To explore the oxidation mechanism of wooden breast myofibrillar protein(WBMP),oxidative breast MP(OBMP)was obtained from different doses(3,10,and 20 mmol/L)of H2O2 oxidized normal breast MP(NBMP).The results showed t...To explore the oxidation mechanism of wooden breast myofibrillar protein(WBMP),oxidative breast MP(OBMP)was obtained from different doses(3,10,and 20 mmol/L)of H2O2 oxidized normal breast MP(NBMP).The results showed that the Zeta-potential,particle size,solubility,sulfhydryl,and carbonyl contents of OBMP-3(3 mmol/L,low-dose free radicals)and WBMP were similar.Fluorescence spectrum analysis showed that the oxidation of low-dose free radicals led to a significant increase in the surface hydrophobicity(from 214.03±10.03 to 393.50±10.33)and tryptophan fluorescence intensity(from 185.71 to 568.32).In addition,theα-helix content of WBMP decreased significantly from(37.46±1.15)%(NBMP)to(34.70±2.04)%,whileβ-sheet and random coil contents increased significantly(P<0.05)from(14.37±0.69)%and(22.24±0.78)%(NBMP)to(17.70±0.87)%and(25.20±1.47)%(WBMP).In summary,low-dose free radical oxidation attacks protein groups,inducing secondary and tertiary structural changes,leading to the formation of WBMP.This work will provide a theoretical basis at the molecular level for exploring the mechanism of functional degradation of WBMP.展开更多
基金supported by the Shandong Modern Agricultural Technology and Industry System(SDAIT-11-11)China Agricultural Research System(CARS-41-Z06)Natural Science Foundation of Shandong Province(ZR2022MC087).
文摘To explore the oxidation mechanism of wooden breast myofibrillar protein(WBMP),oxidative breast MP(OBMP)was obtained from different doses(3,10,and 20 mmol/L)of H2O2 oxidized normal breast MP(NBMP).The results showed that the Zeta-potential,particle size,solubility,sulfhydryl,and carbonyl contents of OBMP-3(3 mmol/L,low-dose free radicals)and WBMP were similar.Fluorescence spectrum analysis showed that the oxidation of low-dose free radicals led to a significant increase in the surface hydrophobicity(from 214.03±10.03 to 393.50±10.33)and tryptophan fluorescence intensity(from 185.71 to 568.32).In addition,theα-helix content of WBMP decreased significantly from(37.46±1.15)%(NBMP)to(34.70±2.04)%,whileβ-sheet and random coil contents increased significantly(P<0.05)from(14.37±0.69)%and(22.24±0.78)%(NBMP)to(17.70±0.87)%and(25.20±1.47)%(WBMP).In summary,low-dose free radical oxidation attacks protein groups,inducing secondary and tertiary structural changes,leading to the formation of WBMP.This work will provide a theoretical basis at the molecular level for exploring the mechanism of functional degradation of WBMP.