Robots are finding increasing application in aircraft composite structure assembly due to their flexibility and the growing demand of aircraft manufacturers for high production rates.The contact force of the composite...Robots are finding increasing application in aircraft composite structure assembly due to their flexibility and the growing demand of aircraft manufacturers for high production rates.The contact force of the composite frame in a robotic assembly of the aircraft composite fuselage panel can hardly be controlled due to the multi-surface variable contact stiffness caused by compliance and complex shape with multiple mating surfaces.The paper proposes a robotic assembly system for the aircraft composite fuselage frame with a compliant contact force control strategy using the Gaussian process surrogate model.First,a robotic assembly system is introduced,and the global coordinate system transformation model is built.Then,a compliant force control architecture is designed to generate the desired output force.Subsequently,a Gaussian process surrogate model with uncertainties is utilized to model the complicated relationship between the robot’s output force and the normal contact force acting on the mating surface of the composite frame.Furthermore,an optimal contact force control strategy is implemented to improve the contact quality.Finally,an experiment demonstrates that the proposed methodology can ensure that the contact force on each surface is within the limit of the engineering specification and uniformly distributed,improving the quality compared to the traditional assembly process.展开更多
Prepreg properties including cure kinetics, cure shrinkage, and coefficient of thermal expansion were analyzed. A simulation method based on "element birth and death" method of Finite element analysis (FEA) was pr...Prepreg properties including cure kinetics, cure shrinkage, and coefficient of thermal expansion were analyzed. A simulation method based on "element birth and death" method of Finite element analysis (FEA) was presented to simulate the cutting process and predict the machining deformation for composite laminates and stiffened panels. The comparisons between the simulation results and experimental data showed good agreement. It is found that residual stresses are the main source of machining deformation for composites and machining deformation is expected to happen only if there are stress gradients along the machining direction. There is no machining deformation for composite laminates due to its uniform stresses distribution in plane, while machining deformation can be observed obviously for T-shape stiffened composite panels. Attention should be paid to machining deformation to avoid the mismatch during assembly.展开更多
Due to the relatively high density of conventional non-sintered lightweight aggregate(NLA),a low-density core-shell NLA(CNLA) was developed.Moreover,two types of porous lightweight aggregate concrete (PLAC) for wallbo...Due to the relatively high density of conventional non-sintered lightweight aggregate(NLA),a low-density core-shell NLA(CNLA) was developed.Moreover,two types of porous lightweight aggregate concrete (PLAC) for wallboard were designed,using both foam and lightweight aggregates.The effects of LA on lightweight concrete workability,compressive strength,dry shrinkage,and thermal conductivity were studied and compared.The bulk density of CNLA can be lowered to 500 kg/m^(3),and its cylinder crushing strength is 1.6 MPa.PLACs also have compressive strengths ranging from 7.8 to 11.8 MPa,as well as thermal conductivity coefficients ranging from 0.193 to 0.219 W/(m·K^(-1)).The CNLA bonds better to the paste matrix at the interface transition zone,and CNLA concrete has a superior pore structure than SLA concrete,resulting in a 20% improvement in fluidity,a 10% increase in strength,a 6% reduction in heat conductivity,and an 11% decrease in drying shrinkage.展开更多
Residual stresses can have a strong effect on the usability of machined parts,and the X-ray diffraction(XRD)measuring equipment,which is commonly used to measure residual stresses,is very expensive.This paper presents...Residual stresses can have a strong effect on the usability of machined parts,and the X-ray diffraction(XRD)measuring equipment,which is commonly used to measure residual stresses,is very expensive.This paper presents a method of measuring the residual stresses induced by boring in the internal surface of a tube with much cheaper equipment.The method,called the strain-based method is mainly based on the strains measured on the external surface of the tube.It is proposed on the basis of the very long tube assumption.The finite element method(FEM)analysis is thus used to validate the length of the tube.Guided by the FEM results,an appropriate length of the tube is chosen,and the residual stresses are obtained from both the strain-based method and the XRD method.Stress profiles obtained from both two methods are compared.The comparison result indicates that the profiles of the two methods agree well with each other.Therefore,it can be concluded that the accuracy of the strain-based method is high enough,and it can be applied to residual stress measurement in practice.展开更多
The single crystal of nickel-base super alloy is widely used for making turbine blades.The microstructure of the alloy,especially the deviation of preferred orientation of single crystal,possesses the most important e...The single crystal of nickel-base super alloy is widely used for making turbine blades.The microstructure of the alloy,especially the deviation of preferred orientation of single crystal,possesses the most important effects on the mechanical properties of the blades.In this study,the single crystal ingot and blade of DZ417G alloy are prepared by means of the spiral crystal selector as well as the directional solidification method,and the effect of the parameters(i.e.,the shape of samples,the withdrawal rate)and the structure of the spiral crystal selector on the formation of single crystal and the crystal orientation are investigated.This method can prepare not only the single crystal ingot with simple shape but also the single crystal blades with the complex shape,the simple with rod-shape can form the single crystal easily with a relatively fast withdrawal rate,but the blade with complex shape requires much slower withdrawal rate to form single crystal.The length of the crystal selector almost has no effect on the crystal orientation.However,the angle of selector plays an obvious role on the orientation;the selector with a smaller angle can effectively reduce the deviation of preferred orientation;the appropriate angle of selector to obtain optimal orientation is found to be around30°and the deviation of preferred orientation is about30°for this selector.展开更多
