Iron-based superconductor family FeX(X=S,Se,Te)has been one of the research foci in physics and material science due to their record-breaking superconducting temperature(FeSe film)and rich physical phenomena.Recently,...Iron-based superconductor family FeX(X=S,Se,Te)has been one of the research foci in physics and material science due to their record-breaking superconducting temperature(FeSe film)and rich physical phenomena.Recently,FeS,the least studied Fe X compound(due to the difficulty in synthesizing high quality macroscopic crystals)attracted much attention because of its puzzling superconducting pairing symmetry.In this work,combining scanning tunneling microscopy and angle resolved photoemission spectroscopy(ARPES)with sub-micron spatial resolution,we investigate the intrinsic electronic structures of superconducting FeS from individual single crystalline domains.Unlike FeTe or FeSe,FeS remains identical tetragonal structure from room temperature down to 5 K,and the band structures observed can be well reproduced by our ab-initio calculations.Remarkably,mixed with the 1×1 tetragonal metallic phase,we also observe the coexistence of √5×√5 reconstructed insulating phase in the crystal,which not only helps explain the unusual properties of FeS,but also demonstrates the importance of using spatially resolved experimental tools in the study of this compound.展开更多
The aluminum shielded room has been an important part of ultra-low-field magnetic resonance imaging (ULF MRI) based on the superconducting quantum interference device (SQUID). The shielded room is effective to att...The aluminum shielded room has been an important part of ultra-low-field magnetic resonance imaging (ULF MRI) based on the superconducting quantum interference device (SQUID). The shielded room is effective to attenuate the external radio-frequency field and keep the extremely sensitive detector, SQUID, working properly. A high-performance shielded room can increase the signal-to-noise ratio (SNR) and improve image quality. In this study, a circular coil with a diameter of 50 cm and a square coil with a side length of 2.0 m was used to simulate the magnetic fields from the nearby electric apparatuses and the distant environmental noise sources. The shielding effectivenesses (SE) of the shielded room with different thicknesses of aluminum sheets were calculated and simulated. A room using 6-mm-thick aluminum plates with a dimension of 1.5 m x 1.5 m x 2.0 m was then constructed. The SE was experimentally measured by using three-axis SQUID magnetometers, with tranisent magnetic field induced in the aluminum plates by the strong pre-polarization pulses. The results of the measured SE agreed with that from the simulation. In addition, the introduction of a 0.5-mm gap caused the obvious reduction of SE indicating the importance of door design. The nuclear magnetic resonance (NMR) signals of water at 5.9 kHz were measured in free space and in a shielded room, and the SNR was improved from 3 to 15. The simulation and experimental results will help us design an aluminum shielded room which satisfies the requirements for future ULF human brain imaging. Finally, the cancellation technique of the transient eddy current was tried, the simulation of the cancellation technique will lead us to finding an appropriate way to suppress the eddy current fields.展开更多
Josephson parametric amplifiers (JPAs) with nearly quantum-limited noise performance have become indispensable devices for the measurements of superconducting quantum information. We have developed an all-Nb lumped-el...Josephson parametric amplifiers (JPAs) with nearly quantum-limited noise performance have become indispensable devices for the measurements of superconducting quantum information. We have developed an all-Nb lumped-element flux-driven JPA operating in the three-wave mixing mode. Our Nb-based JPA comprises Nb/Al-AlOx/Nb Josephson junctions, a parallel-plate capacitor with SiO2 dielectric sandwiched between two Nb layers, a bottom coplanar waveguides layer, and a top Nb wiring layer. We experimentally demonstrate a 20 dB gain over a 190 MHz bandwidth, a mean 1 dB compression of -123 dBm, and near quantum-limited noise performance. This fabrication process can be further used to design impedance transformed parametric amplifiers for multiple-qubit readout.展开更多
A cold preamplifier based on superconducting quantum interference devices(SQUIDs)is currently the preferred readout technology for the low-noise transition edge sensor(TES).In this work,we have designed and fabricated...A cold preamplifier based on superconducting quantum interference devices(SQUIDs)is currently the preferred readout technology for the low-noise transition edge sensor(TES).In this work,we have designed and fabricated a series SQUID array(SSA)amplifier for the TES detector readout circuit.In this SSA amplifier,each SQUID cell is composed of a first-order gradiometer formed using two equally large square washers,and an on-chip low pass filter(LPF)as a radiofrequency(RF)choke has been developed to reduce the Josephson oscillation interference between individual SQUID cells.In addition,a highly symmetric layout has been designed carefully to provide a fully consistent embedded electromagnetic environment and achieve coherent flux operation.The measured results show smooth V-Φcharacteristics and a swing voltage that increases linearly with increasing SQUID cell number N.A white flux noise level as low as 0.28μφ;/Hz;is achieved at 0.1 K,corresponding to a low current noise level of 7 pA/Hz;.We analyze the measured noise contribution at mK-scale temperatures and find that the dominant noise derives from a combination of the SSA intrinsic noise and the equivalent current noise of the room temperature electronics.展开更多
