The closed-loop flight control system of fly by wire is generally adopted in modern air-craft.Based on the frequency-domain stability analysis,the aeroservoelastic model of closedloop aircraft is established,and aeros...The closed-loop flight control system of fly by wire is generally adopted in modern air-craft.Based on the frequency-domain stability analysis,the aeroservoelastic model of closedloop aircraft is established,and aeroservoelastic stability parameterized calculation of design improvement is conducted after the preliminary analysis.The design variables are mounted location of integrated sensors and damping coefficientsζ1,ζ2 of notch filter,with stability margin of the system as design objective.Results indicate that aeroservoelastic margin of the aircraft in certain states is insufficient.While the mounted location of integrated sensors is adjusted,the system stability can be improved to certain extent.It’s more appropriate to mount the integrated sensors in the overlapping field between the nodal lines of vertical and lateral bending for the fuselage.The system stability is also significantly improved by adding notch filter,both gain margin and phase margin increase when the real number pairζ1-ζ2 is located in the zone above the 45°diagonal ofζ1,ζ2 con-struction plane,and the farther theζ1-ζ2 is from the 45°diagonal,the stronger the system stability.Also the decrease in the gain peak of frequency response and the enhancement of relative stability of the system are achieved by the appropriateζ1-ζ2 of notch filter.展开更多
Based on the integrated design and airworthiness verification of civil aircraft system,this paper completes the simulation modeling and fault modeling of aircraft electrical system. The aircraft electrical system is c...Based on the integrated design and airworthiness verification of civil aircraft system,this paper completes the simulation modeling and fault modeling of aircraft electrical system. The aircraft electrical system is constructed in the form of dual generators and dual-channel power supply. The main power supply adopts the three-stage power generation system,the auxiliary power supply system uses the permanent magnet synchronous power generation system and a battery. The transmission and distribution system is responsible for the electrical power conversion and the logic control in the system fault-pattern. The simulation results show that the system is reasonable and effective,which provides a reference for the optimal design and control of the actual aircraft electrical system.展开更多
To reduce the damage of the pressurizing panel structure of a fuselage caused by an explosion at the“least risk bomb location”in an aircraft structure,a new pre-separation panel structure was designed to resist blas...To reduce the damage of the pressurizing panel structure of a fuselage caused by an explosion at the“least risk bomb location”in an aircraft structure,a new pre-separation panel structure was designed to resist blast loading.First,the dynamic strain response and morphology of impact damage of the new pre-separation panel were measured in an impact damage test.Second,the commercial software LS-DYNA was used to calculate the propagation of the blast shock wave,and the results were compared with empirical equations to verify the rationality of the numerical calculation method.Finally,the fluid–structure coupling method was used to calculate the damage process of the pre-separation panel structure under the impact of an explosion wave and an impact block.The calculated results were in good agreement with the test results,which showed the rationality of the calculation method and the model.The residual strength of the damaged pre-separation panel was significantly higher than that of the original damaged panel.The results show that the new pre-separation panel structure is reasonable and has certain significance for guiding the design of plenum chambers with strong resistance to implosion for aircraft fuselages.展开更多
The effects of TiB_(2) and Zr on the microstructure,aging response and mechanical properties of hot-extruded Al-Zn-Mg-Cu based materials were investigated and compared by multi-scale microstructure characterization te...The effects of TiB_(2) and Zr on the microstructure,aging response and mechanical properties of hot-extruded Al-Zn-Mg-Cu based materials were investigated and compared by multi-scale microstructure characterization techniques.The results showed that proper addition of TiB_(2) particles could refine grain size during solidification,promote dynamic recrystallization during extrusion,and inhibit grain growth during solution treatment.Meanwhile,Zr addition had minor influence on the grain refinement during solidification,but could effectively suppress recrystallization and grain growth compared with the Zr-free alloy.Furthermore,the TiB_(2) addition could simultaneously enhance the aging kinetics and peak-aged hardness of the materials.Comparatively,Zr addition could also improve the peak-aged hardness with minor effect on the aging kinetics of the materials.Finally,the quench sensitivity,elastic modulus and tensile properties of the materials were compared and studied.Specifically,the relationship between the microstructure and mechanical properties,and the strengthening mechanisms were discussed in detail.展开更多
Current design rationale (DR) systems have not demonstrated the value of the approach in practice since little attention is put to the evaluation method of DR knowledge. To systematize knowledge management process f...Current design rationale (DR) systems have not demonstrated the value of the approach in practice since little attention is put to the evaluation method of DR knowledge. To systematize knowledge management process for future computer-aided DR applications, a prerequisite is to provide the measure for the DR knowledge. In this paper, a new knowledge network evaluation method for DR management is presented. The method characterizes the DR knowledge value from four perspectives, namely, the design rationale structure scale, association knowledge and reasoning ability, degree of design justification support and degree of knowledge representation conciseness. The DR knowledge comprehensive value is also measured by the proposed method. To validate the proposed method, different style of DR knowledge network and the performance of the proposed measure are discussed. The evaluation method has been applied in two realistic design cases and compared with the structural measures. The research proposes the DR knowledge evaluation method which can provide object metric and selection basis for the DR knowledge reuse during the product design process. In addition, the method is proved to be more effective guidance and support for the application and management of DR knowledge.展开更多