The annealing tests heated by pulsed current(PC)or furnace for AZ31B magnesium sheets were carried out,and the effects of PC on the microstructure and dislocation density of the alloy were analyzed.The results show th...The annealing tests heated by pulsed current(PC)or furnace for AZ31B magnesium sheets were carried out,and the effects of PC on the microstructure and dislocation density of the alloy were analyzed.The results show that PC strengthens the migration of boundaries,and then the twin grains,most of which distribute in the coarse grains,“spheroidize”to equiaxed grains,thus separating the coarse grains and refining the microstructure.This process homogenizes the initial microstructure and eliminate the typically lamellar twin grains.Moreover,PC also strengthens the dislocation annihilation.When the specimens were annealed by PC at 300℃for 4 min,the dislocation density was even lower than that annealed by furnaces at 400℃for 3 h before deformation.Furthermore,dislocation annihilation is enhanced with the increase of peak current density and the decrease of pulsed frequency.展开更多
The DLBSW( dual laser-beam bilateral synchronous welding) technology of T-type joint has been widely used for the connection of skins and stringers in airplane industry. To understand the thermodynamic and mechanica...The DLBSW( dual laser-beam bilateral synchronous welding) technology of T-type joint has been widely used for the connection of skins and stringers in airplane industry. To understand the thermodynamic and mechanical behavior of this process, it is necessary to establish a reasonable heat source model. Two different surface-body combination heat source models are adopted in this paper. Both models use the Gaussian surface heat source model and one is combined with the cone body heat source model and the other is combined with Gaussian rotator body heat source model. The simulation results of these two different models are investigated. And the temperature field results of DLBSW process for T-joint with two different heat sources are discussed. It is indicated that the combination heat source model is effective to simulate the DLBSW process and the current study is useful for more profound research in this field.展开更多
Composites are widely applied to the manufacturing of aircraft in aviation. Forming of large-scale composite component in aircraft requires the corresponding mold with precise size. The laser-MIG hybrid welding has a ...Composites are widely applied to the manufacturing of aircraft in aviation. Forming of large-scale composite component in aircraft requires the corresponding mold with precise size. The laser-MIG hybrid welding has a significant advantage in the manufacturing of Invar mold for aircraft composites. This paper mainly introduces the application of the laser-MIG hybrid welding,and the distribution of thermal field and flow field on the Invar alloy laser-MIG hybrid three-layer welding is analyzed and discussed specifically.展开更多
Quantitative research on the heat affected zone ( HAZ) o f weave bead welding ( WBW) joint fo r Invar alloy is carried out in this paper. Based on the morphology and related data analysis of the weld se...Quantitative research on the heat affected zone ( HAZ) o f weave bead welding ( WBW) joint fo r Invar alloy is carried out in this paper. Based on the morphology and related data analysis of the weld seam, the width difference o f each layer and the forming mechanism are analyzed. Results show that the bottom layer ( Layer 1 ) has the widest HAZ and the smallest fluctuation, which reaches 1 200 |jLm. HAZ width o f layer 2 to 5 is relatively narrower which is basically below 600 jjim, while the amplitude fluctuation is greater. The main reason lies in the welding path. The long straight welding without weave causes the base metal near the groove fully melts which causes by the long straight welding without weave, while welding with weave leads to the uneven and inadequate melting of metal near groove.展开更多
This study proposed a force and shape collaborative control method that combined method of influence coefficients(MIC)and the elitist nondominated sorting genetic algorithm(NSGA-II)to reduce the shape deviation caused...This study proposed a force and shape collaborative control method that combined method of influence coefficients(MIC)and the elitist nondominated sorting genetic algorithm(NSGA-II)to reduce the shape deviation caused by manufacturing errors,gravity deformation,and fixturing errors and improve the shape accuracy of the assembled large composite fuselage panel.This study used a multi-point flexible assembly system driven by hexapod parallel robots.The proposed method simultaneously considers the shape deviation and assembly load of the panel.First,a multi-point flexible assembly system driven by hexapod parallel robots was introduced,with the relevant variables defined in the control process.In addition,the corresponding mathematical model was constructed.Subsequently,MIC was used to establish the prediction models between the displacements of actuators and displacements of panel shape control points,deformation loads applied by the actuators.Following the modeling,the shape deviation of the panel and the assembly load were used as the optimization objectives,and the displacements of actuators were optimized using NSGA-II.Finally,a typical composite fuselage panel case study was considered to demonstrate the effectiveness of the proposed method.展开更多
