Investigating deuteron–deuteron(DD)fusion reactions in a plasma environment similar to the early stages of the Big Bang is an important topic in nuclear astrophysics.In this study,we experimentally investigated such ...Investigating deuteron–deuteron(DD)fusion reactions in a plasma environment similar to the early stages of the Big Bang is an important topic in nuclear astrophysics.In this study,we experimentally investigated such reactions,using eight laser beams with the third harmonic impacting on a deuterated polyethylene target at the ShenGuang-II Upgrade laser facility.This work focused on the application of range-filter(RF)spectrometers,assembled from a 70 lm aluminum filter and two CR-39 nuclear track detectors,to measure the yields of primary DD-protons.Based on the track diameter calibration results of 3 MeV protons used to diagnose the tracks on the RF spectrometers,an approximate primary DD-proton yield of(8.5±1.7)×10^6 was obtained,consistent with the yields from similar laser facilities worldwide.This indicates that the RF spectrometer is an effective way to measure primary DD-protons.However,due to the low yields of D^3He-protons and its small track diameter,CR-39 detectors were unable to distinguish it from the background spots.Using other accurate detectors may help to measure these rare events.展开更多
This paper introduces the recent progress in methodologies and their related applications based on the soft x-ray interference lithography beamline in the Shanghai synchrotron radiation facility.Dual-beam,multibeam in...This paper introduces the recent progress in methodologies and their related applications based on the soft x-ray interference lithography beamline in the Shanghai synchrotron radiation facility.Dual-beam,multibeam interference lithography and Talbot lithography have been adopted as basic methods in the beamline.To improve the experimental performance,a precise real-time vibration evaluation system has been established;and the lithography stability has been greatly improved.In order to meet the demands for higher resolution and practical application,novel experimental methods have been developed,such as high-order diffraction interference exposure,high-aspect-ratio and large-area stitching exposure,and parallel direct writing achromatic Talbot lithography.As of now,a 25 nm half-pitch pattern has been obtained;and a cm2 exposure area has been achieved in practical samples.The above methods have been applied to extreme ultraviolet photoresist evaluation,photonic crystal and surface plasmonic effect research,and so on.展开更多
Cascading stages of high gain harmonic generation free electron laser (FEL) seem to be a feasible way to generate short wavelength radiation. With help of the analytical estimates, we design a two-stage cascading sc...Cascading stages of high gain harmonic generation free electron laser (FEL) seem to be a feasible way to generate short wavelength radiation. With help of the analytical estimates, we design a two-stage cascading scheme to achieve 131 nm DUV radiation on the basis of the Shanghai deep ultraviolet free electron laser test facility. Detailed studies on the FEL performance, the stability and the sensitivity of the output power to parameter variation have been achieved by GENESIS1.3, and design of the lattice structure is presented.展开更多
In this paper we report the design and realization of beam trip diagnostic system at Shanghai Synchrotron Radiation Facility (SSRF). The system can find out the first fault signal in the key operation signals related ...In this paper we report the design and realization of beam trip diagnostic system at Shanghai Synchrotron Radiation Facility (SSRF). The system can find out the first fault signal in the key operation signals related to the RF system by analyzing the time sequence, also it can decide which trips occurs first among the three superconducting RF stations. All the states of monitored signals in a time period ahead and behind beam trip are recorded. The results are compared with those from other diagnostic tools at SSRF. The work is of help in improving reliability of the superconducting RF system and stability of the storage ring operation.展开更多
Fluoride salt-cooled high-temperature reactors(FHRs) include many attractive features, such as high temperature, large heat capacity, low pressure and strong inherent safety. Transient characteristics of FHR are parti...Fluoride salt-cooled high-temperature reactors(FHRs) include many attractive features, such as high temperature, large heat capacity, low pressure and strong inherent safety. Transient characteristics of FHR are particularly important for evaluating its operation performance. Thus, a specialized code OCFHR(operation and control analysis code of FHR) issued to study an experimental FHR's operation behaviors. The geometric modeling of OCFHR is based on one-dimensional lumped parameter method, and some simplifications are taken into consideration during simulation due to the existence of complex structures such as pebble bed, intermediate heat exchanger(IHX), air