Truss-core sandwich plates have received much attention in virtue of the high values of strength-to-weight and stiffness-to-weight as well as the great ability of impulseresistance recently. It is necessary to study t...Truss-core sandwich plates have received much attention in virtue of the high values of strength-to-weight and stiffness-to-weight as well as the great ability of impulseresistance recently. It is necessary to study the stability of sandwich panels under the influence of the thermal load. However, the sandwich plates are such complex threedimensional (3D) systems that direct analytical solutions do not exist, and the finite element method (FEM) cannot represent the relationship between structural parameters and mechanical properties well. In this paper, an equivalent homogeneous continuous plate is ideMized by obtaining the effective bending and transverse shear stiffness based on the characteristics of periodically distributed unit cells. The first order shear deformation theory for plates is used to derive the stability equation. The buckling temperature of a simply supported sandwich plate is given and verified by the FEM. The effect of related parameters on mechanical properties is investigated. The geometric parameters of the unit cell are optimized to attain the maximum buckling temperature. It is shown that the optimized sandwich plate can improve the resistance to thermal buckling significantly.展开更多
The relationship between stiffness distribution and aeroelastic performance for a beam-frame model and a3-D model is investigated based on aeroelastic optimization of global stiffness design for high-aspect-ratio wing...The relationship between stiffness distribution and aeroelastic performance for a beam-frame model and a3-D model is investigated based on aeroelastic optimization of global stiffness design for high-aspect-ratio wings.The sensitivity information of wing spanwise stiffness distribution with respect to the twist angle at wing tip,the vertical displacement at wing tip,and the flutter speed are obtained using a sensitivity method for both models.Then the relationship between stiffness distribution and aeroelastic performance is summarized to guide the design procedure.By using the genetic/sensitivity-based hybrid algorithm,an optimal solution satisfying the strength,aeroelastic and manufacturing constraints is obtained.It is found that the summarized guidance is well consistent with the optimal solution,thus providing a valuable design advice with efficiency.The study also shows that the aeroelastic-optimization-based global stiffness design procedure can obtain the optimal solution under multiple constraints with high efficiency and precision,thereby having a strong application value in engineering.展开更多
A novel yield criterion based on CPB06 considering anisotropic and tension-compression asymmetric behaviors of magnesium alloys was derived and proposed(called M_CPB06).This yield criterion can simultaneously predict ...A novel yield criterion based on CPB06 considering anisotropic and tension-compression asymmetric behaviors of magnesium alloys was derived and proposed(called M_CPB06).This yield criterion can simultaneously predict the yield stresses and the Lankford ratios at different angles(if any)under uniaxial tension,compression,equal-biaxial and equal-compression conditions.Then,in order to further describe the anisotropic strain-hardening characteristics of magnesium alloy,the proposed M_CPB06 criterion was further evolved to the M_CPB06ev model by expressing the parameters of the M_CPB06 model as functions of the plastic strain.As the model was developed,the stresses and Lankford ratios of AZ31B and ZK61M magnesium alloys at different angles under tensile,compressive and through-thickness compressive conditions were used to calibrate the M_CPB06/M_CPB06ev and the existing CPB06ex2 model.Calibration results reveal that compared with the CPB06ex2 yield criterion with equal quantity of coefficients,the M_CPB06 criterion exhibits certain advancement,and meanwhile the M_CPB06ev model can relatively accurately predict the change of the yield locus with increase of the plastic strain.Finally,the M_CPB06ev model was developed through UMAT in LS-DYNA.Finite element simulations using the subroutine were conducted on the specimens of different angles to the rolling direction under tension and compression.Simulation results were highly consistent with the experimental results,demonstrating a good reliability and accuracy of the developed subroutine.展开更多
In view of the reduction of hovering efficiency near high tension when a helicopter rotor hovers,a numerical simulation method of lifting rotor hovering aerodynamic characteristics based on leading edge droop is estab...In view of the reduction of hovering efficiency near high tension when a helicopter rotor hovers,a numerical simulation method of lifting rotor hovering aerodynamic characteristics based on leading edge droop is established in this paper. It is dominated by Reynolds average N-S equation in integral form. Firstly,VR-12 airfoil is taken as the research object,and the influence of leading edge droop angle on the aerodynamic characteristics of two-dimensional airfoil is studied. Secondly,the modified 7 A rotor is taken as the research object,and the effects of different leading edge droop angles at the position of blade r/R=0.75—1 on the aerodynamic characteristics in hover are explored. It is found that the leading edge droop can significantly improve the aerodynamic characteristics of two-dimensional airfoil and three-dimensional hovering rotor near high angle of attack,and can effectively inhibit the generation of stall vortex.展开更多