An asymmetric actuated 3-PPPS parallel mechanism was analyzed in its application to an aircraft wing adjustment process.The posture alignment precision at the wing ends was enhanced with a kinematic calibration method...An asymmetric actuated 3-PPPS parallel mechanism was analyzed in its application to an aircraft wing adjustment process.The posture alignment precision at the wing ends was enhanced with a kinematic calibration method.A constraint equation was built based on a constraint condition that distances among spherical joints of the mechanism were constant,and further eight groups of analytic forward solutions of all poses of the mechanism were solved.An inverse equation of the posture alignment displacements of aircraft wing parts was built based on space vector chains,and a mapping equation of the pose and geometric errors of the posture alignment mechanism containing 39 error sources was derived by differentiating the kinematic equation of the mechanism.After kinematic calibration experiments,the maximum position error of the posture alignment platform dropped from 2.67 mm to 0.82 mm,the maximum angle error decreased from 0.481° to 0.167°,and the posture alignment precision of the aircraft wing end was improved.展开更多
This study has developed an efficient method to achieve excellent thermal dimensional stability and desired dimensions of hollow polyester fiber. Firstly,the influence of thermal treatment temperate( 140-180 ℃) on th...This study has developed an efficient method to achieve excellent thermal dimensional stability and desired dimensions of hollow polyester fiber. Firstly,the influence of thermal treatment temperate( 140-180 ℃) on the degree of shrinkage of fiber was investigated. The influence was also analyzed with a 2nd heating to simulate the application situation. It was discovered that the heat treatment at a temperature which was above the application temperature( 2nd heating) would efficiently remove the internal stress in the fiber and improve the thermal dimensional stability.Secondly,the impact of heat treatment temperature on the fiber diameter and the degree of hollowness were studied. The results implied that with a fixed fiber length, higher treatment temperature led to thinner fiber and a lower degree of hollowness.Last but not least,key parameters that could further influence the fiber dimensions were investigated. The results suggested that the fiber diameters and the degree of hollowness could be further controlled by tuning the drawing speed,the spinning meter pump output and cooling status while the spinneret parameters were fixed.展开更多
Correction to:Acta Metallurgica Sinica(English Letters)https://doi.org/10.1007/s40195-023-01576-x In the original publication,the afiliation citation appears incorrectly.The corrected affiliation citation should read ...Correction to:Acta Metallurgica Sinica(English Letters)https://doi.org/10.1007/s40195-023-01576-x In the original publication,the afiliation citation appears incorrectly.The corrected affiliation citation should read as below.展开更多
In order to improve the properties of titanium alloys manufactured by laser melting deposition(LMD),the electroshocking treatment(EST)was proposed in this work.The effects of EST on microstructure and mechanical prope...In order to improve the properties of titanium alloys manufactured by laser melting deposition(LMD),the electroshocking treatment(EST)was proposed in this work.The effects of EST on microstructure and mechanical properties of LMD Ti-6.5Al-3.5Mo-1.5Zr-0.3Si were investigated.The results showed that the width of the heat affected band decreased and disappeared under the thermal and athermal effects of EST,resulting in the uniform microstructure.In the microstructure,theαlaths became coarser gradually,and the quantity ofα/βinterface was reduced.The reduction of the quantity ofα/βinterface leads to make less resistant to dislocation,resulting in the reduction in hardness and strength.The discontinuous grain boundaryαphase and nucleationαcolony near grain boundary inhibited the crack propagation and improved the ductility.Summary,EST can manipulate the microstructure and improve the mechanical properties of LMD titanium alloys.展开更多
Knowledge graph technology is widely applied in the domain of general knowledge reasoning with an excellent performance.For fine-grained professional fields,professional knowledge graphs can provide more accurate info...Knowledge graph technology is widely applied in the domain of general knowledge reasoning with an excellent performance.For fine-grained professional fields,professional knowledge graphs can provide more accurate information in practical industrial scenarios.Based on an aviation assembly domain-specific knowledge graph,the article constructs a joint knowledge reasoning model,which combines a named entity recognition model and a subgraph embedding learning model.When performing knowledge reasoning tasks,the two models vectorize entities,relationships and entity attributes in the same space,so as to share parameters and optimize learning efficiency.The knowledge reasoning model,which provides intelligent question answering services,is able to reduce the assembly error rate and improve the assembly efficiency.The system can accurately solve general knowledge reasoning problems in the assembly process in actual industrial scenarios of general assembly and component assembly under interference-free conditions.Finally,this paper compares the proposed knowledge reasoning model based on knowledge representation learning and the question-answering system based on large-scale pre-trained models.In the application scenario of system functional testing in general assembly,the joint model attains an accuracy rate of 95%,outperforming GPT with 78%accuracy and enhanced representation through knowledge integration with 71%accuracy.展开更多
Advanced hole-making process is of great importance to enhance the fatigue performance of Al-Li alloy part in aviation industry.Ultrasonic peening drilling(UPD),in which an ultrasonic transversal vibration is applied ...Advanced hole-making process is of great importance to enhance the fatigue performance of Al-Li alloy part in aviation industry.Ultrasonic peening drilling(UPD),in which an ultrasonic transversal vibration is applied to the cutting tools,is a recently proposed hole-making method that integrates precision-machining and surface strengthening by single-shot operation.In the study,kinematics,material removal mechanism and strengthening mechanism for UPD of Al-Li alloy by helical fluted reamers are analyzed.The effect of transversal vibration on the cutting performance and surface integrity is studied through comparative experiments between UPD and conventional drilling(CD)of Al-Li alloy holes.The experimental results show that UPD exhibits superior cutting performance with a maximum reduction of 52.6%in thrust force and 52.3%in torque,respectively,compared to CD.Moreover,narrower dimensional tolerance is obtained in UPD due to the reduced transversal force and improved machining stability.Additionally,deeper plastic deformation,higher surface microhardness and residual compressive stress of machined holes are obtained by UPD.The electron back-scattered diffraction(EBSD)analysis confirms that deeper machined affect area and grain refinement are realized in UPD.Therefore,the results indicate that UPD is a feasible method for achieving high-precision and strengthened holes for Al-Li alloy.展开更多