radiator(AR) and multiply channels.A point neutron kinetics model is developed, and neutron physics calculation is needed to provide some key inputs including axial power density distribution, reactivity coefficients and parameters about delayed neutron precursors. For analyzing the operational performance, five disturbed transients are simulated, involving reactivity step insertion, variations of coolant mass flow rate of primary loop and intermediate loop, adjustment of air inlet temperature and mass flow rate of air cooling system.Simulation results indicate that inherent self-stability of FHR restrains severe consequences under above transients,and some dynamic features are observed, such as large negative temperature feedbacks, remarkable thermal inertia and high response delay.展开更多
Based on the facility of the Shanghai Laser Electron Gamma Source (SLEGS), the transmutation for nuclear wastes such as 137^Cs and 129^I is investigated. It is found that nuclear waste can be transmuted efficiently ...Based on the facility of the Shanghai Laser Electron Gamma Source (SLEGS), the transmutation for nuclear wastes such as 137^Cs and 129^I is investigated. It is found that nuclear waste can be transmuted efficiently via photonuclear reaction triggered by gamma photons generated from Compton backscattering between CO2 laser photons and 3.5 GeV electrons. The nuclear activities of 137^Cs and 129^I are evaluated and compared with the results of transmutation triggered by bremsstrahlung gamma photons driven by ultra intense laser. Due to the better character of gamma photon spectrum as well as the high brightness of gamma photons, the transmutation rate of Compton backscattering method is much higher than that of the bremsstrahlung method.展开更多
The characteristics of daytime and nighttime suburbs PM2.5 in Shanghai were analyzed by synchrotron based X-ray fluorescence during the period of October, 2006 and November, 2007. The mass concentrations of nighttime ...The characteristics of daytime and nighttime suburbs PM2.5 in Shanghai were analyzed by synchrotron based X-ray fluorescence during the period of October, 2006 and November, 2007. The mass concentrations of nighttime PM2.5 was approximately two times that of daytime PM2.5. Some elements, such as Zn, Cu, Mn, Cl were found enriched at night. The local sources might have significant contribution to the nighttime PM2.5 pollutions.展开更多
High brightness of SSRF brings about synchrotron radiation security problems, which will be solved in physics design. The main radiations are generated from bending magnets and insertion devices. Since the fact that r...High brightness of SSRF brings about synchrotron radiation security problems, which will be solved in physics design. The main radiations are generated from bending magnets and insertion devices. Since the fact that radiation power and radiating area are different in these two kinds of synchrotron radiation, the arrangements of photon absorbers, diaphragms and other vacuum components need to be treated distinctively. In addition, SSRF interlock protection threshold is defined and the beam orbit in the straight line is limited. Hence, beam orbit in the bending magnets and IDs are also restricted by the threshold. The orbit restriction is calculated and helps us to arrange the vacuum components. In this paper, beam orbit distortion restricted by interlock protection threshold, radiation power, radiation angle and illuminating area are calculated. From the calculation results, the physics designs in manufacture and installation vacuum components are put forward. By commissioning, it is shown that physics requirements are met rigidly in the engineering process.展开更多
The effect of the high magnetic field(MF)on the distribution of solute concentration during directional solidification of Al-Cu alloy under low growth speed was experimentally investigated.The amount of nonequilibrium...The effect of the high magnetic field(MF)on the distribution of solute concentration during directional solidification of Al-Cu alloy under low growth speed was experimentally investigated.The amount of nonequilibrium eutectic is quantified via X-ray computed tomography(XCT)and demonstrated to reduce with the application of MF.Further,experimental results reveal that the MF alleviates the microsegregation and increases the average Cu concentration in solid solution,leading to the increases of the effective partition coefficient ke.It was also found that Cu concentration in solid solution increases continuously with the increasing intensity of MF,following the strengthening of micro-hardness.The change of ke under the MF is demonstrated to attribute to the thermoelectric magnetic convection(TEMC)in the mushy zone and the thermoelectric magnetic force(TEMF)acting on the solid.The TEMC is supposed to cause secondary convection owing to the inequality in flow velocities of circulation in different positions of dendrite stem.And the vacancies created by the proliferation and movement of dislocations induced by TEMF in the matrix is supposed to be able to capture solute atoms and thus enhance the solute concentration in the solid solution.展开更多