To improve the comfortability and safety of aircraft,the demand of rectangular submerged inlets(RSIs)with low resistance is proposed to increase the inlet flow rate of ram air. A theoretical model is built to numerica...To improve the comfortability and safety of aircraft,the demand of rectangular submerged inlets(RSIs)with low resistance is proposed to increase the inlet flow rate of ram air. A theoretical model is built to numerically analyze the effects of geometric parameters on the inlet mass flow rate of RSIs. The geometric parameters in question here encompass the aspect ratio of 2—4,the ramp angle of 6°—7°,the characteristic parameter of the throat of 0.20 —0.30,the ramp length of 939—1 337 mm,and the cone angle of 0° —3°. Simulation results demonstrate that the mass flow rate(MFR)is positively correlated with the aspect ratio,ramp angle,ramp length,and cone angle,and negatively correlated with characteristic parameter of the throat. Within the range of the geometric parameters considered,the RSI with the aspect ratio of 3,the ramp angle of 6°,the characteristic parameter of the throat of 0.20,the ramp length of 1 337 mm,and the cone angle of 3° obtains the largest MFR value of about 2.251 kg/s.展开更多
The airborne systems complied with the ARINC661 standard are called the A661 member system. The software for the system is referred to the A661 airborne software in the research. Theoretically,some critical technology...The airborne systems complied with the ARINC661 standard are called the A661 member system. The software for the system is referred to the A661 airborne software in the research. Theoretically,some critical technology of the A661 airborne software are analyzed in this paper and the research results have been utilized for the advanced civil aircraft in practice.展开更多
The aluminum matrix composites(AlB2+a-Al2O3)/Al were fabricated by in situ reaction synthesis from an Al-B2 O3 system. The reaction pathways, apparent activation energies and tensile properties were analyzed by using ...The aluminum matrix composites(AlB2+a-Al2O3)/Al were fabricated by in situ reaction synthesis from an Al-B2 O3 system. The reaction pathways, apparent activation energies and tensile properties were analyzed by using differential scanning calorimetry(DSC), X-ray diffraction(XRD), scanning electron microscopy(SEM), and equipped energy dispersive spectroscopy(EDS). The results showed that there are two-step reactions in the Al-B2 O3 system. The first-step is 15 Al+7 B2 O3→7 aAl2O3+AlB12+2 B and the second-step is 2 B+AlB12+6 Al→7 AlB2. Their corresponding apparent activation energies are 352 and 444 kJ/mol, respectively. The tensile strength and elongation rate of the composites are 190.5 MPa and 6.6%, respectively.Compared with ordinary aluminum base material, the performance is superior. There are many dimple and cracked a-Al2O3 reinforcements in tensile fracture surface layer.展开更多
Oscillatory failure cases(OFC)detection in the fly-by-wire(FBW)flight control system for civil aircraft is addressed in this paper.First,OFC is ranked four levels:Handling quality,static load,global structure fatigue ...Oscillatory failure cases(OFC)detection in the fly-by-wire(FBW)flight control system for civil aircraft is addressed in this paper.First,OFC is ranked four levels:Handling quality,static load,global structure fatigue and local fatigue,according to their respect impact on aircraft.Second,we present voting and comparing monitors based on un-similarity redundancy commands to detect OFC.Third,the associated performances,the thresholds and the counters of the monitors are calculated by the high fidelity nonlinear aircraft models.Finally,the monitors of OFC are verified by the Iron Bird Platform with real parameters of the flight control system.The results show that our approach can detect OFC rapidly.展开更多
As all-electric aircraft has many advantages,an aircraft nose wheel steering system would be developed to the all-electric direction.Concerning the control demand of the nose wheel steering system,based on the basic p...As all-electric aircraft has many advantages,an aircraft nose wheel steering system would be developed to the all-electric direction.Concerning the control demand of the nose wheel steering system,based on the basic principles of nose wheel steering system and the design technique of mechanotronics,an all-electric aircraft nose wheel steering system,composed of a nose wheel steering mechanism of two worm gear and a control servo system of fly-by-wire with both steering and anti-shimmy functions is designed to meet the demand for operation control in the nose wheel steering system.Then,based on the LMS-AMESim software,the simulation model of the system is established to simulate the dynamics for the verification of its steering function.The simulation results indicate that the nose wheel steering system is reasonable,and can meet the requirements of the general project.Furthermore,the prototypes of the steering mechanism and control system are studied to validate the design,and the steering test bench is prepared to test the designed system.The test results,such as steer angle,rotate speed of motor are analyzed in details and compared with the theoretical results.The analysis and comparison results show that the design is reasonable and the property of the prototype can achieve the design objectives.展开更多