A 6-degree of freedom (6-DOF) aircraft wing position and pose automatic adjustment method is presented to improve ARJ21 wing-fuselage connection precision and efficiency. Wing position and pose are adjusted by three...A 6-degree of freedom (6-DOF) aircraft wing position and pose automatic adjustment method is presented to improve ARJ21 wing-fuselage connection precision and efficiency. Wing position and pose are adjusted by three pillars which are driven by six high-precision servo motors. During the adjustment process, wing is tracked and positioned by laser tracker. Wing initial position and pose are calibrated by using the measurement coordinates of assembly reference points. Wing target position and pose are calculated according to wing initial, fuselage position and pose, and relative position and pose requirements between wing and fuselage for the connection. Combining Newton-Euler method with quaternion position and pose analyzing method, the inverse kinematics of servo motors, together with the adjustment system dynamics is obtained. Wing quintic polynomial trajectory planning algorithm based on quatemion is proposed; the initial, target position and pose need to be solved and the intermediate moving path is uncertain. Simulation results show that the adjustment method has good dynamic characteristics and satisfies engineering requirements. Preliminary engineering application indicates that ARJ21 wing adjustment efficiency and precision are improved by using the proposed method.展开更多
The accurate measurement of surfaces of large aviation components is vital for the assessment of manufacturing and assembly quality of such components.To satisfy the measurement requirement of large-size components,mo...The accurate measurement of surfaces of large aviation components is vital for the assessment of manufacturing and assembly quality of such components.To satisfy the measurement requirement of large-size components,most current researches pay more attention to combined measurement methods utilizing different measuring instruments,but the related researches on error analysis and optimization methods are not taken enough attention.This paper proposes a combined laser-assisted measurement method with feature enhancement techniques,and it also develops an error propagation model of the main factors affecting the overall measurement error in detail.Firstly,the surface of a large-size component is measured by the measurement system at multiple stations.Secondly,a control point coordinate system is established as a bridge to unify all local measurement data into the global coordinate system.To improve the overall measurement accuracy,the pixel extraction error as a key factor causing the overall measurement error is analyzed in detail.Next,the error propagation model is established,and some optimization strategies of layout for minimizing measurement error and transformation error are researched.Finally,experiments are carried out to verify the effectiveness of the proposed method.The results show that the measurement error of the proposed method reaches 0.073%and 0.14%with a 1 D standard ruler and a flat plate,respectively.展开更多
Microwave processing was used to cure the carbon fiber/epoxy composites and designed for improving the compressive strength of the materials. By controlling the power of microwave heating, vacuum bagged laminates were...Microwave processing was used to cure the carbon fiber/epoxy composites and designed for improving the compressive strength of the materials. By controlling the power of microwave heating, vacuum bagged laminates were fabricated under one atmosphere pressure without arcing. The physical and mechanical properties of composites produced through vacuum bagging using microwave and thermal curing were compared and the multistep (2-step or 3-step) microwave curing process for improved compressive properties was established. The results indicated that microwave cured samples had somewhat differentiated molecular structure and showed slightly higher glass transition temperature. The 2-step process was found to be more conducive to the enhancement of the compressive strength than the 3-step process. A 39% cure cycle time reduction and a 22% compressive strength increment were achieved for the composites manufactured with microwave radiation. The improvement in specific compressive strength was attributed to better interracial bonding between resin matrix and the fibers, which was also demonstrated via scanning electron microscopy analysis.展开更多
The Forming Limit Curve (FLC) of the third generation aluminum-lithium (Al-Li) alloy 2198-T3 is measured by conducting a hemispherical dome test with specimens of different widths. The theoretical prediction of th...The Forming Limit Curve (FLC) of the third generation aluminum-lithium (Al-Li) alloy 2198-T3 is measured by conducting a hemispherical dome test with specimens of different widths. The theoretical prediction of the FLC of 2198-T3 is based on the M-K theory utilizing respectively the von Mises, Hill'48, Hosford and Barlat 89 yield functions, and the different predicted curves due to different yield functions are compared with the experimentally measured FLC of 2198-T3. The results show that though there are differences among the four predicted curves, yet they all agree well with the experimentally measured curve. In the area near the planar strain state, the predicted curves and experimentally measured curve are very close. The predicted curve based on the Hosford yield function is more accurate under the tension-compression strain states described in the left part of the FLC, while the accuracy is better for the predicted curve based on Hill'48 yield function under the tension-tension strain states shown in the right part.展开更多
基金This study was supported by the Aeronautical Manufacturing Technology Institute,COMAC.