This paper describes a field programming gate array (FPGA) based low level radio frequency (LLRF) prototype for the SSRF storage ring RF system: This prototype includes the local oscillator (LO), analog front e...This paper describes a field programming gate array (FPGA) based low level radio frequency (LLRF) prototype for the SSRF storage ring RF system: This prototype includes the local oscillator (LO), analog front end, digital front end, RF out, clock distributing, digital signal processing and communication functions. All feedback algorithms are performed in FPGA. The long term of the test prototype with high power shows that the variations of the RF amplitude and the phase in the accelerating cavity are less than 1% and 1° respectively, and the variation of the cavity resonance frequency is controlled within 4-10 Hz.展开更多
Coherent enhancement of Smith-Purcell radiation has attracted people's attention not only in adopting a better source but also in beam diagnostics aspect. In this paper, we study the intrinsic mechanism of coherent S...Coherent enhancement of Smith-Purcell radiation has attracted people's attention not only in adopting a better source but also in beam diagnostics aspect. In this paper, we study the intrinsic mechanism of coherent Smith-Purcell radiation on the basis of the van den Berg model. The emitted power of Smith-Purcell radiation is determined by the bunch profile in transverse and longitudinal directions. For short bunch whose longitudinal pulse length is comparable with the radiation wavelength, it can be concluded approximately that the power is proportional to the square number of electrons per bunch.展开更多
A facile microfocusing optical design is presented which is optimized for less slope error against the traditional tapered mirror. The essential idea of the innovation is based on the characteristics of the slope-erro...A facile microfocusing optical design is presented which is optimized for less slope error against the traditional tapered mirror. The essential idea of the innovation is based on the characteristics of the slope-error curve for the prototype. The relationship between the mirror shape of the improved model and the driving moments is established. Analytical results have been compared with the results of the prototype. The design demonstrates theoretically that smaller slope error is obtained with longer active length.展开更多
The Shanghai Synchrotron Radiation Facility (SSRF) is a low emittance third-generation synchrotron radiation light source. Some optics parameters of the storage ring were measured when commissioning. This report prese...The Shanghai Synchrotron Radiation Facility (SSRF) is a low emittance third-generation synchrotron radiation light source. Some optics parameters of the storage ring were measured when commissioning. This report presents the common methods for measuring some optics parameters of the storage ring, including the betatron tune, beta function, chromaticity, natural chromaticity and dispersion. The results and analysis of measurement for the optics parameters are given here, which are indispensable for the orbit correction of the accelerator and the nonlinear optimization.展开更多
Higher harmonic cavity used in the third generation synchrotron light source increases the Touschek lifetime. The higher harmonic cavity of Shanghai Synchrotron Radiation Facility (SSRF) is a 1.5 GHz passive superco...Higher harmonic cavity used in the third generation synchrotron light source increases the Touschek lifetime. The higher harmonic cavity of Shanghai Synchrotron Radiation Facility (SSRF) is a 1.5 GHz passive superconducting cavity. Its higher order modes (HOM) are extracted by a ferrite HOM damper out of the cryostat. Multi-cell cavity is chosen concerning the voltage. The harmonic cavity dynamics, beam dynamics with passive harmonic cavity and the design of single cell cavity are included in this paper.展开更多
In high gain harmonic generation (HGHG) free electron laser (FEL), with the right choice of parameters of the modulator undulator, the dispersive section and the seed laser, one may make the spatial bunching of th...In high gain harmonic generation (HGHG) free electron laser (FEL), with the right choice of parameters of the modulator undulator, the dispersive section and the seed laser, one may make the spatial bunching of the electron beam density distribution correspond to one of the harmonic frequencies of the radiator radiation, instead of the fundamental frequency of the radiator radiation in conventional HGHG, thus the radiator undulator is in harmonic operation (HO) mode. In this paper, we investigate HO of HGHG FEL. Theoretical analyses with universal method are derived and numerical simulations in ultraviolet and deep ultraviolet spectral regions are given. It shows that the power of the 3rd harmonic radiation in the HO of HGHG may be as high as 18.5% of the fundamental power level. Thus HO of HGHG FEL may obtain short wavelength by using lower beam energy.展开更多