The development of an innovative drilling system makes it necessary to model the material of extra-terrestrial soil , i.e.regolith or lunar soil.And then the drilling process is numerically simulated.Since real regoli...The development of an innovative drilling system makes it necessary to model the material of extra-terrestrial soil , i.e.regolith or lunar soil.And then the drilling process is numerically simulated.Since real regolith is very scarce and costly , sand properties are investigated by means of experiments and sand model is constructed with the capability of partly reflecting these properties.With the use of smooth particle hydrodynamics ( SPH ) method in LS-DYNA , data analysis and modeling process are presented to reach the following achievements :( 1 ) Develop ageneral model approach of sand using SPH method ;( 2 ) Compare SPH results with experimental data to validate it ;( 3 ) Adapt the sand model to lunar soil while fitting the simulation of dual-reciprocating drilling ( DRD ) process.展开更多
In nanoscale sliding contact,adhesion effects and adhesive force are predominant,and high friction force will be produced.Friction energy is mainly converted into heat,and the heat will make nanomaterials become soft ...In nanoscale sliding contact,adhesion effects and adhesive force are predominant,and high friction force will be produced.Friction energy is mainly converted into heat,and the heat will make nanomaterials become soft to affect friction behaviors,so it is important to investigate the friction and thermal properties of the nanoscale sliding contacts.A model of a nanoscale sliding contact between a rigid cylindrical tip and an FCC copper substrate is developed by molecular dynamics simulation.The thermal properties of the substrate and the friction behaviors are studied at different sliding velocities and different tip radii.The results show that at a low sliding velocity,the friction force fluctuation is mainly caused by material melting⁃solidification,while at a high sliding velocity the material melting is a main factor for the friction reduction.The average friction forces increase at initial phase and then decrease with increasing sliding velocity,and the average temperature of the substrate increases as sliding velocity increases.Increasing tip radius significantly increases the temperature,while the coupled effects of tip radius and temperature rise make friction force increase slightly.展开更多
This paper introduces the approaches of using Model-based System Engineering(MBSE) for the functional analysis of civil aircraft and describes the details of a Rhapsody model for ground deceleration scenario. Describe...This paper introduces the approaches of using Model-based System Engineering(MBSE) for the functional analysis of civil aircraft and describes the details of a Rhapsody model for ground deceleration scenario. Describe system by functional modeling,to instruct requirement analysis,function analysis of black-box and white-box in large-scale civil aircraft,exploring practice of MBSE in highly complex system of civil aircraft.展开更多
Commercial aircraft family design can reduce development costs, shorten development cycles, and expand the market coverage of aircraft. Commercial aircraft family development has become one of the most important featu...Commercial aircraft family design can reduce development costs, shorten development cycles, and expand the market coverage of aircraft. Commercial aircraft family development has become one of the most important features of modern aircraft design. This paper explores the effects of commonality on different aircraft models in a commercial aircraft family. The existing product commonality indexes are summarized and their limitations in the application to aircraft design are discussed. Then a new component commonality index is proposed based on the component decomposition structure. A model for calculating the aircraft program value is established,which considers development costs, manufacturing costs, sale price, operation costs and residual costs. The effects of aircraft commonality on time and economic costs of both development and manufacturing, and on sale price, are analyzed and quantified. The commonality evaluation strategy is obtained, which features comprehensive consideration of the aircraft program value and time costs. The break-even analysis of aircraft is proceeded on the basis of costs and price data. By using a real option method, the strategy considers the uncertainty of the aircraft program and the flexibility of the manufacturer. This strategy proves to be rational and applicable to aircraft design based on the calculation of three examples and the analysis of parameter sensitivity.展开更多
Heterogeneous reaction of mineral aerosols and atmospheric polluting gases play an important role in atmospheric chemistry.In this study,the reactions of NO_(2) with or without SO_(2) mixture gas on the surface of α-...Heterogeneous reaction of mineral aerosols and atmospheric polluting gases play an important role in atmospheric chemistry.In this study,the reactions of NO_(2) with or without SO_(2) mixture gas on the surface of α-Fe_(2)O_(3) particles under dry conditions were studied.The effects of sodium dodecyl sulfate(SDS)and the heterogeneous reaction under both dark and UV irradiation conditions were investigated.The infrared spectrum analyzed by the two-dimensional correlation spectroscopy(2D-COS)was used to obtain the products formation sequences.The results showed that UV irradiation can promote the production of nitrate.The 2D-COS analysis indicated SDS changed the sequence order of nitrate and nitrite species during reactions.In oxidation conditions,the final product of heterogeneous reaction of NO_(2) and α-Fe_(2)O_(3) was monodentate nitrate.Only the heterogenous reaction of NO_(2) and α-Fe_(2)O_(3) containing SDS(FOS)without UV light,the final product was bidentate nitrate.SDS was the catalysis agent supply and photoresist to the system.With surface active compounds,the environmental lifetime of heterogeneous reactions between trace gases and aerosols extends.Surfactants,ultraviolet light,and the types of gases involved in the reaction all have complex effects on the aerosol aging process.This study provided a reference for subsequent heterogeneous reaction studies and the formation of aerosols.展开更多