Superconducting nanowire single-photon detectors(SNSPDs) have attracted considerable attention owing to their excellent detection performance;however, the underlying physics of the detection process is still unclear.I...Superconducting nanowire single-photon detectors(SNSPDs) have attracted considerable attention owing to their excellent detection performance;however, the underlying physics of the detection process is still unclear.In this study, we investigate the wavelength dependence of the intrinsic detection efficiency(IDE) for NbN SNSPDs.We fabricate various NbN SNSPDs with linewidths ranging from 30 nm to 140 nm.Then, for each detector, the IDE curves as a function of bias current for different incident photon wavelengths of 510–1700 nm are obtained.From the IDE curves, the relations between photon energy and bias current at a certain IDE are extracted.The results exhibit clear nonlinear energy–current relations for the NbN detectors, indicating that a detection model only considering quasiparticle diffusion is unsuitable for the meander-type NbN-based SNSPDs.Our work provides additional experimental data on SNSPD detection mechanism and may serve as an interesting reference for further investigation.展开更多
By means of oxide molecular beam epitaxy with shutter-growth mode, we fabricate a series of electron-doped (Sr1-xLax)2IrO4 (001) (x=0, 0.05, 0.1 and 0.15) single crystalline thin films and then investigate the d...By means of oxide molecular beam epitaxy with shutter-growth mode, we fabricate a series of electron-doped (Sr1-xLax)2IrO4 (001) (x=0, 0.05, 0.1 and 0.15) single crystalline thin films and then investigate the doping dependence of the electronic structure utilizing in-situ angle-resolved photoemission spectroscopy. It is found that with the increasing doping content, the Fermi levels of samples progressively shift upward. Prominently, an extra electron pocket crossing the Fermi level around the M point is evidently observed in the 15% nominal doping sample. Moreover, bulk-sensitive transport measurements confirm that the doping effectively suppresses the insulating state with respect to the as-grown Sr2IrO4, though the doped samples still remain insulating at low temperatures due to the localization effect possibly stemming from disorders including oxygen deficiencies. Our work provides another feasible doping method to tune electronic structure of Sr2 IrO4.展开更多
Graphene with a Dirac cone-like electronic structure has been extensively studied because of its novel transport properties and potential application for future electronic devices.For epitaxially grown graphene,the pr...Graphene with a Dirac cone-like electronic structure has been extensively studied because of its novel transport properties and potential application for future electronic devices.For epitaxially grown graphene,the process conditions and the microstructures are strongly dependent on various substrate materials with different lattice constants and interface energies.Utilizing angle-resolved photoemission spectroscopy,here we report an investigation of the electronic structure of single-crystalline graphene grown on Cu/Ni(111)alloy film by chemical vapor deposition.With a relatively low growth temperature,graphene on Cu/Ni(111)exhibits a Dirac cone-like dispersion comparable to that of graphene grown on Cu(111).The linear dispersions forming Dirac cone are as wide as 2 e V,with the Fermi velocity of approximately 1.1×10^6 m/s.Dirac cone opens a gap of approximately 152 meV at the binding energy of approximately 304 meV.Our findings would promote the study of engineering of graphene on different substrate materials.展开更多
SQUID gradiometer techniques are widely used in noise cancellation for biomagnetic measurements.An appropriate gradiometer baseline is very important for the biomagnetic detection with high performance.By placing seve...SQUID gradiometer techniques are widely used in noise cancellation for biomagnetic measurements.An appropriate gradiometer baseline is very important for the biomagnetic detection with high performance.By placing several magnetometers at different heights along the vertical direction,we could simultaneously obtain the synthetic gradiometers with different baselines.By using the traditional signal-to-noise ratio(SNR) as a performance index,we successfully obtain an optimal baseline for the magnetocardiography(MCG) measurement in a magnetically shielded room(MSR).Finally,we obtain an optimal baseline of 7 cm and use it for the practical MCG measurement in our MSR.The SNR about 38 dB is obtained in the recorded MCG signal.展开更多