文摘Robots are finding increasing application in aircraft composite structure assembly due to their flexibility and the growing demand of aircraft manufacturers for high production rates.The contact force of the composite frame in a robotic assembly of the aircraft composite fuselage panel can hardly be controlled due to the multi-surface variable contact stiffness caused by compliance and complex shape with multiple mating surfaces.The paper proposes a robotic assembly system for the aircraft composite fuselage frame with a compliant contact force control strategy using the Gaussian process surrogate model.First,a robotic assembly system is introduced,and the global coordinate system transformation model is built.Then,a compliant force control architecture is designed to generate the desired output force.Subsequently,a Gaussian process surrogate model with uncertainties is utilized to model the complicated relationship between the robot’s output force and the normal contact force acting on the mating surface of the composite frame.Furthermore,an optimal contact force control strategy is implemented to improve the contact quality.Finally,an experiment demonstrates that the proposed methodology can ensure that the contact force on each surface is within the limit of the engineering specification and uniformly distributed,improving the quality compared to the traditional assembly process.
基金Funded by Innovation Foundation of National Engineering and Research Center for Commercial Aircraft Manufacturing(No.SAMC13-JS-15-034)
文摘Prepreg properties including cure kinetics, cure shrinkage, and coefficient of thermal expansion were analyzed. A simulation method based on "element birth and death" method of Finite element analysis (FEA) was presented to simulate the cutting process and predict the machining deformation for composite laminates and stiffened panels. The comparisons between the simulation results and experimental data showed good agreement. It is found that residual stresses are the main source of machining deformation for composites and machining deformation is expected to happen only if there are stress gradients along the machining direction. There is no machining deformation for composite laminates due to its uniform stresses distribution in plane, while machining deformation can be observed obviously for T-shape stiffened composite panels. Attention should be paid to machining deformation to avoid the mismatch during assembly.
基金Funded by the National Key R&D Programs of China (Nos. 2016YFC0701907, 2021YFB3802000 and 2021YFB3802004)。
文摘Due to the relatively high density of conventional non-sintered lightweight aggregate(NLA),a low-density core-shell NLA(CNLA) was developed.Moreover,two types of porous lightweight aggregate concrete (PLAC) for wallboard were designed,using both foam and lightweight aggregates.The effects of LA on lightweight concrete workability,compressive strength,dry shrinkage,and thermal conductivity were studied and compared.The bulk density of CNLA can be lowered to 500 kg/m^(3),and its cylinder crushing strength is 1.6 MPa.PLACs also have compressive strengths ranging from 7.8 to 11.8 MPa,as well as thermal conductivity coefficients ranging from 0.193 to 0.219 W/(m·K^(-1)).The CNLA bonds better to the paste matrix at the interface transition zone,and CNLA concrete has a superior pore structure than SLA concrete,resulting in a 20% improvement in fluidity,a 10% increase in strength,a 6% reduction in heat conductivity,and an 11% decrease in drying shrinkage.
基金Supported by the National Defense Program of China(C152012C002)the Specialized Research Fund for the Doctoral Program of Higher Education of China(20123218120025)
文摘Residual stresses can have a strong effect on the usability of machined parts,and the X-ray diffraction(XRD)measuring equipment,which is commonly used to measure residual stresses,is very expensive.This paper presents a method of measuring the residual stresses induced by boring in the internal surface of a tube with much cheaper equipment.The method,called the strain-based method is mainly based on the strains measured on the external surface of the tube.It is proposed on the basis of the very long tube assumption.The finite element method(FEM)analysis is thus used to validate the length of the tube.Guided by the FEM results,an appropriate length of the tube is chosen,and the residual stresses are obtained from both the strain-based method and the XRD method.Stress profiles obtained from both two methods are compared.The comparison result indicates that the profiles of the two methods agree well with each other.Therefore,it can be concluded that the accuracy of the strain-based method is high enough,and it can be applied to residual stress measurement in practice.
基金Project(51074105)supported by the National Natural Science Foundation of ChinaProjects(08DZ1130100,10520706400)supported by the Science and Technology Commission of Shanghai Municipality,ChinaProject(2007CB613606)supported by the National Basic Research Program of China
文摘The single crystal of nickel-base super alloy is widely used for making turbine blades.The microstructure of the alloy,especially the deviation of preferred orientation of single crystal,possesses the most important effects on the mechanical properties of the blades.In this study,the single crystal ingot and blade of DZ417G alloy are prepared by means of the spiral crystal selector as well as the directional solidification method,and the effect of the parameters(i.e.,the shape of samples,the withdrawal rate)and the structure of the spiral crystal selector on the formation of single crystal and the crystal orientation are investigated.This method can prepare not only the single crystal ingot with simple shape but also the single crystal blades with the complex shape,the simple with rod-shape can form the single crystal easily with a relatively fast withdrawal rate,but the blade with complex shape requires much slower withdrawal rate to form single crystal.The length of the crystal selector almost has no effect on the crystal orientation.However,the angle of selector plays an obvious role on the orientation;the selector with a smaller angle can effectively reduce the deviation of preferred orientation;the appropriate angle of selector to obtain optimal orientation is found to be around30°and the deviation of preferred orientation is about30°for this selector.
