期刊文献+
共找到639篇文章
< 1 2 32 >
每页显示 20 50 100
Analysis of thermal management and anti-mechanical abuse of multi-functional battery modules based on magneto-sensitive shear thickening fluid
1
作者 Yang XIONG Bo LU +1 位作者 Yicheng SONG Junqian ZHANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第3期529-542,共14页
Electric vehicles(EVs)have garnered significant attention as a vital driver of economic growth and environmental sustainability.Nevertheless,ensuring the safety of high-energy batteries is now a top priority that cann... Electric vehicles(EVs)have garnered significant attention as a vital driver of economic growth and environmental sustainability.Nevertheless,ensuring the safety of high-energy batteries is now a top priority that cannot be overlooked during large-scale applications.This paper proposes an innovative active protection and cooling integrated battery module using smart materials,magneto-sensitive shear thickening fluid(MSTF),which is specifically designed to address safety threats posed by lithium-ion batteries(LIBs)exposed to harsh mechanical and environmental conditions.The theoretical framework introduces a novel approach for harnessing the smoothed-particle hydrodynamics(SPH)methodology that incorporates the intricate interplay of non-Newtonian fluid behavior,capturing the fluid-structure coupling inherent to the MSTF.This approach is further advanced by adopting an enhanced Herschel-Bulkley(H-B)model to encapsulate the intricate rheology of the MSTF under the influence of the magnetorheological effect(MRE)and shear thickening(ST)behavior.Numerical simulation results show that in the case of cooling,the MSTF is an effective cooling medium for rapidly reducing the temperature.In terms of mechanical abuse,the MSTF solidifies through actively applying the magnetic field during mechanical compression and impact within the battery module,resulting in 66%and 61.7%reductions in the maximum stress within the battery jellyroll,and 31.1%and 23%reductions in the reaction force,respectively.This mechanism effectively lowers the risk of short-circuit failure.The groundbreaking concepts unveiled in this paper for active protection battery modules are anticipated to be a valuable technological breakthrough in the areas of EV safety and lightweight/integrated design. 展开更多
关键词 magneto-sensitive shear thickening fluid(MSTF) battery module impact protection temperature control integrated design
下载PDF
Dirac method for nonlinear and non-homogenous boundary value problems of plates
2
作者 Xiaoye MAO Jiabin WU +2 位作者 Junning ZHANG Hu DING Liqun CHEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第1期15-38,共24页
The boundary value problem plays a crucial role in the analytical investigation of continuum dynamics. In this paper, an analytical method based on the Dirac operator to solve the nonlinear and non-homogeneous boundar... The boundary value problem plays a crucial role in the analytical investigation of continuum dynamics. In this paper, an analytical method based on the Dirac operator to solve the nonlinear and non-homogeneous boundary value problem of rectangular plates is proposed. The key concept behind this method is to transform the nonlinear or non-homogeneous part on the boundary into a lateral force within the governing function by the Dirac operator, which linearizes and homogenizes the original boundary, allowing one to employ the modal superposition method for obtaining solutions to reconstructive governing equations. Once projected into the modal space, the harmonic balance method(HBM) is utilized to solve coupled ordinary differential equations(ODEs)of truncated systems with nonlinearity. To validate the convergence and accuracy of the proposed Dirac method, the results of typical examples, involving nonlinearly restricted boundaries, moment excitation, and displacement excitation, are compared with those of the differential quadrature element method(DQEM). The results demonstrate that when dealing with nonlinear boundaries, the Dirac method exhibits more excellent accuracy and convergence compared with the DQEM. However, when facing displacement excitation, there exist some discrepancies between the proposed approach and simulations;nevertheless, the proposed method still accurately predicts resonant frequencies while being uniquely capable of handling nonuniform displacement excitations. Overall, this methodology offers a convenient way for addressing nonlinear and non-homogenous plate boundaries. 展开更多
关键词 rectangular plate Dirac operator nonlinear boundary time-dependent boundary boundary value problem
下载PDF
Dynamics and vibration reduction performance of asymmetric tristable nonlinear energy sink
3
作者 Hongyan CHEN Youcheng ZENG +2 位作者 Hu DING Siukai LAI Liqun CHEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第3期389-406,共18页