The performance of a superconducting quantum interference device(SQUID) gradiometer is always determined by its pick-up coil geometry, such as baseline and radius. In this paper, based on the expressions for the cou...The performance of a superconducting quantum interference device(SQUID) gradiometer is always determined by its pick-up coil geometry, such as baseline and radius. In this paper, based on the expressions for the coupled flux threading a magnetometer obtained by Wikswo, we studied how the gradiometer performance parameters, including the current dipole sensitivity, spatial resolution and signal-to-noise ratio(SNR), are affected by its pick-up coil via Mat Lab simulation.Depending on the simulation results, the optimal pick-up coil design region for a certain gradiometer can be obtained.To verify the simulation results, we designed and fabricated several first-order gradiometers based on the weakly damped SQUID with different pick-up coils by applying superconducting connection. The experimental measurements were conducted on a simple current dipole in a magnetically shielding room. The measurement results are well in coincidence with the simulation ones, indicating that the simulation model is useful in specific pick-up coil design.展开更多
We present our lab cryocooler-based superconducting nanowire single photon detection (SNSPD) system. The dark count rate and system quantum efficiency are investigated at the bath temperature of 3.1 K with a 300-inK...We present our lab cryocooler-based superconducting nanowire single photon detection (SNSPD) system. The dark count rate and system quantum efficiency are investigated at the bath temperature of 3.1 K with a 300-inK temperature fluctuation. The polarization sensitivity of the SNSPD is also measured, and the system counting rate and the timing jitter are discussed.展开更多
Co-primary spectrum sharing for multiple operators has been utilized to fully explore the spectrum resources and thus improve the spectrum efficiency. The inter-operator interference(IOI) problem should be seriously c...Co-primary spectrum sharing for multiple operators has been utilized to fully explore the spectrum resources and thus improve the spectrum efficiency. The inter-operator interference(IOI) problem should be seriously considered in order to achieve the mentioned target, especially under the scenario of the ultradense network(UDN) in the fifth generation(5G) wireless systems. To solve this problem, we propose an asymmetrical power levels based soft IOI coordination mechanism. The shared spectrum pool is consisted of three separated parts, where each part can be dynamically adjusted according to the minimal spectrum demand from each operator. Furthermore, different power masks are configured to different parts for each operator. The simulation results show that the proposed mechanism can improve the network spectrum efficiency significantly.展开更多
In order to support massive Machine Type Communication(mMTC) applications in future Fifth Generation(5G) systems,a key technical challenge is to design a highly effective multiple access protocol for massive connectio...In order to support massive Machine Type Communication(mMTC) applications in future Fifth Generation(5G) systems,a key technical challenge is to design a highly effective multiple access protocol for massive connection requests and huge traffic load from all kinds of smart devices,e.g.bike,watch,phone,ring,glasses,shoes,etc..To solve this hard problem in distributed scenarios with massive competing devices,this paper proposes and evaluates a Neighbor-Aware Multiple Access(NAMA) protocol,which is scalable and adaptive to different connectivity size and traffic load.By exploiting acknowledgement signals broadcasted from the neighboring devices with successful packet transmissions,NAMA is able to turn itself from a contention-based random access protocol to become a contention-free deterministic access protocol with particular transmission schedules for all neighboring devices after a short transition period.The performance of NAMA is fully evaluated from random state to deterministic state through extensive computer simulations under different network sizes and Contention Window(CW)settings.Compared with traditional IEEE802.11 Distributed Coordination Function(DCF),for a crowded network with 50 devices,NAMA can greatly improve system throughput and energy efficiency by more than 110%and210%,respectively,while reducing average access delay by 53%in the deterministic state.展开更多