With the development of computational power and numerical algorithms,computational fluid dynamics(CFD) has become an important strategy for the design of aircraft,which significantly reduces the reliance on wind-tunne...With the development of computational power and numerical algorithms,computational fluid dynamics(CFD) has become an important strategy for the design of aircraft,which significantly reduces the reliance on wind-tunnel and flight tests.In this paper,we conducted a numerical investigation on the flow past a full commercial aircraft at Mach number 0.2 and 14 degrees angle of attack by means of Reynolds-averaged Navier-Stokes(RANS),detached-eddy simulation(DES) and our newly developed constrained large-eddy simulation(CLES).The objective of this paper is to study the capability of these models in simulating turbulent flows.To our knowledge,this is the first large-eddy simulation method for full commercial aircraft simulation.The results show that the CLES can predict the mean statistical quantities well,qualitatively consistent with traditional methods,and can capture more small-scale structures near the surface of the aircraft with massive separations.Our study demonstrates that CLES is a promising alternative for simulating real engineering turbulent flows.展开更多
文摘The closed-loop flight control system of fly by wire is generally adopted in modern air-craft.Based on the frequency-domain stability analysis,the aeroservoelastic model of closedloop aircraft is established,and aeroservoelastic stability parameterized calculation of design improvement is conducted after the preliminary analysis.The design variables are mounted location of integrated sensors and damping coefficientsζ1,ζ2 of notch filter,with stability margin of the system as design objective.Results indicate that aeroservoelastic margin of the aircraft in certain states is insufficient.While the mounted location of integrated sensors is adjusted,the system stability can be improved to certain extent.It’s more appropriate to mount the integrated sensors in the overlapping field between the nodal lines of vertical and lateral bending for the fuselage.The system stability is also significantly improved by adding notch filter,both gain margin and phase margin increase when the real number pairζ1-ζ2 is located in the zone above the 45°diagonal ofζ1,ζ2 con-struction plane,and the farther theζ1-ζ2 is from the 45°diagonal,the stronger the system stability.Also the decrease in the gain peak of frequency response and the enhancement of relative stability of the system are achieved by the appropriateζ1-ζ2 of notch filter.
基金supported by the Key Research and Development Program of Shaanxi Province(2018GY-185)
文摘Based on the integrated design and airworthiness verification of civil aircraft system,this paper completes the simulation modeling and fault modeling of aircraft electrical system. The aircraft electrical system is constructed in the form of dual generators and dual-channel power supply. The main power supply adopts the three-stage power generation system,the auxiliary power supply system uses the permanent magnet synchronous power generation system and a battery. The transmission and distribution system is responsible for the electrical power conversion and the logic control in the system fault-pattern. The simulation results show that the system is reasonable and effective,which provides a reference for the optimal design and control of the actual aircraft electrical system.
文摘To reduce the damage of the pressurizing panel structure of a fuselage caused by an explosion at the“least risk bomb location”in an aircraft structure,a new pre-separation panel structure was designed to resist blast loading.First,the dynamic strain response and morphology of impact damage of the new pre-separation panel were measured in an impact damage test.Second,the commercial software LS-DYNA was used to calculate the propagation of the blast shock wave,and the results were compared with empirical equations to verify the rationality of the numerical calculation method.Finally,the fluid–structure coupling method was used to calculate the damage process of the pre-separation panel structure under the impact of an explosion wave and an impact block.The calculated results were in good agreement with the test results,which showed the rationality of the calculation method and the model.The residual strength of the damaged pre-separation panel was significantly higher than that of the original damaged panel.The results show that the new pre-separation panel structure is reasonable and has certain significance for guiding the design of plenum chambers with strong resistance to implosion for aircraft fuselages.
基金financial supports from the China Postdoctoral Science Foundation(Nos.2019TQ0193,2019M661497)the National Key Research and Development Program of China(No.2018YFB1106302)+1 种基金the National Natural Science Foundation of China(No.51821001)the Anhui Provincial Engineering Research Center of Aluminum Matrix Composites,China(No.2017WAMC002)。
文摘The effects of TiB_(2) and Zr on the microstructure,aging response and mechanical properties of hot-extruded Al-Zn-Mg-Cu based materials were investigated and compared by multi-scale microstructure characterization techniques.The results showed that proper addition of TiB_(2) particles could refine grain size during solidification,promote dynamic recrystallization during extrusion,and inhibit grain growth during solution treatment.Meanwhile,Zr addition had minor influence on the grain refinement during solidification,but could effectively suppress recrystallization and grain growth compared with the Zr-free alloy.Furthermore,the TiB_(2) addition could simultaneously enhance the aging kinetics and peak-aged hardness of the materials.Comparatively,Zr addition could also improve the peak-aged hardness with minor effect on the aging kinetics of the materials.Finally,the quench sensitivity,elastic modulus and tensile properties of the materials were compared and studied.Specifically,the relationship between the microstructure and mechanical properties,and the strengthening mechanisms were discussed in detail.