Topological materials and topological phases have recently become a hot topic in condensed matter physics.In this work,we report an In-intercalated transition-metal dichalcogenide In_(x)TaSe_(2)(named 112 system),a to...Topological materials and topological phases have recently become a hot topic in condensed matter physics.In this work,we report an In-intercalated transition-metal dichalcogenide In_(x)TaSe_(2)(named 112 system),a topological nodal-line semimetal in the prep seffiffinffi ce of both charge density wave(CDW)and superconductivity.In the x=0.58 sample,the 2×√3 commensurate CDW(CCDW)and the 2×2 CCDW are observed below 116 and 77 K,respectively.Consistent with theoretical calculations,the spin–orbital coupling gives rise to two twofold-degenerate nodal rings(Weyl rings)connected by drumhead surface states,confirmed by angle-resolved photoemission spectroscopy.Our results suggest that the 2×2 CCDW ordering gaps out one Weyl ring in accordance with the CDW band folding,while the other Weyl ring remains gapless with intact surface states.In addition,superconductivity emerges at 0.91 K,with the upper critical field deviating from the s-wave behavior at low temperature,implying possibly unconventional superconductivity.Therefore,we think this type of the 112 system may possess abundant physical states and offer a platform to investigate the interplay between CDW,nontrivial band topology and superconductivity.展开更多
The Shanghai Synchrotron Radiation Facility (SSRF)booster ring, a full energy injector for the storage ring, is deigned to accelerate the electron beam energy from 150 MeV to 3.5 GeV that demands high extraction eff...The Shanghai Synchrotron Radiation Facility (SSRF)booster ring, a full energy injector for the storage ring, is deigned to accelerate the electron beam energy from 150 MeV to 3.5 GeV that demands high extraction efficiency at the extraction energy with low beam loss rate when electrons are ramping. Closed orbit distortion (COD) caused by bending magnet field uniformity errors which affects the machine performance harmfully could be effectively reduced by bending magnet location sorting. Considering the affections of random errors in measurement, both ideal sorting and realistic sorting are studied based on measured bending magnet field uniformity errors and one reasonable combination of bending magnets which can reduce the horizontal COD by a factor of 5 is given as the final installation sequence of the booster bending magnets in this paper.展开更多
A number of superconducting cavities of axis-symmetric geometry have been considered to study the effect in order to achieve the desired performance. It is shown that the multipacting effect is strongly dependent on t...A number of superconducting cavities of axis-symmetric geometry have been considered to study the effect in order to achieve the desired performance. It is shown that the multipacting effect is strongly dependent on the condition of the RF surface and can be suppressed with reconsideration of the geometry. The simulation result is compared with the result of the semi-analytical model in the end.展开更多
This paper presents the analytical and simulation responses of the closed orbit distortion in the SSRF storage ring to random and plane wave like magnet vibrations respectively. It is shown that the use of girder is v...This paper presents the analytical and simulation responses of the closed orbit distortion in the SSRF storage ring to random and plane wave like magnet vibrations respectively. It is shown that the use of girder is very beneficial in the view of suppressing this response function. Effect of the independently supported gradient bending magnets to the closed orbit response is given. An analytic formula is written to give a rough estimate of the closed orbit distortion due to ground motion, taking into account the closed orbit response function and girder transfer function. As an example, the result of SSRF case is given.展开更多
During the design process, multipacting effect has been taken into consideration using a 2D simulation code MultiPac and all of the corners are rounded to suppress the multipacting effect in the pill-box cavity. Howev...During the design process, multipacting effect has been taken into consideration using a 2D simulation code MultiPac and all of the corners are rounded to suppress the multipacting effect in the pill-box cavity. However, unexpected multipacting effect prevents the increase of the input power when the magnetic field of focusing coils is added after adequate conditioning and a novel method is adopted to suppress it by introducing extra coils to counteract the field. This paper focuses on the simulation of multipacting effect in different magnetic field configurations. The experimental observations and simulation results of multipacting effect are presented and details of the multipacting process are also analyzed.展开更多
基金supported in part by the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB160203)the National Natural Science Foundation of China(Nos.11875311 and 11421505).
