The leucine-rich repeat receptor kinase flagellin-sensing 2 gene(MdFLS2; Gene ID: MDP0000254112) was cloned from Royal Gala apple(Malus×domestica Borkh.). This gene contained a complete open reading frame of 3 47...The leucine-rich repeat receptor kinase flagellin-sensing 2 gene(MdFLS2; Gene ID: MDP0000254112) was cloned from Royal Gala apple(Malus×domestica Borkh.). This gene contained a complete open reading frame of 3 474 bp that encoded 1 158 amino acids. The phylogenetic tree indicated that Prunus persica FLS2 exhibited the highest sequence similarity to MdFLS2. The PlantCare database suggests that the promoter sequence of MdFLS2 contains several typical cis-acting elements, including ethylene-, gibberellin-, salicylic acid-, and drought-responsive elements. Quantitative real-time PCR analysis showed that MdFLS2 was widely expressed in the different tissues of the apple and most highly expressed in the leaves. Furthermore, MdFLS2 was significantly induced by the flagellin elicitor peptide flg22. Treatment of the apple seedling leaves with flg22 resulted in an increase in leaf callose levels with increased treatment duration. An increase in the production of Oalong with the expression of disease-related genes was also observed. An oxidative burst was detected in the treated seedlings, but not in the control seedlings, indicating that flg22 had stimulated the expression of the MdFLS2 gene and its downstream target genes. Furthermore, the ectopic expression of MdFLS2 complemented the function of the Arabidopsis fls2 mutant and conferred enhanced flg22 tolerance to the transgenic Arabidopsis, suggesting that MdFLS2 acts as a positive regulator in the response to pathogens in apple.展开更多
Plant cuticular wax is an important determinant factor of fruit quality. Cuticular wax can protect the fruit from UV radiation, drought, and disease and increase the storage period of fruit. In many species, CER gene ...Plant cuticular wax is an important determinant factor of fruit quality. Cuticular wax can protect the fruit from UV radiation, drought, and disease and increase the storage period of fruit. In many species, CER gene is associated with wax and can affect plant response to stress, but no characterization of CER gene and its family has been reported in apples. In this study, we identified 10 MdCER genes in Malus domestica based on the sequences of 10 CER genes in Arabidopsis thaliana. Three-dimensional structures were then defined, and root-mean-square deviation(RMSD)scoring matrixes were used to evaluate the matches. These 10 genes were divided into three classes using phylogenetic methods; namely,class I, II, and III. The predicted MdCER genes were distributed across 7 out of 17 chromosomes with different densities. Furthermore, the gene structures and motif compositions of the MdCER genes were analyzed. The quantitative real-time PCR results indicated that MdCER family genes were mainly expressed in the leaves and stems and rarely in the roots. Most of the MdCER members responded to salicylic acid and polyethylene glycol treatment, indicating that the MdCER family is associated with disease resistance(biotic) and abiotic stress.展开更多
基金supported by the National Natural Science Foundation of China(31601728 and 31430074)the Ministry of Education of China(IRT15R42)+1 种基金the Natural Science Foundation of Shandong Province,China(ZR2016CQ13 and SDAIT-06-03)the Young Scientists Funds of Shandong Agricultural University,China(564024 and 24024)
文摘The leucine-rich repeat receptor kinase flagellin-sensing 2 gene(MdFLS2; Gene ID: MDP0000254112) was cloned from Royal Gala apple(Malus×domestica Borkh.). This gene contained a complete open reading frame of 3 474 bp that encoded 1 158 amino acids. The phylogenetic tree indicated that Prunus persica FLS2 exhibited the highest sequence similarity to MdFLS2. The PlantCare database suggests that the promoter sequence of MdFLS2 contains several typical cis-acting elements, including ethylene-, gibberellin-, salicylic acid-, and drought-responsive elements. Quantitative real-time PCR analysis showed that MdFLS2 was widely expressed in the different tissues of the apple and most highly expressed in the leaves. Furthermore, MdFLS2 was significantly induced by the flagellin elicitor peptide flg22. Treatment of the apple seedling leaves with flg22 resulted in an increase in leaf callose levels with increased treatment duration. An increase in the production of Oalong with the expression of disease-related genes was also observed. An oxidative burst was detected in the treated seedlings, but not in the control seedlings, indicating that flg22 had stimulated the expression of the MdFLS2 gene and its downstream target genes. Furthermore, the ectopic expression of MdFLS2 complemented the function of the Arabidopsis fls2 mutant and conferred enhanced flg22 tolerance to the transgenic Arabidopsis, suggesting that MdFLS2 acts as a positive regulator in the response to pathogens in apple.
基金supported by the National Natural Science Foundation of China(31772275,31701894)the Natural Science Fund for Excellent Young Scholars of Shandong Province(ZR2018JL014)
文摘Plant cuticular wax is an important determinant factor of fruit quality. Cuticular wax can protect the fruit from UV radiation, drought, and disease and increase the storage period of fruit. In many species, CER gene is associated with wax and can affect plant response to stress, but no characterization of CER gene and its family has been reported in apples. In this study, we identified 10 MdCER genes in Malus domestica based on the sequences of 10 CER genes in Arabidopsis thaliana. Three-dimensional structures were then defined, and root-mean-square deviation(RMSD)scoring matrixes were used to evaluate the matches. These 10 genes were divided into three classes using phylogenetic methods; namely,class I, II, and III. The predicted MdCER genes were distributed across 7 out of 17 chromosomes with different densities. Furthermore, the gene structures and motif compositions of the MdCER genes were analyzed. The quantitative real-time PCR results indicated that MdCER family genes were mainly expressed in the leaves and stems and rarely in the roots. Most of the MdCER members responded to salicylic acid and polyethylene glycol treatment, indicating that the MdCER family is associated with disease resistance(biotic) and abiotic stress.