With its complex nonlinear dynamic behavior,the tristable system has shown excellent performance in areas such as energy harvesting and vibration suppression,and has attracted a lot of attention.In this paper,an asymm... With its complex nonlinear dynamic behavior,the tristable system has shown excellent performance in areas such as energy harvesting and vibration suppression,and has attracted a lot of attention.In this paper,an asymmetric tristable design is proposed to improve the vibration suppression efficiency of nonlinear energy sinks(NESs)for the first time.The proposed asymmetric tristable NES(ATNES)is composed of a pair of oblique springs and a vertical spring.Then,the three stable states,symmetric and asymmetric,can be achieved by the adjustment of the distance and stiffness asymmetry of the oblique springs.The governing equations of a linear oscillator(LO)coupled with the ATNES are derived.The approximate analytical solution to the coupled system is obtained by the harmonic balance method(HBM)and verified numerically.The vibration suppression efficiency of three types of ATNES is compared.The results show that the asymmetric design can improve the efficiency of vibration reduction through comparing the chaotic motion of the NES oscillator between asymmetric steady states.In addition,compared with the symmetrical tristable NES(TNES),the ATNES can effectively control smaller structural vibrations.In other words,the ATNES can effectively solve the threshold problem of TNES failure to weak excitation.Therefore,this paper reveals the vibration reduction mechanism of the ATNES,and provides a pathway to expand the effective excitation amplitude range of the NES. 展开更多
关键词 ASYMMETRIC nonlinear energy sink(NES) tristable vibration control po-tential barrier
下载PDF
Theoretical and experimental study of a bi-stable piezoelectric energy harvester under hybrid galloping and band-limited random excitations
4
作者 Haitao LI Tianyu ZHENG +4 位作者 Weiyang QIN Ruilan TIAN Hu DING J.C.JI Liqun CHEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第3期461-478,共18页
In the practical environment,it is very common for the simultaneous occurrence of base excitation and crosswind.Scavenging the combined energy of vibration and wind with a single energy harvesting structure is fascina... In the practical environment,it is very common for the simultaneous occurrence of base excitation and crosswind.Scavenging the combined energy of vibration and wind with a single energy harvesting structure is fascinating.For this purpose,the effects of the wind speed and random excitation level are investigated with the stochastic averaging method(SAM)based on the energy envelope.The results of the analytical prediction are verified with the Monte-Carlo method(MCM).The numerical simulation shows that the introduction of wind can reduce the critical excitation level for triggering an inter-well jump and make a bi-stable energy harvester(BEH)realize the performance enhancement for a weak base excitation.However,as the strength of the wind increases to a particular level,the influence of the random base excitation on the dynamic responses is weakened,and the system exhibits a periodic galloping response.A comparison between a BEH and a linear energy harvester(LEH)indicates that the BEH demonstrates inferior performance for high-speed wind.Relevant experiments are conducted to investigate the validity of the theoretical prediction and numerical simulation.The experimental findings also show that strong random excitation is favorable for the BEH in the range of low wind speeds.However,as the speed of the incoming wind is up to a particular level,the disadvantage of the BEH becomes clear and evident. 展开更多
关键词 bi-stability inter-well response GALLOPING band-limited random
下载PDF
Piezoelectric and flexoelectric effects of DNA adsorbed films on microcantilevers
5
作者 Yuan YANG Nenghui ZHANG +2 位作者 Hanlin LIU Jiawei LING Zouqing TAN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第9期1547-1562,共16页
DNA-based biosensors have played a huge role in many areas,especially in current global coronavirus outbreak.However,there is a great difficulty in the characterization of piezoelectric and flexoelectric coefficients ... DNA-based biosensors have played a huge role in many areas,especially in current global coronavirus outbreak.However,there is a great difficulty in the characterization of piezoelectric and flexoelectric coefficients of the nanoscale DNA film,because the existing experimental methods for hard materials are almost invalid.In addition,the relevant theoretical models for DNA films only consider a single effect without clarifying the difference between the two electromechanical effects on device detection signals.This work aims to present multiscale models for DNA-microcantilever experiments to clarify the competitive mechanism in piezoelectric and flexoelectric effects of DNA films on detection signals.First,a Poisson-Boltzmann(PB)equation is used to predict the potential distribution due to the competition between fixed phosphate groups and mobile salt ions in DNA films.Second,a macroscopic piezoelectric/flexoelectric constitutive equation of the DNA film and a mesoscopic free energy model of the DNA solution are combined to analytically predict the electromechanical coefficients of the DNA film and the relevant microcantilever signals by the deformation equivalent method and Zhang’s two-variable method.Finally,the effects of detection conditions on microscopic interactions,electromechanical coupling coefficients,and deflection signals are studied.Numerical results not only agree well with the experimental observations,but also reveal that the piezoelectric and flexoelectric effects of the DNA film should be equivalently modeled when interpreting microcantilever detection signals.These insights might provide opportunities for the microcantilever biosensor with high sensitivity. 展开更多