文摘Investigating deuteron–deuteron(DD)fusion reactions in a plasma environment similar to the early stages of the Big Bang is an important topic in nuclear astrophysics.In this study,we experimentally investigated such reactions,using eight laser beams with the third harmonic impacting on a deuterated polyethylene target at the ShenGuang-II Upgrade laser facility.This work focused on the application of range-filter(RF)spectrometers,assembled from a 70 lm aluminum filter and two CR-39 nuclear track detectors,to measure the yields of primary DD-protons.Based on the track diameter calibration results of 3 MeV protons used to diagnose the tracks on the RF spectrometers,an approximate primary DD-proton yield of(8.5±1.7)×10^6 was obtained,consistent with the yields from similar laser facilities worldwide.This indicates that the RF spectrometer is an effective way to measure primary DD-protons.However,due to the low yields of D^3He-protons and its small track diameter,CR-39 detectors were unable to distinguish it from the background spots.Using other accurate detectors may help to measure these rare events.
基金This work was performed at the SSRF XIL beamline(BL08U1B)Financial support was provided by the National Key R&D Program of China(2017YFA0206001)+1 种基金the National Key Basic Research Program of the China Science and Technology Commission of Shanghai Municipality(17JC1400802)the National Natural Science Foundation of China(Nos.11775291,11875314).
文摘This paper introduces the recent progress in methodologies and their related applications based on the soft x-ray interference lithography beamline in the Shanghai synchrotron radiation facility.Dual-beam,multibeam interference lithography and Talbot lithography have been adopted as basic methods in the beamline.To improve the experimental performance,a precise real-time vibration evaluation system has been established;and the lithography stability has been greatly improved.In order to meet the demands for higher resolution and practical application,novel experimental methods have been developed,such as high-order diffraction interference exposure,high-aspect-ratio and large-area stitching exposure,and parallel direct writing achromatic Talbot lithography.As of now,a 25 nm half-pitch pattern has been obtained;and a cm2 exposure area has been achieved in practical samples.The above methods have been applied to extreme ultraviolet photoresist evaluation,photonic crystal and surface plasmonic effect research,and so on.
基金Supported by Major State Basic Research Development Program of China(2002CB713600)
文摘Cascading stages of high gain harmonic generation free electron laser (FEL) seem to be a feasible way to generate short wavelength radiation. With help of the analytical estimates, we design a two-stage cascading scheme to achieve 131 nm DUV radiation on the basis of the Shanghai deep ultraviolet free electron laser test facility. Detailed studies on the FEL performance, the stability and the sensitivity of the output power to parameter variation have been achieved by GENESIS1.3, and design of the lattice structure is presented.
文摘In this paper we report the design and realization of beam trip diagnostic system at Shanghai Synchrotron Radiation Facility (SSRF). The system can find out the first fault signal in the key operation signals related to the RF system by analyzing the time sequence, also it can decide which trips occurs first among the three superconducting RF stations. All the states of monitored signals in a time period ahead and behind beam trip are recorded. The results are compared with those from other diagnostic tools at SSRF. The work is of help in improving reliability of the superconducting RF system and stability of the storage ring operation.