For a practical superconducting quantum interference device(SQUID) based measurement system,the Tesla/volt coefficient must be accurately calibrated.In this paper,we propose a highly efficient method of calibrating ...For a practical superconducting quantum interference device(SQUID) based measurement system,the Tesla/volt coefficient must be accurately calibrated.In this paper,we propose a highly efficient method of calibrating a SQUID magnetometer system using three orthogonal Helmholtz coils.The Tesla/volt coefficient is regarded as the magnitude of a vector pointing to the normal direction of the pickup coil.By applying magnetic fields through a three-dimensional Helmholtz coil,the Tesla/volt coefficient can be directly calculated from magnetometer responses to the three orthogonally applied magnetic fields.Calibration with alternating current(AC) field is normally used for better signal-to-noise ratio in noisy urban environments and the results are compared with the direct current(DC) calibration to avoid possible effects due to eddy current.In our experiment,a calibration relative error of about 6.89 × 10-4is obtained,and the error is mainly caused by the non-orthogonality of three axes of the Helmholtz coils.The method does not need precise alignment of the magnetometer inside the Helmholtz coil.It can be used for the multichannel magnetometer system calibration effectively and accurately.展开更多
A dual-washer superconducting quantum interference device (SQUID) with a loop inductance of 350 pH and two on- washer integrated input coils is designed according to conventional niobium technology. In order to obta...A dual-washer superconducting quantum interference device (SQUID) with a loop inductance of 350 pH and two on- washer integrated input coils is designed according to conventional niobium technology. In order to obtain a large SQUID flux-to-voltage transfer coefficient, the junction shunt resistance is selected to be 33 Ω. A vertical SQUID gradiometer module with a baseline of 100 mm is constructed by utilizing such a SQUID and a first-order niobium wire-wound antenna. The sensitivity of this module reaches about 0.2 fT/(cm.Hz1/2) in the white noise range using a direct readout scheme, i.e., the SQUID is directly connected to an operational amplifier, in a magnetically shielded room. Some magnetocardiography (MCG) measurements with a sufficiently high signal-to-noise ratio (SNR) are demonstrated.展开更多
We demonstrate a photon-counting chirped amplitude modulation (CAM) light detection and ranging (lidar) system incorporating a superconducting nanowire single-photon detector (SNSPD) and operated at a wavelength...We demonstrate a photon-counting chirped amplitude modulation (CAM) light detection and ranging (lidar) system incorporating a superconducting nanowire single-photon detector (SNSPD) and operated at a wavelength of 1550 nm. The distance accuracy of the lidar system was determined by the CAM bandwidth and signal-to-noise ratio (SNR) of an intermediate frequency (IF) signal. Owing to a short dead time (10 ns) and negligible dark count rate (70 Hz) of the SNSPD, the obtained IF signal attained an SNR of 42 dB and the direct distance accuracy was improved to 3 mm when the modulation bandwidth of the CAM signal was 240 MHz and the modulation period was 1 ms.展开更多
The growth of the wireless and mobile communication data traffic has brought severe challenges to the present telecommu- nication systems. To meet the ever-increasing mobile traffic demand in the next 5th generation ...The growth of the wireless and mobile communication data traffic has brought severe challenges to the present telecommu- nication systems. To meet the ever-increasing mobile traffic demand in the next 5th generation (SG) communication systems, deploying 5G in the unlicensed spectrum (SG-U), has been regarded as a promising technology. The Third Generation Partnership Project (3GPP) has specified the standardization of the Li- censed Assisted Access (LAA) and its extension enhanced LAA (eLAA), to opportunistically transmit in the unlicensed spectrum. The LAA/eLAA systems share unlicensed spectrum resource with other networks, e.g., the Wi-Fi systems. In this article, we analyze the coexistence between the eLAA and the Wi-Fi systems in the unlicensed spectrum. We firstly establish the system model where the eLAA coexists with the Wi-Fi systems. Then, we theoretically derive and figure out the unfairness in the multi-channel occupancy rate between the eLAA and the Wi-Fi systems. After that, we propose a weight based channel selection method to improve the fairness of the coexistence. The numerical results demonstrate that by avoiding contentions and declining collisions, our method not only enhances the fairness, but also improves the overall unlicensed spectrum usage rate.展开更多
An effective way to fabricate high-quality(Q)silicon microcavities on-chip is proposed and studied.Our fabrication technique consists of two significant steps:(1)patterning a special silicon micro-pillar by Bosch proc...An effective way to fabricate high-quality(Q)silicon microcavities on-chip is proposed and studied.Our fabrication technique consists of two significant steps:(1)patterning a special silicon micro-pillar by Bosch processes and(2)subsequent reflow of the pillar into a spherical-like microcavity using a laser pulse at 532 nm.Its shape and surface roughness are characterized using a scanning electron microscope and an atomic force microscope.The root-mean-square roughness of the surface is about 0.6 nm.A representative value for the loaded Q-factors of our silicon spherical-like microcavities is on the order of 10^(5).展开更多