关键词 DNA microcantilever biosensor electromechanical coupling effect flexo-electricity PIEZOELECTRICITY multiscale model
下载PDF
Unraveling the reaction reversibility and structure stability of nickel sulfide anodes for lithium ion batteries
6
作者 Yu Huang Chunyuan Liang +10 位作者 Yueling Cai Yi Zhou Bingkun Guo Jipeng Cheng Heguang Liu Peng Wang Qianqian Li Anmin Nie Hongtao Wang Jinsong Wu Tongyi Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期392-401,I0010,共11页
The electrochemical performance of lithium-ion batteries,i.e.specific capacity and cyclability,is primarily determined by chemical reversibility and structural stability of the electrodes in cycling.Here we have inves... The electrochemical performance of lithium-ion batteries,i.e.specific capacity and cyclability,is primarily determined by chemical reversibility and structural stability of the electrodes in cycling.Here we have investigated the fundamental reaction behaviors of nickel sulfide(NixSy)as lithium-ion battery anodes by in-situ TEM.We find that Ni_(3)S_(2)is the electrochemically stable phase,which appears in the first cycle of the NixSyanode.From the second cycle,conversion between Ni_(3)S_(2)and Li_(2)S/Ni is the dominant electrochemical reaction.In lithiation,the NixSynanoparticles evolve into a mixture of Ni nanocrystals embedded in Li_(2)S matrix,which form a porous structure upon full lithiation,and with the recrystallization of the Ni_(3)S_(2)phase in delithiation,a compact and interconnected network is built.Structural stability in cycles is susceptible to particle size and substrate restraint.Carbon substrate can certainly improve the tolerance for size-dependent pulverization of NixSynanoparticles.When NixSynanoparticle exceeds the critical size value,the morphology of the particle is no longer well maintained even under the constraints of the carbon substrate.This work deepens the understanding of electrochemical reaction behavior of conversiontype materials and helps to rational design of high-energy density battery anodes. 展开更多
关键词 Nickel sulfide anodes Reaction reversility Structure rebuilding In-situ TEM Lithium-ion battery
下载PDF
Mechanics of formation and rupture of human aneurysm 被引量:1
7
作者 任九生 袁学刚 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2010年第5期593-604,共12页
The mechanical response of the human arterial wall under the combined loading of inflation, axial extension, and torsion is examined within the framework of the large deformation hyper-elastic theory. The probability ... The mechanical response of the human arterial wall under the combined loading of inflation, axial extension, and torsion is examined within the framework of the large deformation hyper-elastic theory. The probability of the aneurysm formation is explained with the instability theory of structure, and the probability of its rupture is explained with the strength theory of material. Taking account of the residual stress and the smooth muscle activities, a two layer thick-walled circular cylindrical tube model with fiber-reinforced composite-based incompressible anisotropic hyper-elastic materials is employed to model the mechanical behavior of the arterial wall. The deformation curves and the stress distributions of the arterial wall are given under normal and abnormal conditions. The results of the deformation and the structure instability analysis show that the model can describe the uniform inflation deformation of the arterial wall under normal conditions, as well as formation and growth of an aneurysm under abnormal conditions such as the decreased stiffness of the elastic and collagen fibers. From the analysis of the stresses and the material strength, the rupture of an aneurysm may also be described by this model if the wall stress is larger than its strength. 展开更多
关键词 arterial wall with collagen fibers formation and rupture of aneurysm residual stress instability theory of structure strength theory of material
下载PDF
Modeling and analysis of nonlinear mechanics of a super-thin elastic rod 被引量:1
8
作者 薛纭 《Journal of Shanghai University(English Edition)》 CAS 2006年第4期371-372,共2页
Nonlinear mechanics for a super-thin elastic rod with the biological background of DNA super-coiling macromolecules is an interdisciplinary research area of classical mechanics and molecular biology. It is also a subj... Nonlinear mechanics for a super-thin elastic rod with the biological background of DNA super-coiling macromolecules is an interdisciplinary research area of classical mechanics and molecular biology. It is also a subject of dynamics and elasticity because elastic bodies are analyzed via the theory of dynamics. It is in frontiers of general mechanics (dynamics and control). This dissertation is devoted to model a constrained super-thin elastic rod and analyze its stability in equilibrium. The existing research results are summarized. Analytical mechanics is systematically applied to model the elastic rod. The Schroedinger equation for complex curvatures or complex bending moments is, respectively, extended from the case of circular crosssections to that of non-circular ones. The equilibrium of a rod constrained on a surface is investigated. 展开更多
关键词 super-thin elastic rod Kirehhoff theory analytical mechanics Schr6dinger equation.