基金supported by the Strategic Priority Program of Chinese Academy of Science(XDA02010200)
文摘Fluoride salt-cooled high-temperature reactors(FHRs) include many attractive features, such as high temperature, large heat capacity, low pressure and strong inherent safety. Transient characteristics of FHR are particularly important for evaluating its operation performance. Thus, a specialized code OCFHR(operation and control analysis code of FHR) issued to study an experimental FHR's operation behaviors. The geometric modeling of OCFHR is based on one-dimensional lumped parameter method, and some simplifications are taken into consideration during simulation due to the existence of complex structures such as pebble bed, intermediate heat exchanger(IHX), air radiator(AR) and multiply channels.A point neutron kinetics model is developed, and neutron physics calculation is needed to provide some key inputs including axial power density distribution, reactivity coefficients and parameters about delayed neutron precursors. For analyzing the operational performance, five disturbed transients are simulated, involving reactivity step insertion, variations of coolant mass flow rate of primary loop and intermediate loop, adjustment of air inlet temperature and mass flow rate of air cooling system.Simulation results indicate that inherent self-stability of FHR restrains severe consequences under above transients,and some dynamic features are observed, such as large negative temperature feedbacks, remarkable thermal inertia and high response delay.
基金Knowledge Innovation Project of Chinese Academy of Sciences (KJCX2-SW-N13)China Postdoctoral ScienceFoundation, National Natural Science Foundation of China (10475108, 10605036, 10405032)+1 种基金One Hundred Person Project of SINAPShanghai Development Foundation for Science and Technology (06QA14062)
文摘Based on the facility of the Shanghai Laser Electron Gamma Source (SLEGS), the transmutation for nuclear wastes such as 137^Cs and 129^I is investigated. It is found that nuclear waste can be transmuted efficiently via photonuclear reaction triggered by gamma photons generated from Compton backscattering between CO2 laser photons and 3.5 GeV electrons. The nuclear activities of 137^Cs and 129^I are evaluated and compared with the results of transmutation triggered by bremsstrahlung gamma photons driven by ultra intense laser. Due to the better character of gamma photon spectrum as well as the high brightness of gamma photons, the transmutation rate of Compton backscattering method is much higher than that of the bremsstrahlung method.
基金Supported by Scientific Research Foundation of Chinese Academy of Sciences (KJCX3-SYW-N3)Scientific Research Foundation of Shanghai Institute of Applied Physics (90070301)National Natural Science Foundation of China (10775174)
文摘The characteristics of daytime and nighttime suburbs PM2.5 in Shanghai were analyzed by synchrotron based X-ray fluorescence during the period of October, 2006 and November, 2007. The mass concentrations of nighttime PM2.5 was approximately two times that of daytime PM2.5. Some elements, such as Zn, Cu, Mn, Cl were found enriched at night. The local sources might have significant contribution to the nighttime PM2.5 pollutions.
文摘High brightness of SSRF brings about synchrotron radiation security problems, which will be solved in physics design. The main radiations are generated from bending magnets and insertion devices. Since the fact that radiation power and radiating area are different in these two kinds of synchrotron radiation, the arrangements of photon absorbers, diaphragms and other vacuum components need to be treated distinctively. In addition, SSRF interlock protection threshold is defined and the beam orbit in the straight line is limited. Hence, beam orbit in the bending magnets and IDs are also restricted by the threshold. The orbit restriction is calculated and helps us to arrange the vacuum components. In this paper, beam orbit distortion restricted by interlock protection threshold, radiation power, radiation angle and illuminating area are calculated. From the calculation results, the physics designs in manufacture and installation vacuum components are put forward. By commissioning, it is shown that physics requirements are met rigidly in the engineering process.