The energy efficiency and packet delay tradeoffs in long term evolution-advanced(LTE-A) systems are investigated.Analytical expressions are derived to explain the relation of energy efficiency to mean packet delay,arr...The energy efficiency and packet delay tradeoffs in long term evolution-advanced(LTE-A) systems are investigated.Analytical expressions are derived to explain the relation of energy efficiency to mean packet delay,arrival rate and component carrier(CC) configurations,from the theoretical respective which reveals that the energy efficiency of multiple CC systems is closely related to the frequency of CCs and the number of active CCs.Based on the theoretical analysis,a CC adjusting scheme for LTE-A systems is proposed to maximize energy efficiency subject to delay constraint by dynamically altering the on/off state of CCs according to traffic variations.Numerical and simulation results show that for CCs in different frequency bands with equal transmit power,the proposed scheme could significantly improve the energy efficiency of users in all aggregation levels within the constraint of mean packet delay.展开更多
Fetal magnetocardiography (MCG) is a sophisticated non-invasive technique for the fetal heart diagnosis. We constructed a multichannel fetal MCG system based on a novel superconducting quantum interference device (...Fetal magnetocardiography (MCG) is a sophisticated non-invasive technique for the fetal heart diagnosis. We constructed a multichannel fetal MCG system based on a novel superconducting quantum interference device (SQUID) direct readout scheme called SQUID bootstrap circuit (SBC). The system incorporates four SBC gradiometers for the signal detection and three SBC magnetometers as the references. The fetal MCG signal at a 28-weeks’ gestation was measured. By the fetal MCG signal separation and average, the P-wave and QRS complex can be clearly identified. These results indicate that the SBC is one of the most promising techniques for the fetal MCG recordings.展开更多
With the gradual progression of the carbon neutrality target,the future of our electricity supply will experience a massive increase in solar generation,and approximately 50%of the global electricity generation will c...With the gradual progression of the carbon neutrality target,the future of our electricity supply will experience a massive increase in solar generation,and approximately 50%of the global electricity generation will come from solar generation by 2050.This provides the opportunity for researchers to diversify the applications of photovoltaics(PVs)and integrate for daily use in the future.Flexible solar cell technology is the next frontier in solar PV and is the key way to achieve CO_(2)neutrality.The integration of PV technology with other fields will greatly broaden the development areas for the PV industry,providing products with higher added value.In this paper,we reviewed the latest research progress on flexible solar cells(perovskite solar cells,organic solar cells,and flexible silicon solar cells),and proposed the future applications of flexible solar cell technology.展开更多
基金Project supported by CAS-Shanghai Science Research Center,China(Grant No.CAS-SSRC-YH-2015-01)the National Key R&D Program of China(Grant No.2017YFA0305400)+4 种基金the National Natural Science Foundation of China(Grant Nos.11674229,11227902,and 11604207)the EPSRC Platform Grant(Grant No.EP/M020517/1)Hefei Science Center,Chinese Academy of Sciences(Grant No.2015HSC-UE013)Science and Technology Commission of Shanghai Municipality,China(Grant No.14520722100)the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant No.XDB04040200)。
文摘Iron-based superconductor family FeX(X=S,Se,Te)has been one of the research foci in physics and material science due to their record-breaking superconducting temperature(FeSe film)and rich physical phenomena.Recently,FeS,the least studied Fe X compound(due to the difficulty in synthesizing high quality macroscopic crystals)attracted much attention because of its puzzling superconducting pairing symmetry.In this work,combining scanning tunneling microscopy and angle resolved photoemission spectroscopy(ARPES)with sub-micron spatial resolution,we investigate the intrinsic electronic structures of superconducting FeS from individual single crystalline domains.Unlike FeTe or FeSe,FeS remains identical tetragonal structure from room temperature down to 5 K,and the band structures observed can be well reproduced by our ab-initio calculations.Remarkably,mixed with the 1×1 tetragonal metallic phase,we also observe the coexistence of √5×√5 reconstructed insulating phase in the crystal,which not only helps explain the unusual properties of FeS,but also demonstrates the importance of using spatially resolved experimental tools in the study of this compound.