下载PDF
Parametric resonance of axially functionally graded pipes conveying pulsating fluid
9
作者 Jie JING Xiaoye MAO +1 位作者 Hu DING Liqun CHEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第2期239-260,共22页
Based on the generalized Hamilton's principle,the nonlinear governing equation of an axially functionally graded(AFG)pipe is established.The non-trivial equilibrium configuration is superposed by the modal functio... Based on the generalized Hamilton's principle,the nonlinear governing equation of an axially functionally graded(AFG)pipe is established.The non-trivial equilibrium configuration is superposed by the modal functions of a simply supported beam.Via the direct multi-scale method,the response and stability boundary to the pulsating fluid velocity are solved analytically and verified by the differential quadrature element method(DQEM).The influence of Young's modulus gradient on the parametric resonance is investigated in the subcritical and supercritical regions.In general,the pipe in the supercritical region is more sensitive to the pulsating excitation.The nonlinearity changes from hard to soft,and the non-trivial equilibrium configuration introduces more frequency components to the vibration.Besides,the increasing Young's modulus gradient improves the critical pulsating flow velocity of the parametric resonance,and further enhances the stability of the system.In addition,when the temperature increases along the axial direction,reducing the gradient parameter can enhance the response asymmetry.This work further complements the theoretical analysis of pipes conveying pulsating fluid. 展开更多
关键词 pipe conveying fluid axially functionally graded supercritical resonance multi-scale method parametric resonance
下载PDF
An active high-static-low-dynamic-stiffness vibration isolator with adjustable buckling beams:theory and experiment
10
作者 Kefan XU Muqing NIU +1 位作者 Yewei ZHANG Liqun CHEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第3期425-440,共16页
High-static-low-dynamic-stiffness(HSLDS)vibration isolators with buckling beams have been widely used to isolate external vibrations.An active adjustable device composed of proportion integration(PI)active controllers... High-static-low-dynamic-stiffness(HSLDS)vibration isolators with buckling beams have been widely used to isolate external vibrations.An active adjustable device composed of proportion integration(PI)active controllers and piezoelectric actuators is proposed for improving the negative stiffness stroke of buckling beams.A nonlinear output frequency response function is used to analyze the effect of the vibration reduction.The prototype of the active HSLDS device is built,and the verification experiment is conducted.The results show that compared with the traditional HSLDS vibration isolator,the active HSLDS device can broaden the isolation frequency bandwidth,and effectively reduce the resonant amplitude by adjusting the active control parameters.The maximum vibration reduction rate of the active HSLDS vibration isolator can attain 89.9%,and the resonant frequency can be reduced from 31.08 Hz to 13.28 Hz.Therefore,this paper devotes to providing a new design scheme for enhanced HSLDS vibration isolators. 展开更多
关键词 active control high-static-low-dynamic-stiffness(HSLDS) vibration isola-tor dynamic analysis
下载PDF
Nonlinear dynamics of axially moving viscoelastic Timoshenko beam under parametric and external excitations 被引量:11
11
作者 Qiaoyun YAN Hu DING Liqun CHEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2015年第8期971-984,共14页
This investigation focuses on the nonlinear dynamic behaviors in the trans- verse vibration of an axiMly accelerating viscoelastic Timoshenko beam with the external harmonic excitation. The parametric excitation is ca... This investigation focuses on the nonlinear dynamic behaviors in the trans- verse vibration of an axiMly accelerating viscoelastic Timoshenko beam with the external harmonic excitation. The parametric excitation is caused by the harmonic fluctuations of the axial moving speed. An integro-partial-differential equation governing the transverse vibration of the Timoshenko beam is established. Many factors are considered, such as viscoelasticity, the finite axial support rigidity, and the longitudinally varying tension due to the axial acceleration. With the Galerkin truncation method, a set of nonlinear ordinary differential equations are derived by discretizing the governing equation. Based on the numerical solutions, the bifurcation diagrams are presented to study the effect of the external transverse excitation. Moreover, the frequencies of the two excitations are assumed to be multiple. Further, five different tools, including the time history, the Poincaré map, and the sensitivity to initial conditions, are used to identify the motion form of the nonlinear vibration. Numerical results also show the characteristics of the quasiperiodic motion of the translating Timoshenko beam under an incommensurable re- lationship between the dual-frequency excitations. 展开更多