基金Supported by National Natural Science Foundation of China(Grant Nos.51175019,61104169,51205321)
文摘Current design rationale (DR) systems have not demonstrated the value of the approach in practice since little attention is put to the evaluation method of DR knowledge. To systematize knowledge management process for future computer-aided DR applications, a prerequisite is to provide the measure for the DR knowledge. In this paper, a new knowledge network evaluation method for DR management is presented. The method characterizes the DR knowledge value from four perspectives, namely, the design rationale structure scale, association knowledge and reasoning ability, degree of design justification support and degree of knowledge representation conciseness. The DR knowledge comprehensive value is also measured by the proposed method. To validate the proposed method, different style of DR knowledge network and the performance of the proposed measure are discussed. The evaluation method has been applied in two realistic design cases and compared with the structural measures. The research proposes the DR knowledge evaluation method which can provide object metric and selection basis for the DR knowledge reuse during the product design process. In addition, the method is proved to be more effective guidance and support for the application and management of DR knowledge.
基金Project supported by the National Natural Science Foundation of China(No.91116008)
文摘Truss-core sandwich plates have received much attention in virtue of the high values of strength-to-weight and stiffness-to-weight as well as the great ability of impulseresistance recently. It is necessary to study the stability of sandwich panels under the influence of the thermal load. However, the sandwich plates are such complex threedimensional (3D) systems that direct analytical solutions do not exist, and the finite element method (FEM) cannot represent the relationship between structural parameters and mechanical properties well. In this paper, an equivalent homogeneous continuous plate is ideMized by obtaining the effective bending and transverse shear stiffness based on the characteristics of periodically distributed unit cells. The first order shear deformation theory for plates is used to derive the stability equation. The buckling temperature of a simply supported sandwich plate is given and verified by the FEM. The effect of related parameters on mechanical properties is investigated. The geometric parameters of the unit cell are optimized to attain the maximum buckling temperature. It is shown that the optimized sandwich plate can improve the resistance to thermal buckling significantly.
基金supported by the National Natural Science Foundation of China (Nos.11302011,11372023, 11172025)
文摘The relationship between stiffness distribution and aeroelastic performance for a beam-frame model and a3-D model is investigated based on aeroelastic optimization of global stiffness design for high-aspect-ratio wings.The sensitivity information of wing spanwise stiffness distribution with respect to the twist angle at wing tip,the vertical displacement at wing tip,and the flutter speed are obtained using a sensitivity method for both models.Then the relationship between stiffness distribution and aeroelastic performance is summarized to guide the design procedure.By using the genetic/sensitivity-based hybrid algorithm,an optimal solution satisfying the strength,aeroelastic and manufacturing constraints is obtained.It is found that the summarized guidance is well consistent with the optimal solution,thus providing a valuable design advice with efficiency.The study also shows that the aeroelastic-optimization-based global stiffness design procedure can obtain the optimal solution under multiple constraints with high efficiency and precision,thereby having a strong application value in engineering.
基金Beijing Natural Science Foundation(No.L201010)the United Fund of Ministry of Education for Equipment Pre-Research(Grant No.6141A02033121)National Natural Science Foundation of China(Grant No.51975041).
文摘A novel yield criterion based on CPB06 considering anisotropic and tension-compression asymmetric behaviors of magnesium alloys was derived and proposed(called M_CPB06).This yield criterion can simultaneously predict the yield stresses and the Lankford ratios at different angles(if any)under uniaxial tension,compression,equal-biaxial and equal-compression conditions.Then,in order to further describe the anisotropic strain-hardening characteristics of magnesium alloy,the proposed M_CPB06 criterion was further evolved to the M_CPB06ev model by expressing the parameters of the M_CPB06 model as functions of the plastic strain.As the model was developed,the stresses and Lankford ratios of AZ31B and ZK61M magnesium alloys at different angles under tensile,compressive and through-thickness compressive conditions were used to calibrate the M_CPB06/M_CPB06ev and the existing CPB06ex2 model.Calibration results reveal that compared with the CPB06ex2 yield criterion with equal quantity of coefficients,the M_CPB06 criterion exhibits certain advancement,and meanwhile the M_CPB06ev model can relatively accurately predict the change of the yield locus with increase of the plastic strain.Finally,the M_CPB06ev model was developed through UMAT in LS-DYNA.Finite element simulations using the subroutine were conducted on the specimens of different angles to the rolling direction under tension and compression.Simulation results were highly consistent with the experimental results,demonstrating a good reliability and accuracy of the developed subroutine.
基金supported by the National Natural Science Foundation of China(No.11972190)the Aeronautical Science Foundation of China(No. 20185752)
文摘In view of the reduction of hovering efficiency near high tension when a helicopter rotor hovers,a numerical simulation method of lifting rotor hovering aerodynamic characteristics based on leading edge droop is established in this paper. It is dominated by Reynolds average N-S equation in integral form. Firstly,VR-12 airfoil is taken as the research object,and the influence of leading edge droop angle on the aerodynamic characteristics of two-dimensional airfoil is studied. Secondly,the modified 7 A rotor is taken as the research object,and the effects of different leading edge droop angles at the position of blade r/R=0.75—1 on the aerodynamic characteristics in hover are explored. It is found that the leading edge droop can significantly improve the aerodynamic characteristics of two-dimensional airfoil and three-dimensional hovering rotor near high angle of attack,and can effectively inhibit the generation of stall vortex.