基金Project(51635005)supported by the National Natural Science Foundation of China
文摘The annealing tests heated by pulsed current(PC)or furnace for AZ31B magnesium sheets were carried out,and the effects of PC on the microstructure and dislocation density of the alloy were analyzed.The results show that PC strengthens the migration of boundaries,and then the twin grains,most of which distribute in the coarse grains,“spheroidize”to equiaxed grains,thus separating the coarse grains and refining the microstructure.This process homogenizes the initial microstructure and eliminate the typically lamellar twin grains.Moreover,PC also strengthens the dislocation annihilation.When the specimens were annealed by PC at 300℃for 4 min,the dislocation density was even lower than that annealed by furnaces at 400℃for 3 h before deformation.Furthermore,dislocation annihilation is enhanced with the increase of peak current density and the decrease of pulsed frequency.
基金The research is sponsored by the Shanghai STCSM Project of the Postdoctoral Science Research Assistant Plan (10R21421200), the National Natural Science Foundation of China (50904038) and the China Postdoctoral Science Foundation (20100470064).
文摘The DLBSW( dual laser-beam bilateral synchronous welding) technology of T-type joint has been widely used for the connection of skins and stringers in airplane industry. To understand the thermodynamic and mechanical behavior of this process, it is necessary to establish a reasonable heat source model. Two different surface-body combination heat source models are adopted in this paper. Both models use the Gaussian surface heat source model and one is combined with the cone body heat source model and the other is combined with Gaussian rotator body heat source model. The simulation results of these two different models are investigated. And the temperature field results of DLBSW process for T-joint with two different heat sources are discussed. It is indicated that the combination heat source model is effective to simulate the DLBSW process and the current study is useful for more profound research in this field.
基金supported by Shanghai Municipal Commission of Economy and Informatization(Grant No.15XI-1-15)the Priority Academic Program Development of Jiangsu Higher Education Institutions(Grant No.PAPD)
文摘Composites are widely applied to the manufacturing of aircraft in aviation. Forming of large-scale composite component in aircraft requires the corresponding mold with precise size. The laser-MIG hybrid welding has a significant advantage in the manufacturing of Invar mold for aircraft composites. This paper mainly introduces the application of the laser-MIG hybrid welding,and the distribution of thermal field and flow field on the Invar alloy laser-MIG hybrid three-layer welding is analyzed and discussed specifically.
基金the financial support of the project from Shanghai Municipal Commission of Economy and Informatization (15XI-1-15)Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
文摘Quantitative research on the heat affected zone ( HAZ) o f weave bead welding ( WBW) joint fo r Invar alloy is carried out in this paper. Based on the morphology and related data analysis of the weld seam, the width difference o f each layer and the forming mechanism are analyzed. Results show that the bottom layer ( Layer 1 ) has the widest HAZ and the smallest fluctuation, which reaches 1 200 |jLm. HAZ width o f layer 2 to 5 is relatively narrower which is basically below 600 jjim, while the amplitude fluctuation is greater. The main reason lies in the welding path. The long straight welding without weave causes the base metal near the groove fully melts which causes by the long straight welding without weave, while welding with weave leads to the uneven and inadequate melting of metal near groove.
基金supported by National Natural Science Foundation of China(No.52105502)Fund of National Engineering and Research Center for Commercial Aircraft Manufacturing(Nos.COMAC-SFGS-2019-263 and COMAC-SFGS-2019-3731)the Fundamental Research Funds for the Central Universities(No.3042021601).
文摘This study proposed a force and shape collaborative control method that combined method of influence coefficients(MIC)and the elitist nondominated sorting genetic algorithm(NSGA-II)to reduce the shape deviation caused by manufacturing errors,gravity deformation,and fixturing errors and improve the shape accuracy of the assembled large composite fuselage panel.This study used a multi-point flexible assembly system driven by hexapod parallel robots.The proposed method simultaneously considers the shape deviation and assembly load of the panel.First,a multi-point flexible assembly system driven by hexapod parallel robots was introduced,with the relevant variables defined in the control process.In addition,the corresponding mathematical model was constructed.Subsequently,MIC was used to establish the prediction models between the displacements of actuators and displacements of panel shape control points,deformation loads applied by the actuators.Following the modeling,the shape deviation of the panel and the assembly load were used as the optimization objectives,and the displacements of actuators were optimized using NSGA-II.Finally,a typical composite fuselage panel case study was considered to demonstrate the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China (No.51275234)the Aeronautical Science Foundation of China(No.20131652027)
文摘An asymmetric actuated 3-PPPS parallel mechanism was analyzed in its application to an aircraft wing adjustment process.The posture alignment precision at the wing ends was enhanced with a kinematic calibration method.A constraint equation was built based on a constraint condition that distances among spherical joints of the mechanism were constant,and further eight groups of analytic forward solutions of all poses of the mechanism were solved.An inverse equation of the posture alignment displacements of aircraft wing parts was built based on space vector chains,and a mapping equation of the pose and geometric errors of the posture alignment mechanism containing 39 error sources was derived by differentiating the kinematic equation of the mechanism.After kinematic calibration experiments,the maximum position error of the posture alignment platform dropped from 2.67 mm to 0.82 mm,the maximum angle error decreased from 0.481° to 0.167°,and the posture alignment precision of the aircraft wing end was improved.