基金Project supported in part by the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant No.XDB04020200)in part by the National Natural Science Foundation of China(Grant No.11204339)
文摘The aluminum shielded room has been an important part of ultra-low-field magnetic resonance imaging (ULF MRI) based on the superconducting quantum interference device (SQUID). The shielded room is effective to attenuate the external radio-frequency field and keep the extremely sensitive detector, SQUID, working properly. A high-performance shielded room can increase the signal-to-noise ratio (SNR) and improve image quality. In this study, a circular coil with a diameter of 50 cm and a square coil with a side length of 2.0 m was used to simulate the magnetic fields from the nearby electric apparatuses and the distant environmental noise sources. The shielding effectivenesses (SE) of the shielded room with different thicknesses of aluminum sheets were calculated and simulated. A room using 6-mm-thick aluminum plates with a dimension of 1.5 m x 1.5 m x 2.0 m was then constructed. The SE was experimentally measured by using three-axis SQUID magnetometers, with tranisent magnetic field induced in the aluminum plates by the strong pre-polarization pulses. The results of the measured SE agreed with that from the simulation. In addition, the introduction of a 0.5-mm gap caused the obvious reduction of SE indicating the importance of door design. The nuclear magnetic resonance (NMR) signals of water at 5.9 kHz were measured in free space and in a shielded room, and the SNR was improved from 3 to 15. The simulation and experimental results will help us design an aluminum shielded room which satisfies the requirements for future ULF human brain imaging. Finally, the cancellation technique of the transient eddy current was tried, the simulation of the cancellation technique will lead us to finding an appropriate way to suppress the eddy current fields.
基金Project supported by the National Natural Science Foundation of China(Grant No.92065116)Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA18000000)the Key-Area Research and Development Program of Guangdong Province,China(Grant No.2020B0303030002).
文摘Josephson parametric amplifiers (JPAs) with nearly quantum-limited noise performance have become indispensable devices for the measurements of superconducting quantum information. We have developed an all-Nb lumped-element flux-driven JPA operating in the three-wave mixing mode. Our Nb-based JPA comprises Nb/Al-AlOx/Nb Josephson junctions, a parallel-plate capacitor with SiO2 dielectric sandwiched between two Nb layers, a bottom coplanar waveguides layer, and a top Nb wiring layer. We experimentally demonstrate a 20 dB gain over a 190 MHz bandwidth, a mean 1 dB compression of -123 dBm, and near quantum-limited noise performance. This fabrication process can be further used to design impedance transformed parametric amplifiers for multiple-qubit readout.
基金supported by the National Key Research and Development Program of China(Grant No.2017YFA0304003)。
文摘A cold preamplifier based on superconducting quantum interference devices(SQUIDs)is currently the preferred readout technology for the low-noise transition edge sensor(TES).In this work,we have designed and fabricated a series SQUID array(SSA)amplifier for the TES detector readout circuit.In this SSA amplifier,each SQUID cell is composed of a first-order gradiometer formed using two equally large square washers,and an on-chip low pass filter(LPF)as a radiofrequency(RF)choke has been developed to reduce the Josephson oscillation interference between individual SQUID cells.In addition,a highly symmetric layout has been designed carefully to provide a fully consistent embedded electromagnetic environment and achieve coherent flux operation.The measured results show smooth V-Φcharacteristics and a swing voltage that increases linearly with increasing SQUID cell number N.A white flux noise level as low as 0.28μφ;/Hz;is achieved at 0.1 K,corresponding to a low current noise level of 7 pA/Hz;.We analyze the measured noise contribution at mK-scale temperatures and find that the dominant noise derives from a combination of the SSA intrinsic noise and the equivalent current noise of the room temperature electronics.