基金supported by the Open Project of Key Laboratory of Aircraft Environment Control and Life Support,MIIT(No.KLAECLS-E-202001)。
文摘To improve the comfortability and safety of aircraft,the demand of rectangular submerged inlets(RSIs)with low resistance is proposed to increase the inlet flow rate of ram air. A theoretical model is built to numerically analyze the effects of geometric parameters on the inlet mass flow rate of RSIs. The geometric parameters in question here encompass the aspect ratio of 2—4,the ramp angle of 6°—7°,the characteristic parameter of the throat of 0.20 —0.30,the ramp length of 939—1 337 mm,and the cone angle of 0° —3°. Simulation results demonstrate that the mass flow rate(MFR)is positively correlated with the aspect ratio,ramp angle,ramp length,and cone angle,and negatively correlated with characteristic parameter of the throat. Within the range of the geometric parameters considered,the RSI with the aspect ratio of 3,the ramp angle of 6°,the characteristic parameter of the throat of 0.20,the ramp length of 1 337 mm,and the cone angle of 3° obtains the largest MFR value of about 2.251 kg/s.
文摘The airborne systems complied with the ARINC661 standard are called the A661 member system. The software for the system is referred to the A661 airborne software in the research. Theoretically,some critical technology of the A661 airborne software are analyzed in this paper and the research results have been utilized for the advanced civil aircraft in practice.
基金Supported by the National Natural Science Foundation of China(Nos.51571118 and 51371098)Natural Science Foundation of Jiangsu Province(No.BK20141308)
文摘The aluminum matrix composites(AlB2+a-Al2O3)/Al were fabricated by in situ reaction synthesis from an Al-B2 O3 system. The reaction pathways, apparent activation energies and tensile properties were analyzed by using differential scanning calorimetry(DSC), X-ray diffraction(XRD), scanning electron microscopy(SEM), and equipped energy dispersive spectroscopy(EDS). The results showed that there are two-step reactions in the Al-B2 O3 system. The first-step is 15 Al+7 B2 O3→7 aAl2O3+AlB12+2 B and the second-step is 2 B+AlB12+6 Al→7 AlB2. Their corresponding apparent activation energies are 352 and 444 kJ/mol, respectively. The tensile strength and elongation rate of the composites are 190.5 MPa and 6.6%, respectively.Compared with ordinary aluminum base material, the performance is superior. There are many dimple and cracked a-Al2O3 reinforcements in tensile fracture surface layer.
文摘Oscillatory failure cases(OFC)detection in the fly-by-wire(FBW)flight control system for civil aircraft is addressed in this paper.First,OFC is ranked four levels:Handling quality,static load,global structure fatigue and local fatigue,according to their respect impact on aircraft.Second,we present voting and comparing monitors based on un-similarity redundancy commands to detect OFC.Third,the associated performances,the thresholds and the counters of the monitors are calculated by the high fidelity nonlinear aircraft models.Finally,the monitors of OFC are verified by the Iron Bird Platform with real parameters of the flight control system.The results show that our approach can detect OFC rapidly.
基金supported partly by the Aeronautical Science Foundation of China(No.20142852025)
文摘As all-electric aircraft has many advantages,an aircraft nose wheel steering system would be developed to the all-electric direction.Concerning the control demand of the nose wheel steering system,based on the basic principles of nose wheel steering system and the design technique of mechanotronics,an all-electric aircraft nose wheel steering system,composed of a nose wheel steering mechanism of two worm gear and a control servo system of fly-by-wire with both steering and anti-shimmy functions is designed to meet the demand for operation control in the nose wheel steering system.Then,based on the LMS-AMESim software,the simulation model of the system is established to simulate the dynamics for the verification of its steering function.The simulation results indicate that the nose wheel steering system is reasonable,and can meet the requirements of the general project.Furthermore,the prototypes of the steering mechanism and control system are studied to validate the design,and the steering test bench is prepared to test the designed system.The test results,such as steer angle,rotate speed of motor are analyzed in details and compared with the theoretical results.The analysis and comparison results show that the design is reasonable and the property of the prototype can achieve the design objectives.
文摘The development of an innovative drilling system makes it necessary to model the material of extra-terrestrial soil , i.e.regolith or lunar soil.And then the drilling process is numerically simulated.Since real regolith is very scarce and costly , sand properties are investigated by means of experiments and sand model is constructed with the capability of partly reflecting these properties.With the use of smooth particle hydrodynamics ( SPH ) method in LS-DYNA , data analysis and modeling process are presented to reach the following achievements :( 1 ) Develop ageneral model approach of sand using SPH method ;( 2 ) Compare SPH results with experimental data to validate it ;( 3 ) Adapt the sand model to lunar soil while fitting the simulation of dual-reciprocating drilling ( DRD ) process.