关键词 axially accelerating Timoshenko beam VISCOELASTICITY nonlinear dynamics parametric excitation external excitation
下载PDF
New Family of Exact Solutions and Chaotic Soltions of Generalized Breor-Kaup System in (2+1)-Dimensions via an Extended Mapping Approach 被引量:11
12
作者 FANG Jian-Ping ZHENG Chun-Long +2 位作者 ZHU Hai-Ping REN Qing-Bao CHEN Li-Qun 《Communications in Theoretical Physics》 SCIE CAS CSCD 2005年第2X期203-208,共6页
Starting from an extended mapping approach, a new type of variable separation solution with arbitrary functions of generalized (2+1)-dimensional Broer-Kaup system (GBK) system is derived. Then based on the derived sol... Starting from an extended mapping approach, a new type of variable separation solution with arbitrary functions of generalized (2+1)-dimensional Broer-Kaup system (GBK) system is derived. Then based on the derived solitary wave solution, we obtain some specific chaotic solitons to the (2+1)-dimensional GBK system. 展开更多
关键词 扩展影射 GBK系统 无序孤子 空间系统
下载PDF
Integration of a nonlinear energy sink and a piezoelectric energy harvester 被引量:10
13
作者 Xiang LI Yewei ZHANG +1 位作者 Hu DING Liqun CHEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2017年第7期1019-1030,共12页
A mechanical-piezoelectric system is explored to reduce vibration and to harvest energy. The system consists of a piezoelectric device and a nonlinear energy sink (NES), which is a nonlinear oscillator without linea... A mechanical-piezoelectric system is explored to reduce vibration and to harvest energy. The system consists of a piezoelectric device and a nonlinear energy sink (NES), which is a nonlinear oscillator without linear stiffness. The NES-piezoelectric sys- tem is attached to a 2-degree-of-freedom primary system subjected to a shock load. This mechanical-piezoelectric system is investigated based on the concepts of the percentages of energy transition and energy transition measure. The strong target energy transfer occurs for some certain transient excitation amplitude and NES nonlinear stiffness. The plots of wavelet transforms are used to indicate that the nonlinear beats initiate energy transitions between the NES-piezoelectric system and the primary system in the tran- sient vibration, and a 1:1 transient resonance capture occurs between two subsystems. The investigation demonstrates that the integrated NES-piezoelectric mechanism can re- duce vibration and harvest some vibration energy. 展开更多
关键词 nonlinear energy sink (NES) nonlinear beat phenomenon piezoelectricenergy harvester energy transition NES-piezoelectric system
下载PDF
Vibration reduction evaluation of a linear system with a nonlinear energy sink under a harmonic and random excitation 被引量:11
14
作者 Jiren XUE Yewei ZHANG +1 位作者 Hu DING Liqun CHEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2020年第1期1-14,共14页
The nonlinear behaviors and vibration reduction of a linear system with a nonlinear energy sink(NES)are investigated.The linear system is excited by a harmonic and random base excitation,consisting of a mass block,a l... The nonlinear behaviors and vibration reduction of a linear system with a nonlinear energy sink(NES)are investigated.The linear system is excited by a harmonic and random base excitation,consisting of a mass block,a linear spring,and a linear viscous damper.The NES is composed of a mass block,a linear viscous damper,and a spring with ideal cubic nonlinear stiffness.Based on the generalized harmonic function method,the steady-state Fokker-Planck-Kolmogorov equation is presented to reveal the response of the system.The path integral method based on the Gauss-Legendre polynomial is used to achieve the numerical solutions.The performance of vibration reduction is evaluated by the displacement and velocity transition probability densities,the transmissibility transition probability density,and the percentage of the energy absorption transition probability density of the linear oscillator.The sensitivity of the parameters is analyzed for varying the nonlinear stiffness coefficient and the damper ratio.The investigation illustrates that a linear system with NES can also realize great vibration reduction under harmonic and random base excitations and random bifurcation may appear under different parameters,which will affect the stability of the system. 展开更多
