期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
31.38 Gb/s GaN-based LED array visible light communication system enhanced with V-pit and sidewall quantum well structure
1
作者 Zengyi Xu Wenqing Niu +12 位作者 Yu Liu Xianhao Lin Jifan Cai Jianyang Shi Xiaolan Wang Guangxu Wang Jianli Zhang Fengyi Jiang Zhixue He Shaohua Yu Chao Shen Junwen Zhang Nan Chi 《Opto-Electronic Science》 2023年第5期12-24,共13页
Although the 5G wireless network has made significant advances,it is not enough to accommodate the rapidly rising requirement for broader bandwidth in post-5G and 6G eras.As a result,emerging technologies in higher fr... Although the 5G wireless network has made significant advances,it is not enough to accommodate the rapidly rising requirement for broader bandwidth in post-5G and 6G eras.As a result,emerging technologies in higher frequencies including visible light communication(VLC),are becoming a hot topic.In particular,LED-based VLC is foreseen as a key enabler for achieving data rates at the Tb/s level in indoor scenarios using multi-color LED arrays with wavelength division multiplexing(WDM)technology.This paper proposes an optimized multi-color LED array chip for high-speed VLC systems.Its long-wavelength GaN-based LED units are remarkably enhanced by V-pit structure in their efficiency,especially in the“yellow gap”region,and it achieves significant improvement in data rate compared with earlier research.This work investigates the V-pit structure and tries to provide insight by introducing a new equivalent circuit model,which provides an explanation of the simulation and experiment results.In the final test using a laboratory communication system,the data rates of eight channels from short to long wavelength are 3.91 Gb/s,3.77 Gb/s,3.67 Gb/s,4.40 Gb/s,3.78 Gb/s,3.18 Gb/s,4.31 Gb/s,and 4.35 Gb/s(31.38 Gb/s in total),with advanced digital signal processing(DSP)techniques including digital equalization technique and bit-power loading discrete multitone(DMT)modulation format. 展开更多
关键词 GaN-based LED LED array VLC V-pit sidewall quantum well high-frequency response
下载PDF
Si-substrate vertical-structure InGaN/GaN micro-LED-based photodetector for beyond 10 Gbps visible light communication 被引量:8
2
作者 JIANYANG SHI ZENGYI XU +11 位作者 WENQING NIU DONG LI XIAOMING WU ZIWEI LI JUNWEN ZHANG CHAO SHEN GUANGXU WANG XIAOLAN WANG JIANLI ZHANG FENGYI JIANG SHAOHUA YU NAN CHI 《Photonics Research》 SCIE EI CAS CSCD 2022年第10期2394-2404,共11页
Visible light communication(VLC)has emerged as a promising communication method in 6G.However,the development of receiving devices is much slower than that of transmitting devices,limited by materials,structures,and f... Visible light communication(VLC)has emerged as a promising communication method in 6G.However,the development of receiving devices is much slower than that of transmitting devices,limited by materials,structures,and fabrication.In this paper,we propose and fabricate an InGaN/GaN multiple-quantum-well-based vertical-structure micro-LED-based photodetector(μPD)on a Si substrate.A comprehensive comparison of the photoelectrical performance and communication performance of three sizes ofμPDs,10,50,and 100μm,is presented.The peak responsivity of all threeμPDs is achieved at 400 nm,while the passband full-widths at half maxima are 87,72,and 78 nm for 10,50,and 100μmμPDs,respectively.The−20 dB cutoff bandwidth is up to 822 MHz for 50μmμPD.A data rate of 10.14 Gbps is experimentally demonstrated by bit and power loading discrete multitone modulation and the proposed digital pre-equalizer algorithm over 1 m free space utilizing the self-designed 4×450μmμPD array as a receiver and a 450 nm laser diode as a transmitter.This is the first time a more than 10 Gbps VLC system has been achieved utilizing a GaN-based micro-PD,to the best of our knowledge.The investigation fully demonstrates the superiority of Si substrates and vertical structures in InGaN/GaNμPDs and shows its great potential for high-speed VLC links beyond 10 Gbps. 展开更多
关键词 communication BEYOND utilizing
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部