基金Sponsored by the National Natural Science Foundation of China(Grant Nos.52075444,51675429)the Key Project of National Natural Science Foundation of China(Grant No.51535009)the Fundamental Research Funds for the Central Universities(Grant No.31020190503004).
文摘In nanoscale sliding contact,adhesion effects and adhesive force are predominant,and high friction force will be produced.Friction energy is mainly converted into heat,and the heat will make nanomaterials become soft to affect friction behaviors,so it is important to investigate the friction and thermal properties of the nanoscale sliding contacts.A model of a nanoscale sliding contact between a rigid cylindrical tip and an FCC copper substrate is developed by molecular dynamics simulation.The thermal properties of the substrate and the friction behaviors are studied at different sliding velocities and different tip radii.The results show that at a low sliding velocity,the friction force fluctuation is mainly caused by material melting⁃solidification,while at a high sliding velocity the material melting is a main factor for the friction reduction.The average friction forces increase at initial phase and then decrease with increasing sliding velocity,and the average temperature of the substrate increases as sliding velocity increases.Increasing tip radius significantly increases the temperature,while the coupled effects of tip radius and temperature rise make friction force increase slightly.
文摘This paper introduces the approaches of using Model-based System Engineering(MBSE) for the functional analysis of civil aircraft and describes the details of a Rhapsody model for ground deceleration scenario. Describe system by functional modeling,to instruct requirement analysis,function analysis of black-box and white-box in large-scale civil aircraft,exploring practice of MBSE in highly complex system of civil aircraft.
文摘Commercial aircraft family design can reduce development costs, shorten development cycles, and expand the market coverage of aircraft. Commercial aircraft family development has become one of the most important features of modern aircraft design. This paper explores the effects of commonality on different aircraft models in a commercial aircraft family. The existing product commonality indexes are summarized and their limitations in the application to aircraft design are discussed. Then a new component commonality index is proposed based on the component decomposition structure. A model for calculating the aircraft program value is established,which considers development costs, manufacturing costs, sale price, operation costs and residual costs. The effects of aircraft commonality on time and economic costs of both development and manufacturing, and on sale price, are analyzed and quantified. The commonality evaluation strategy is obtained, which features comprehensive consideration of the aircraft program value and time costs. The break-even analysis of aircraft is proceeded on the basis of costs and price data. By using a real option method, the strategy considers the uncertainty of the aircraft program and the flexibility of the manufacturer. This strategy proves to be rational and applicable to aircraft design based on the calculation of three examples and the analysis of parameter sensitivity.
基金supported by the National Natural Science Foundation of China(Nos.41807304 and 22206130)。
文摘Heterogeneous reaction of mineral aerosols and atmospheric polluting gases play an important role in atmospheric chemistry.In this study,the reactions of NO_(2) with or without SO_(2) mixture gas on the surface of α-Fe_(2)O_(3) particles under dry conditions were studied.The effects of sodium dodecyl sulfate(SDS)and the heterogeneous reaction under both dark and UV irradiation conditions were investigated.The infrared spectrum analyzed by the two-dimensional correlation spectroscopy(2D-COS)was used to obtain the products formation sequences.The results showed that UV irradiation can promote the production of nitrate.The 2D-COS analysis indicated SDS changed the sequence order of nitrate and nitrite species during reactions.In oxidation conditions,the final product of heterogeneous reaction of NO_(2) and α-Fe_(2)O_(3) was monodentate nitrate.Only the heterogenous reaction of NO_(2) and α-Fe_(2)O_(3) containing SDS(FOS)without UV light,the final product was bidentate nitrate.SDS was the catalysis agent supply and photoresist to the system.With surface active compounds,the environmental lifetime of heterogeneous reactions between trace gases and aerosols extends.Surfactants,ultraviolet light,and the types of gases involved in the reaction all have complex effects on the aerosol aging process.This study provided a reference for subsequent heterogeneous reaction studies and the formation of aerosols.
基金supported by the National Natural Science Foundation of China(Grant Nos.10921202 and 91130001)the National Basic Research Program of China(Grant No. 2009CB724101)
文摘With the development of computational power and numerical algorithms,computational fluid dynamics(CFD) has become an important strategy for the design of aircraft,which significantly reduces the reliance on wind-tunnel and flight tests.In this paper,we conducted a numerical investigation on the flow past a full commercial aircraft at Mach number 0.2 and 14 degrees angle of attack by means of Reynolds-averaged Navier-Stokes(RANS),detached-eddy simulation(DES) and our newly developed constrained large-eddy simulation(CLES).The objective of this paper is to study the capability of these models in simulating turbulent flows.To our knowledge,this is the first large-eddy simulation method for full commercial aircraft simulation.The results show that the CLES can predict the mean statistical quantities well,qualitatively consistent with traditional methods,and can capture more small-scale structures near the surface of the aircraft with massive separations.Our study demonstrates that CLES is a promising alternative for simulating real engineering turbulent flows.