关键词 nonlinear energy sink(NES) Gauss-Legendre polynomial TRANSMISSIBILITY percentage of energy absorption
下载PDF
Analytical modeling and simulation of porous electrodes: Li-ion distribution and diffusion-induced stress 被引量:6
15
作者 Liang Ji Zhansheng Guo 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2018年第1期187-198,共12页
A new model of porous electrodes based on the Gibbs free energy is developed, in which lithium-ion(Liion) diffusion, diffusion-induced stress(DIS), Butler–Volmer(BV) reaction kinetics, and size polydispersity of elec... A new model of porous electrodes based on the Gibbs free energy is developed, in which lithium-ion(Liion) diffusion, diffusion-induced stress(DIS), Butler–Volmer(BV) reaction kinetics, and size polydispersity of electrode particles are considered. The influence of BV reaction kinetics and concentration-dependent exchange current density(ECD) on concentration profile and DIS evolution are numerically investigated. BV reaction kinetics leads to a decrease in Li-ion concentration and DIS. In addition, concentrationdependent ECD results in a decrease in Li-ion concentration and an increase in DIS. Size polydispersity of electrode particles significantly affects the concentration profile and DIS.Optimal macroscopic state of charge(SOC) should consider the influence of the microscopic SOC values and mass fractions of differently sized particles. 展开更多
关键词 New model of porous electrode Butler–Volmer reaction kinetics Size polydispersity Exchange current density Li-ion concentration distribution Diffusioninduced stress
下载PDF
Quasi-static and dynamical analyses of a thermoviscoelastic Timoshenko beam using the differential quadrature method 被引量:5
16
作者 Qiang LYU Jingjing LI Nenghui ZHANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2019年第4期549-562,共14页
The quasi-static and dynamic responses of a thermoviscoelastic Timoshenko beam subject to thermal loads are analyzed. First, based on the small geometric deformation assumption and Boltzmann constitutive relation, the... The quasi-static and dynamic responses of a thermoviscoelastic Timoshenko beam subject to thermal loads are analyzed. First, based on the small geometric deformation assumption and Boltzmann constitutive relation, the governing equations for the beam are presented. Second, an extended differential quadrature method(DQM)in the spatial domain and a differential method in the temporal domain are combined to transform the integro-partial-differential governing equations into the ordinary differential equations. Third, the accuracy of the present discrete method is verified by elastic/viscoelastic examples, and the effects of thermal load parameters, material and geometrical parameters on the quasi-static and dynamic responses of the beam are discussed. Numerical results show that the thermal function parameter has a great effect on quasi-static and dynamic responses of the beam. Compared with the thermal relaxation time, the initial vibrational responses of the beam are more sensitive to the mechanical relaxation time of the thermoviscoelastic material. 展开更多
关键词 TIMOSHENKO beam THERMOVISCOELASTICITY thermal load dynamic response differential QUADRATURE method(DQM)
下载PDF
An improved cellular automaton model considering the effect of traffic lights and driving behaviour 被引量:6
17
作者 何红弟 卢伟真 董力耘 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第4期197-203,共7页
This paper proposes an improved cellular automaton model to describe the urban traffic flow with the consideration of traffic light and driving behaviour effects. Based on the model, the characteristics of the urban t... This paper proposes an improved cellular automaton model to describe the urban traffic flow with the consideration of traffic light and driving behaviour effects. Based on the model, the characteristics of the urban traffic flow on a single- lane road are investigated under three different control strategies, i.e., the synchronized, the green wave and the random strategies. The fundamental diagrams and time-space patterns of the traffic flows are provided for these strategies respectively. It finds that the dynamical transition to the congested flow appears when the vehicle density is higher than a critical level. The saturated flow is less dependent on the cycle time and the strategies of the traffic light control, while the critical vehicle density varies with the cycle time and the strategies. Simulated results indicate that the green wave strategy is proven to be the most effective one among the above three control strategies. 展开更多
关键词 traffic flow cellular automaton control strategy vehicle density
下载PDF