基金Project supported by the National Key R&D Program of China(Grant No.2017YFA0304000)the National Natural Science Foundation of China(Grant Nos.61671438 and 61827823)+2 种基金the Science and Technology Commission of Shanghai Municipality,China(Grant No.16JC1400402)Program of Shanghai Academic/Technology Research Leader,China(Grant No.18XD1404600)the Joint Research Fund in Astronomy(Grant No.U1631240)under Cooperative Agreement between the NSFC and the Chinese Academy of Sciences
文摘Superconducting nanowire single-photon detectors(SNSPDs) have attracted considerable attention owing to their excellent detection performance;however, the underlying physics of the detection process is still unclear.In this study, we investigate the wavelength dependence of the intrinsic detection efficiency(IDE) for NbN SNSPDs.We fabricate various NbN SNSPDs with linewidths ranging from 30 nm to 140 nm.Then, for each detector, the IDE curves as a function of bias current for different incident photon wavelengths of 510–1700 nm are obtained.From the IDE curves, the relations between photon energy and bias current at a certain IDE are extracted.The results exhibit clear nonlinear energy–current relations for the NbN detectors, indicating that a detection model only considering quasiparticle diffusion is unsuitable for the meander-type NbN-based SNSPDs.Our work provides additional experimental data on SNSPD detection mechanism and may serve as an interesting reference for further investigation.
基金Supported by the National Basic Research Program of China(973 Program)under Grant Nos 2011CBA00106 and2012CB927400the National Natural Science Foundation of China under Grant Nos 11274332 and 11227902Helmholtz Association through the Virtual Institute for Topological Insulators(VITI).M.Y.Li and D.W.Shen are also supported by the Strategic Priority Research Program(B)of the Chinese Academy of Sciences under Grant No XDB04040300
文摘By means of oxide molecular beam epitaxy with shutter-growth mode, we fabricate a series of electron-doped (Sr1-xLax)2IrO4 (001) (x=0, 0.05, 0.1 and 0.15) single crystalline thin films and then investigate the doping dependence of the electronic structure utilizing in-situ angle-resolved photoemission spectroscopy. It is found that with the increasing doping content, the Fermi levels of samples progressively shift upward. Prominently, an extra electron pocket crossing the Fermi level around the M point is evidently observed in the 15% nominal doping sample. Moreover, bulk-sensitive transport measurements confirm that the doping effectively suppresses the insulating state with respect to the as-grown Sr2IrO4, though the doped samples still remain insulating at low temperatures due to the localization effect possibly stemming from disorders including oxygen deficiencies. Our work provides another feasible doping method to tune electronic structure of Sr2 IrO4.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51772317,11604356,and 11704394)
文摘Graphene with a Dirac cone-like electronic structure has been extensively studied because of its novel transport properties and potential application for future electronic devices.For epitaxially grown graphene,the process conditions and the microstructures are strongly dependent on various substrate materials with different lattice constants and interface energies.Utilizing angle-resolved photoemission spectroscopy,here we report an investigation of the electronic structure of single-crystalline graphene grown on Cu/Ni(111)alloy film by chemical vapor deposition.With a relatively low growth temperature,graphene on Cu/Ni(111)exhibits a Dirac cone-like dispersion comparable to that of graphene grown on Cu(111).The linear dispersions forming Dirac cone are as wide as 2 e V,with the Fermi velocity of approximately 1.1×10^6 m/s.Dirac cone opens a gap of approximately 152 meV at the binding energy of approximately 304 meV.Our findings would promote the study of engineering of graphene on different substrate materials.
