Summary What is already known about this topic?Previous studies have reported vaccine efficacy or effectiveness against severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)Omicron subvariants for several vaccin...Summary What is already known about this topic?Previous studies have reported vaccine efficacy or effectiveness against severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)Omicron subvariants for several vaccine platforms.However,there are currently few data on estimates of inactivated platform coronavirus disease 2019(COVID-19)vaccines,especially against the globally dominant subvariant—Omicron BA.5.展开更多
Sexual reproduction is prevalent in eukaryotic organisms and plays a critical role in the evolution of new traits and in the generation of genetic diversity.Environmental factors often have a direct impact on the occu...Sexual reproduction is prevalent in eukaryotic organisms and plays a critical role in the evolution of new traits and in the generation of genetic diversity.Environmental factors often have a direct impact on the occurrence and frequency of sexual reproduction in fungi.The regulatory effects of atmospheric relative humidity(RH)on sexual reproduction and pathogenesis in plant fungal pathogens and in soil fungi have been extensively investigated.However,the knowledge of how RH regulates the lifecycles of human fungal pathogens is limited.In this study,we report that low atmospheric RH promotes the development of mating projections and same-sex(homothallic)mating in the human fungal pathogen Candida albicans.Low RH causes water loss in C.albicans cells,which results in osmotic stress and the generation of intracellular reactive oxygen species(ROS)and trehalose.The water transporting aquaporin Aqy1,and the G-protein coupled receptor Gpr1 function as cell surface sensors of changes in atmospheric humidity.Perturbation of the trehalose metabolic pathway by inactivating trehalose synthase or trehalase promotes same-sex mating in C.albicans by increasing osmotic or ROS stresses,respectively.Intracellular trehalose and ROS signal the Hog1-osmotic and Hsf1-Hsp90 signaling pathways to regulate the mating response.We,therefore,propose that the cell surface sensors Aqy1 and Gpr1,intracellular trehalose and ROS,and the Hog1-osmotic and Hsf1-Hsp90 signaling pathways function coordinately to regulate sexual mating in response to low atmospheric RH conditions in C.albicans.展开更多
Dear Editor,The severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)has triggered a COVID-19 pandemic that has caused high morbidity and mortality worldwide.1 COVID-19 vaccines are urgently needed to protect al...Dear Editor,The severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)has triggered a COVID-19 pandemic that has caused high morbidity and mortality worldwide.1 COVID-19 vaccines are urgently needed to protect all susceptible populations from SARS-CoV-2 infection.Neurofibromatosis type 1(NF1)is a hereditary dominant disease that affects approximately one in every 3000 newborns.展开更多
基金Supported by the Key Program of the National Natural Science Foundation of China(82130093)Shanghai Municipal Science and Technology Major Project(HS2021SHZX001).
文摘Summary What is already known about this topic?Previous studies have reported vaccine efficacy or effectiveness against severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)Omicron subvariants for several vaccine platforms.However,there are currently few data on estimates of inactivated platform coronavirus disease 2019(COVID-19)vaccines,especially against the globally dominant subvariant—Omicron BA.5.
基金supported by the National Key Research and Development Program of China(2021YFC2300400)the National Natural Science Foundation of China(31930005 and 32170194)+2 种基金Shanghai Municipal Science and Technology Major Project(HS2021SHZX001)supported by the National Institutes of Health(NIH)National Institute of General Medical Sciences(NIGMS)award R35GM124594by the Kamangar family in the form of an endowed chair to C.J.N.
文摘Sexual reproduction is prevalent in eukaryotic organisms and plays a critical role in the evolution of new traits and in the generation of genetic diversity.Environmental factors often have a direct impact on the occurrence and frequency of sexual reproduction in fungi.The regulatory effects of atmospheric relative humidity(RH)on sexual reproduction and pathogenesis in plant fungal pathogens and in soil fungi have been extensively investigated.However,the knowledge of how RH regulates the lifecycles of human fungal pathogens is limited.In this study,we report that low atmospheric RH promotes the development of mating projections and same-sex(homothallic)mating in the human fungal pathogen Candida albicans.Low RH causes water loss in C.albicans cells,which results in osmotic stress and the generation of intracellular reactive oxygen species(ROS)and trehalose.The water transporting aquaporin Aqy1,and the G-protein coupled receptor Gpr1 function as cell surface sensors of changes in atmospheric humidity.Perturbation of the trehalose metabolic pathway by inactivating trehalose synthase or trehalase promotes same-sex mating in C.albicans by increasing osmotic or ROS stresses,respectively.Intracellular trehalose and ROS signal the Hog1-osmotic and Hsf1-Hsp90 signaling pathways to regulate the mating response.We,therefore,propose that the cell surface sensors Aqy1 and Gpr1,intracellular trehalose and ROS,and the Hog1-osmotic and Hsf1-Hsp90 signaling pathways function coordinately to regulate sexual mating in response to low atmospheric RH conditions in C.albicans.
基金This study was supported by grants from the National Natural Science Foundation of China(82202470,82102344,82172228)the Shanghai Rising Star Program supported by the Science and Technology Commission of Shanghai Municipality(20QA1405600)+5 种基金the Natural Science Foundation of Shanghai(22ZR1422300Innovative research team of high-level local universities in Shanghai(SHSMUZDCX20210400)Clinical Research Plan of SHDC(SHDC2020CR1019B)Shanghai Clinical Research Center of Plastic and Reconstructive Surgery supported by Science and Technology Commission of Shanghai Municipality(Grant No.22MC1940300)Shanghai Municipal Science and Technology Major Project(HS2021SHZX001)Shanghai Science and Technology Committee(21NL2600100,20dz2260100).
文摘Dear Editor,The severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)has triggered a COVID-19 pandemic that has caused high morbidity and mortality worldwide.1 COVID-19 vaccines are urgently needed to protect all susceptible populations from SARS-CoV-2 infection.Neurofibromatosis type 1(NF1)is a hereditary dominant disease that affects approximately one in every 3000 newborns.