Noether symmetry and conserved quantities of the analytical dynamics of a Cosserat thin elastic rod 被引量:5
18
作者 王鹏 薛纭 刘宇陆 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第10期46-51,共6页
In this paper, we investigate the Noether symmetry and Noether conservation law of elastic rod dynamics with two independent variables: time t and arc coordinate s. Starting from the Lagrange equations of Cosserat ro... In this paper, we investigate the Noether symmetry and Noether conservation law of elastic rod dynamics with two independent variables: time t and arc coordinate s. Starting from the Lagrange equations of Cosserat rod dynamics, the criterion of Noether symmetry with Lagrange style for rod dynamics is given and the Noether conserved quantity is obtained. Not only are the conservations of generalized moment and generalized energy obtained, but also some other integrals. 展开更多
关键词 analytical mechanics Noether symmetry conservation laws Cosserat elastic rod dynamics
下载PDF
PIEZOELECTRIC PROPERTIES OF SINGLE-STRAND DNA MOLECULAR BRUSH BIOLAYERS 被引量:6
19
作者 Zhang Nenghui Shah Jinying Xing Jingjing 《Acta Mechanica Solida Sinica》 SCIE EI 2007年第3期206-210,共5页
The paper is devoted to investigations on nanomechanical behaviors of biochips in label-free biodetections. The chip consists of Si-layer, Ti-layer, Au-layer and single-strand DNA (ssDNA) molecular brush biolayer im... The paper is devoted to investigations on nanomechanical behaviors of biochips in label-free biodetections. The chip consists of Si-layer, Ti-layer, Au-layer and single-strand DNA (ssDNA) molecular brush biolayer immobilized by self-assembly technology of thiol group. Unlike previous viewpoints, such as force-bending, entropy-bending and curvature electricity effect, etc., the piezoelectric effect of the biopolymer brush layer is viewed as the main factor that induces nanomechanical bending of biochips, and a classical macroscopic piezoelectric constitutive relation is used to describe the piezoelectric effect. A new laminated cantilever beam model with a piezoelectric biolayer in continuum mechanics, the linearized Poisson-Boltzmann equation in statistical mechanics and the scaling method in polyelectrolyte brush theory are combined to es- tablish a relationship between the nanomechanical deflection of DNA chips and the factors such as nanoscopic structural features of ssDNA molecules, buffer salt concentration, macroscopic mechanical/piezoelectric parameters of DNA chips etc. Curve fitting of experimental data shows that the sign of the piezoelectric constant of the biolayer may control the deflection direction of DNA chips during the packaging process. 展开更多
关键词 DNA chip laminated beam polymer brush piezoelectric effect
下载PDF
Effect of surface stress and surface-induced stress on behavior of piezoelectric nanobeam 被引量:5
20
作者 Yanmei YUE Kaiyu XU +1 位作者 Xudong ZHANG Wenjing WANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2018年第7期953-966,共14页
A new continuum model is developed to study the influence of surface stress on the behaviors of piezoelectric nanobeams. Different from existing piezoelectric surface models which only consider the surface properties,... A new continuum model is developed to study the influence of surface stress on the behaviors of piezoelectric nanobeams. Different from existing piezoelectric surface models which only consider the surface properties, the proposed model takes surfaceinduced initial fields into consideration. Due to the fact that the surface-induced initial fields are totally different under various boundary conditions, two kinds of beams, the doubly-clamped beam and the cantilever beam, are analyzed. Furthermore, boundary conditions can affect not only the initial state of the piezoelectric nanobeam but also the forms of the governing equations. Based on the Euler-Bernoulli beam theory, the nonlin- ear Green-Lagrangian strain-displacement relationship is applied. In addition, the surface area change is also considered in the proposed model. The governing equations of the doubly-clamped and cantilever beams are derived by the energy variation principle. Com- pared with existing Young-Laplace models, the proposed model for the doubly-clamped beam is similar to the Young-Laplace models. However~ the governing equation of the cantilever beam derived by the proposed model is very different from that derived by the Young-Laplace models. The behaviors of piezoelectric nanobeams predicted by these two models Mso have significant discrepancies, which is owing to the surface-induced initial fields in the bulk beam. 展开更多
关键词 surface effect nonlinear strain surface residual stress piezoelectric nanobeam
下载PDF
上一页 1 2 32 下一页 到第
使用帮助 返回顶部