基金Innovation Fund Project of National Commercial Aircraft Manufacturing Engineering Research Center(No.SAM C14-JS-15-048)Natural Science Foundation of Shanghai,China(No.13ZR1400400)the Fundamental Research Funds for the Central Universities,China
文摘This study has developed an efficient method to achieve excellent thermal dimensional stability and desired dimensions of hollow polyester fiber. Firstly,the influence of thermal treatment temperate( 140-180 ℃) on the degree of shrinkage of fiber was investigated. The influence was also analyzed with a 2nd heating to simulate the application situation. It was discovered that the heat treatment at a temperature which was above the application temperature( 2nd heating) would efficiently remove the internal stress in the fiber and improve the thermal dimensional stability.Secondly,the impact of heat treatment temperature on the fiber diameter and the degree of hollowness were studied. The results implied that with a fixed fiber length, higher treatment temperature led to thinner fiber and a lower degree of hollowness.Last but not least,key parameters that could further influence the fiber dimensions were investigated. The results suggested that the fiber diameters and the degree of hollowness could be further controlled by tuning the drawing speed,the spinning meter pump output and cooling status while the spinneret parameters were fixed.
文摘Correction to:Acta Metallurgica Sinica(English Letters)https://doi.org/10.1007/s40195-023-01576-x In the original publication,the afiliation citation appears incorrectly.The corrected affiliation citation should read as below.
基金This work was financially supported by the National Natural Science Foundation of China(Grant Nos.51975441 and 52271135)the Innovation Funding Project of National Engineering and Research Center for Commercial Aircraft Manufacturing(No.COMAC-SFGS-2022-1871)+6 种基金the Major Research Plan of the National Natural Science Foundation of China(Grant No.92266102)the Natural Science Foundation of Hubei Province(Grant No.2022CFB492)the Knowledge Innovation Program of Wuhan-Basic Research(No.2022010801010174)the Application Foundation Frontier Project of Wuhan(No.2020010601012171)the“Chu Tian Scholar”project of Hubei Province(No.CTXZ2017-05)the Overseas Expertise Introduction Project for Discipline Innovation(No.B17034)Innovative Research Team Development Program of Ministry of Education of China(No.IRT_17R83).
文摘In order to improve the properties of titanium alloys manufactured by laser melting deposition(LMD),the electroshocking treatment(EST)was proposed in this work.The effects of EST on microstructure and mechanical properties of LMD Ti-6.5Al-3.5Mo-1.5Zr-0.3Si were investigated.The results showed that the width of the heat affected band decreased and disappeared under the thermal and athermal effects of EST,resulting in the uniform microstructure.In the microstructure,theαlaths became coarser gradually,and the quantity ofα/βinterface was reduced.The reduction of the quantity ofα/βinterface leads to make less resistant to dislocation,resulting in the reduction in hardness and strength.The discontinuous grain boundaryαphase and nucleationαcolony near grain boundary inhibited the crack propagation and improved the ductility.Summary,EST can manipulate the microstructure and improve the mechanical properties of LMD titanium alloys.
基金supported by the National Natural Science Foundation of China(Grant Nos.52275020,62293514,and 91948301).
文摘Knowledge graph technology is widely applied in the domain of general knowledge reasoning with an excellent performance.For fine-grained professional fields,professional knowledge graphs can provide more accurate information in practical industrial scenarios.Based on an aviation assembly domain-specific knowledge graph,the article constructs a joint knowledge reasoning model,which combines a named entity recognition model and a subgraph embedding learning model.When performing knowledge reasoning tasks,the two models vectorize entities,relationships and entity attributes in the same space,so as to share parameters and optimize learning efficiency.The knowledge reasoning model,which provides intelligent question answering services,is able to reduce the assembly error rate and improve the assembly efficiency.The system can accurately solve general knowledge reasoning problems in the assembly process in actual industrial scenarios of general assembly and component assembly under interference-free conditions.Finally,this paper compares the proposed knowledge reasoning model based on knowledge representation learning and the question-answering system based on large-scale pre-trained models.In the application scenario of system functional testing in general assembly,the joint model attains an accuracy rate of 95%,outperforming GPT with 78%accuracy and enhanced representation through knowledge integration with 71%accuracy.
基金Supported by National Natural Science Foundation of China(Nos.52375399,91960203 and 51975035)Chinese Aeronautical Establishment Aeronautical Science Foundation(No.2022Z045051001).
