonstrates a promising potential of organic ferromagnets in the design of high-performance organic spin valves.
基金supported by the National Natural Science Foundation of China(Grant Nos.61971271,11904213,and 11747149)the Jinan City-School Integration Development Strategy Project(Grant No.JNSX2021023)+4 种基金the Shandong Province Major Technological Innovation Project(Grant No.2022CXGC010502)the Shandong Province Natural Science Foundation(Grant No.ZR2018QF006)the Key Project of Department of Education of Guangdong Province(Grant No.2018KCXTD026)the Deanship of Scientific Research(DSR)at King Abdulaziz University,Jeddah(Grant No.KEP-MSc-70-130-42)the“Opening Foundation of Shandong Provincial Key Laboratory of Laser Technology and Application”.
文摘Niobium telluride(NbTe_(2)),an emerging transition metal dichalcogenide material,has been theoretically predicted to have nonlinear absorption properties and excellent optical response.However,only a few studies of the utilization of NbTe_(2)in ultrafast photonics have been reported.In this work,a NbTe_(2)-based saturable absorber(SA)was applied in an erbium-doped fiber as a mode-locked device,and a vector soliton based on NbTe_(2)was obtained for the first time.NbTe_(2)-PVA film SA was successfully prepared by the liquid-phase exfoliation and spin coating methods,with a modulation depth of up to 10.87%.The nonlinear absorption coefficient of NbTe_(2)-based SA film tested through the open-aperture Z-scan laser measurement is 0.62×10^(−11) m/W.A conventional soliton with a pulse duration of 858 fs was generated using NbTe_(2)-based SA,which was demonstrated to be a kind of polarization-locked vector soliton in further investigation.Our experimental results reveal the nonlinear optical properties of NbTe_(2)and broaden its applications in ultrafast photonic devices.
基金Project supported by the National Natural Science Foundation of China(Nos.11904213 and 11747149)the Shandong Provincial Natural Science Foundation(Nos.ZR2018QF006 and ZR2019MF029)+1 种基金the China Postdoctoral Science Foundation(No.2016M602177)the Opening Foundation of Shandong Provincial Key Laboratory of Laser Technology and Application。
文摘In this study,titanium disulfide(TiS_(2))polyvinyl alcohol(PVA)film-type saturable absorber(SA)is synthesized with a modulation depth of 5.08%and a saturable intensity of 10.62 MW/cm^(2) by liquid-phase exfoliation and spin-coating methods.Since TiS2-based SA has a strong nonlinear saturable absorption property,two types of optical soliton were observed in a mode-locked Er-doped fiber laser.When the pump power was raised to 67.3 mW,a conventional mode-locked pulse train with a repetition rate of 1.716 MHz and a pulse width of 6.57 ps was generated,and the output spectrum centered at 1556.98 nm and 0.466 nm spectral width with obvious Kelly sidebands was obtained.Another type of mode-locked pulse train with the maximum output power of 3.92 mW and pulse energy of 2.28 nJ at the pump power of 517.2 mW was achieved when the polarization controllers were adjusted.Since TiS2-based SA has excellent nonlinear saturable absorption characteristics,broad applications in ultrafast photonic are expected.
基金Project supported by the National Natural Science Foundation of China(Nos.61527815,31500800,61501426,61471342)the National Key Basic Research Plan(No.2014CB744600)+1 种基金the Beijing Science and Technology Plan(No.Z141100000214002)the Chinese Academy of Sciences’Key Project(No.KJZD-EW-L11-2)
文摘Facing the body's EEG(electroencephalograph, 0.5–100 Hz, 5–100 μV) and ECG's(electrocardiogram,〈 100 Hz, 0.01–5 mV) micro signal detection requirement, this paper develops a pervasive application micro signal detection ASIC chip with the chopping modulation/demodulation method. The chopper-stabilization circuit with the RRL(ripple reduction loop) circuit is to suppress the ripple voltage, which locates at the single-stage amplifier's outputting terminal. The single-stage chopping core's noise has been suppressed too, and it is beneficial for suppressing noises of post-circuit. The chopping core circuit uses the PFB(positive feedback loop) to increase the inputting resistance, and the NFB(negative feedback loop) to stabilize the 40 dB intermediate frequency gain. The cascaded switch-capacitor sample/hold circuit has been used for deleting spike noises caused by non-ideal MOS switches, and the VGA/BPF(voltage gain amplifier/band pass filter) circuit is used to tune the chopper system's gain/bandwidth digitally. Assisted with the designed novel dry-electrode, the real test result of the chopping amplifying circuit gives some critical parameters: 8.1 μW/channel, 0.8 μVrms(@band-widthD100 Hz), 4216–11220 times digitally tuning gain range, etc. The data capture system uses the NI CO's data capturing DAQmx interface,and the captured micro EEG/ECG's waves are real-time displayed with the PC-Labview. The proposed chopper system is a unified EEG/ECG signal's detection instrument and has a critical real application value.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11574184,11774207the Natural Science Foundation of Shandong Province under Grant No.ZR2016JL003Primary Research&Development Plan of Shandong Province under Grant No.2017GSF18108
文摘One major cause of Alzheimer’s disease(AD) is evidently due to the aggregation and deposition of amyloidβ peptides(Aβ) in the brain tissue of the patient. Preventing misfolding and self-aggregation of Aβ protein can reduce the formation of highly toxic polymer, which is important for the treatment of AD. Among them, the α-helix consisting of42 residues(Aβ42) is the main component of senile plaques in AD. In this paper, 500 ns accelerated molecular dynamics are performed at different temperatures(300 K, 350 K, 400 K, 450 K) to study of the effect of temperature-induced conformation changes of Aβ42 protein during the unfolding process respectively.