基金supported by National Natural Science Foundation of China(No.51701112 and No.51690162)Shanghai RisingStar Program(20QA1403800)+1 种基金Shanghai Science and Technology Committee(No.17JC1400602 and 19DZ1100704)the support from Shanghai Synchrotron X-ray Facility(SSRF)on experiment and data analysis。
文摘The effect of the high magnetic field(MF)on the distribution of solute concentration during directional solidification of Al-Cu alloy under low growth speed was experimentally investigated.The amount of nonequilibrium eutectic is quantified via X-ray computed tomography(XCT)and demonstrated to reduce with the application of MF.Further,experimental results reveal that the MF alleviates the microsegregation and increases the average Cu concentration in solid solution,leading to the increases of the effective partition coefficient ke.It was also found that Cu concentration in solid solution increases continuously with the increasing intensity of MF,following the strengthening of micro-hardness.The change of ke under the MF is demonstrated to attribute to the thermoelectric magnetic convection(TEMC)in the mushy zone and the thermoelectric magnetic force(TEMF)acting on the solid.The TEMC is supposed to cause secondary convection owing to the inequality in flow velocities of circulation in different positions of dendrite stem.And the vacancies created by the proliferation and movement of dislocations induced by TEMF in the matrix is supposed to be able to capture solute atoms and thus enhance the solute concentration in the solid solution.
文摘This paper describes a field programming gate array (FPGA) based low level radio frequency (LLRF) prototype for the SSRF storage ring RF system: This prototype includes the local oscillator (LO), analog front end, digital front end, RF out, clock distributing, digital signal processing and communication functions. All feedback algorithms are performed in FPGA. The long term of the test prototype with high power shows that the variations of the RF amplitude and the phase in the accelerating cavity are less than 1% and 1° respectively, and the variation of the cavity resonance frequency is controlled within 4-10 Hz.
基金Supported by Major State Basic Research Development Program of China (2002CB713600)
文摘Coherent enhancement of Smith-Purcell radiation has attracted people's attention not only in adopting a better source but also in beam diagnostics aspect. In this paper, we study the intrinsic mechanism of coherent Smith-Purcell radiation on the basis of the van den Berg model. The emitted power of Smith-Purcell radiation is determined by the bunch profile in transverse and longitudinal directions. For short bunch whose longitudinal pulse length is comparable with the radiation wavelength, it can be concluded approximately that the power is proportional to the square number of electrons per bunch.
文摘A facile microfocusing optical design is presented which is optimized for less slope error against the traditional tapered mirror. The essential idea of the innovation is based on the characteristics of the slope-error curve for the prototype. The relationship between the mirror shape of the improved model and the driving moments is established. Analytical results have been compared with the results of the prototype. The design demonstrates theoretically that smaller slope error is obtained with longer active length.
基金Supported by Major State Basic Research Development Program of China (2002CB713600)
文摘The Shanghai Synchrotron Radiation Facility (SSRF) is a low emittance third-generation synchrotron radiation light source. Some optics parameters of the storage ring were measured when commissioning. This report presents the common methods for measuring some optics parameters of the storage ring, including the betatron tune, beta function, chromaticity, natural chromaticity and dispersion. The results and analysis of measurement for the optics parameters are given here, which are indispensable for the orbit correction of the accelerator and the nonlinear optimization.
基金Science and Technology Commission of Shanghai Municipality(026505027,036505011)
文摘Higher harmonic cavity used in the third generation synchrotron light source increases the Touschek lifetime. The higher harmonic cavity of Shanghai Synchrotron Radiation Facility (SSRF) is a 1.5 GHz passive superconducting cavity. Its higher order modes (HOM) are extracted by a ferrite HOM damper out of the cryostat. Multi-cell cavity is chosen concerning the voltage. The harmonic cavity dynamics, beam dynamics with passive harmonic cavity and the design of single cell cavity are included in this paper.