文摘Advanced hole-making process is of great importance to enhance the fatigue performance of Al-Li alloy part in aviation industry.Ultrasonic peening drilling(UPD),in which an ultrasonic transversal vibration is applied to the cutting tools,is a recently proposed hole-making method that integrates precision-machining and surface strengthening by single-shot operation.In the study,kinematics,material removal mechanism and strengthening mechanism for UPD of Al-Li alloy by helical fluted reamers are analyzed.The effect of transversal vibration on the cutting performance and surface integrity is studied through comparative experiments between UPD and conventional drilling(CD)of Al-Li alloy holes.The experimental results show that UPD exhibits superior cutting performance with a maximum reduction of 52.6%in thrust force and 52.3%in torque,respectively,compared to CD.Moreover,narrower dimensional tolerance is obtained in UPD due to the reduced transversal force and improved machining stability.Additionally,deeper plastic deformation,higher surface microhardness and residual compressive stress of machined holes are obtained by UPD.The electron back-scattered diffraction(EBSD)analysis confirms that deeper machined affect area and grain refinement are realized in UPD.Therefore,the results indicate that UPD is a feasible method for achieving high-precision and strengthened holes for Al-Li alloy.
基金Basic Scientific Research Projects of Nanjing University of Aeronautics & Astronautics (NS 2010128)
文摘A 6-degree of freedom (6-DOF) aircraft wing position and pose automatic adjustment method is presented to improve ARJ21 wing-fuselage connection precision and efficiency. Wing position and pose are adjusted by three pillars which are driven by six high-precision servo motors. During the adjustment process, wing is tracked and positioned by laser tracker. Wing initial position and pose are calibrated by using the measurement coordinates of assembly reference points. Wing target position and pose are calculated according to wing initial, fuselage position and pose, and relative position and pose requirements between wing and fuselage for the connection. Combining Newton-Euler method with quaternion position and pose analyzing method, the inverse kinematics of servo motors, together with the adjustment system dynamics is obtained. Wing quintic polynomial trajectory planning algorithm based on quatemion is proposed; the initial, target position and pose need to be solved and the intermediate moving path is uncertain. Simulation results show that the adjustment method has good dynamic characteristics and satisfies engineering requirements. Preliminary engineering application indicates that ARJ21 wing adjustment efficiency and precision are improved by using the proposed method.
基金co-supported by the National Key Research and Development Project of China(No.2018YFA0703304)the High-level Personnel Innovation Support Program of Dalian(No.2017RJ04)+2 种基金Youth Program of National Natural Science Foundation of China(No.51905077)Liaoning Revitalization Talents Program(No.XLYC1807086)China Postdoctoral Science Foundation Grand(No.2019M651110)。
文摘The accurate measurement of surfaces of large aviation components is vital for the assessment of manufacturing and assembly quality of such components.To satisfy the measurement requirement of large-size components,most current researches pay more attention to combined measurement methods utilizing different measuring instruments,but the related researches on error analysis and optimization methods are not taken enough attention.This paper proposes a combined laser-assisted measurement method with feature enhancement techniques,and it also develops an error propagation model of the main factors affecting the overall measurement error in detail.Firstly,the surface of a large-size component is measured by the measurement system at multiple stations.Secondly,a control point coordinate system is established as a bridge to unify all local measurement data into the global coordinate system.To improve the overall measurement accuracy,the pixel extraction error as a key factor causing the overall measurement error is analyzed in detail.Next,the error propagation model is established,and some optimization strategies of layout for minimizing measurement error and transformation error are researched.Finally,experiments are carried out to verify the effectiveness of the proposed method.The results show that the measurement error of the proposed method reaches 0.073%and 0.14%with a 1 D standard ruler and a flat plate,respectively.
基金the Innovation Funds of China-National Engineering and Research Center for Commercial Aircraft Manufacturing (SAMC12-JS-15-015) for financial support
文摘Microwave processing was used to cure the carbon fiber/epoxy composites and designed for improving the compressive strength of the materials. By controlling the power of microwave heating, vacuum bagged laminates were fabricated under one atmosphere pressure without arcing. The physical and mechanical properties of composites produced through vacuum bagging using microwave and thermal curing were compared and the multistep (2-step or 3-step) microwave curing process for improved compressive properties was established. The results indicated that microwave cured samples had somewhat differentiated molecular structure and showed slightly higher glass transition temperature. The 2-step process was found to be more conducive to the enhancement of the compressive strength than the 3-step process. A 39% cure cycle time reduction and a 22% compressive strength increment were achieved for the composites manufactured with microwave radiation. The improvement in specific compressive strength was attributed to better interracial bonding between resin matrix and the fibers, which was also demonstrated via scanning electron microscopy analysis.
基金co-supported by National Natural Science Foundation of China (No.50905008)Fund of National Engineering and Research Center for Commercial Aircraft Manufacturing (No.SAMC12-JS-15-008)
文摘The Forming Limit Curve (FLC) of the third generation aluminum-lithium (Al-Li) alloy 2198-T3 is measured by conducting a hemispherical dome test with specimens of different widths. The theoretical prediction of the FLC of 2198-T3 is based on the M-K theory utilizing respectively the von Mises, Hill'48, Hosford and Barlat 89 yield functions, and the different predicted curves due to different yield functions are compared with the experimentally measured FLC of 2198-T3. The results show that though there are differences among the four predicted curves, yet they all agree well with the experimentally measured curve. In the area near the planar strain state, the predicted curves and experimentally measured curve are very close. The predicted curve based on the Hosford yield function is more accurate under the tension-compression strain states described in the left part of the FLC, while the accuracy is better for the predicted curve based on Hill'48 yield function under the tension-tension strain states shown in the right part.