基金Supported by Major State Basic Research Development Program of China(2002CB713600)
文摘In high gain harmonic generation (HGHG) free electron laser (FEL), with the right choice of parameters of the modulator undulator, the dispersive section and the seed laser, one may make the spatial bunching of the electron beam density distribution correspond to one of the harmonic frequencies of the radiator radiation, instead of the fundamental frequency of the radiator radiation in conventional HGHG, thus the radiator undulator is in harmonic operation (HO) mode. In this paper, we investigate HO of HGHG FEL. Theoretical analyses with universal method are derived and numerical simulations in ultraviolet and deep ultraviolet spectral regions are given. It shows that the power of the 3rd harmonic radiation in the HO of HGHG may be as high as 18.5% of the fundamental power level. Thus HO of HGHG FEL may obtain short wavelength by using lower beam energy.
基金the National Key R&D Program of the China(2016YFA0300402,2014CB648400,and 2016YFA0300203)the National Natural Science Foundation of China(11774305 and 11274006)the Fundamental Research Funds for the Central Universities of China。
文摘Topological materials and topological phases have recently become a hot topic in condensed matter physics.In this work,we report an In-intercalated transition-metal dichalcogenide In_(x)TaSe_(2)(named 112 system),a topological nodal-line semimetal in the prep seffiffinffi ce of both charge density wave(CDW)and superconductivity.In the x=0.58 sample,the 2×√3 commensurate CDW(CCDW)and the 2×2 CCDW are observed below 116 and 77 K,respectively.Consistent with theoretical calculations,the spin–orbital coupling gives rise to two twofold-degenerate nodal rings(Weyl rings)connected by drumhead surface states,confirmed by angle-resolved photoemission spectroscopy.Our results suggest that the 2×2 CCDW ordering gaps out one Weyl ring in accordance with the CDW band folding,while the other Weyl ring remains gapless with intact surface states.In addition,superconductivity emerges at 0.91 K,with the upper critical field deviating from the s-wave behavior at low temperature,implying possibly unconventional superconductivity.Therefore,we think this type of the 112 system may possess abundant physical states and offer a platform to investigate the interplay between CDW,nontrivial band topology and superconductivity.
文摘The Shanghai Synchrotron Radiation Facility (SSRF)booster ring, a full energy injector for the storage ring, is deigned to accelerate the electron beam energy from 150 MeV to 3.5 GeV that demands high extraction efficiency at the extraction energy with low beam loss rate when electrons are ramping. Closed orbit distortion (COD) caused by bending magnet field uniformity errors which affects the machine performance harmfully could be effectively reduced by bending magnet location sorting. Considering the affections of random errors in measurement, both ideal sorting and realistic sorting are studied based on measured bending magnet field uniformity errors and one reasonable combination of bending magnets which can reduce the horizontal COD by a factor of 5 is given as the final installation sequence of the booster bending magnets in this paper.
文摘A number of superconducting cavities of axis-symmetric geometry have been considered to study the effect in order to achieve the desired performance. It is shown that the multipacting effect is strongly dependent on the condition of the RF surface and can be suppressed with reconsideration of the geometry. The simulation result is compared with the result of the semi-analytical model in the end.
文摘This paper presents the analytical and simulation responses of the closed orbit distortion in the SSRF storage ring to random and plane wave like magnet vibrations respectively. It is shown that the use of girder is very beneficial in the view of suppressing this response function. Effect of the independently supported gradient bending magnets to the closed orbit response is given. An analytic formula is written to give a rough estimate of the closed orbit distortion due to ground motion, taking into account the closed orbit response function and girder transfer function. As an example, the result of SSRF case is given.
文摘During the design process, multipacting effect has been taken into consideration using a 2D simulation code MultiPac and all of the corners are rounded to suppress the multipacting effect in the pill-box cavity. However, unexpected multipacting effect prevents the increase of the input power when the magnetic field of focusing coils is added after adequate conditioning and a novel method is adopted to suppress it by introducing extra coils to counteract the field. This paper focuses on the simulation of multipacting effect in different magnetic field configurations. The experimental observations and simulation results of multipacting effect are presented and details of the multipacting process are also analyzed.