基金supported by the "Strategic Priority Research Program(B)"of the Chinese Academy of Sciences(Grant No.XDB04020200)the Knowledge Innovation Program of the Chinese Academy of Sciences(Grant No.KGCX2-EW-105)
文摘SQUID gradiometer techniques are widely used in noise cancellation for biomagnetic measurements.An appropriate gradiometer baseline is very important for the biomagnetic detection with high performance.By placing several magnetometers at different heights along the vertical direction,we could simultaneously obtain the synthetic gradiometers with different baselines.By using the traditional signal-to-noise ratio(SNR) as a performance index,we successfully obtain an optimal baseline for the magnetocardiography(MCG) measurement in a magnetically shielded room(MSR).Finally,we obtain an optimal baseline of 7 cm and use it for the practical MCG measurement in our MSR.The SNR about 38 dB is obtained in the recorded MCG signal.
基金Project supported by the Key Project of Shanghai Zhangjiang National Innovation Demonstration Zone of the Special Development Fund,China(Grant No.2015-JD-C104-060)the National Natural Science Foundation of China(Grant No.61741122)
文摘The performance of a superconducting quantum interference device(SQUID) gradiometer is always determined by its pick-up coil geometry, such as baseline and radius. In this paper, based on the expressions for the coupled flux threading a magnetometer obtained by Wikswo, we studied how the gradiometer performance parameters, including the current dipole sensitivity, spatial resolution and signal-to-noise ratio(SNR), are affected by its pick-up coil via Mat Lab simulation.Depending on the simulation results, the optimal pick-up coil design region for a certain gradiometer can be obtained.To verify the simulation results, we designed and fabricated several first-order gradiometers based on the weakly damped SQUID with different pick-up coils by applying superconducting connection. The experimental measurements were conducted on a simple current dipole in a magnetically shielding room. The measurement results are well in coincidence with the simulation ones, indicating that the simulation model is useful in specific pick-up coil design.
基金Supported by National Natural Science Foundation of China under Grant No 60801046, the National Basic Research Program of China under Grant No. 2009CB929602, and Science and Technology Commission of Shanghai Municipality under Grant Nos 08dz1400702, 08PJ1411200 and 09DJ1400700.
文摘We present our lab cryocooler-based superconducting nanowire single photon detection (SNSPD) system. The dark count rate and system quantum efficiency are investigated at the bath temperature of 3.1 K with a 300-inK temperature fluctuation. The polarization sensitivity of the SNSPD is also measured, and the system counting rate and the timing jitter are discussed.
基金supported by National High Technology Research and Development Program of China under Grants No.2014AA01A701major project of Ministry of Industry and Information Technology of China under Grant No.2015ZX03001032+1 种基金major project of Shanghai under Grant No.,14511101501National Natural Science Foundation of China under Grant No.61471347
文摘Co-primary spectrum sharing for multiple operators has been utilized to fully explore the spectrum resources and thus improve the spectrum efficiency. The inter-operator interference(IOI) problem should be seriously considered in order to achieve the mentioned target, especially under the scenario of the ultradense network(UDN) in the fifth generation(5G) wireless systems. To solve this problem, we propose an asymmetrical power levels based soft IOI coordination mechanism. The shared spectrum pool is consisted of three separated parts, where each part can be dynamically adjusted according to the minimal spectrum demand from each operator. Furthermore, different power masks are configured to different parts for each operator. The simulation results show that the proposed mechanism can improve the network spectrum efficiency significantly.
基金funded by the National Natural Science Foundation of China (Grant No.61231009)the National HighTech R&D Program of China(863)(Grant No.2014AA01A701)+5 种基金the National Science and Technology Major Project(Grant No. 2015ZX03001033-003)Ministry of Science and Technology International Cooperation Project(Grant No.2014DFE10160)the Science and Technology Commission of Shanghai Municipality(Grant No.14ZR1439600)the EU H2020 5G Wireless project(Grant No.641985)the EU FP7 QUICK project(Grant No. PIRSES-GA-2013-612652)the EPSRC TOUCAN project(Grant No.EP/L020009/1)
文摘In order to support massive Machine Type Communication(mMTC) applications in future Fifth Generation(5G) systems,a key technical challenge is to design a highly effective multiple access protocol for massive connection requests and huge traffic load from all kinds of smart devices,e.g.bike,watch,phone,ring,glasses,shoes,etc..To solve this hard problem in distributed scenarios with massive competing devices,this paper proposes and evaluates a Neighbor-Aware Multiple Access(NAMA) protocol,which is scalable and adaptive to different connectivity size and traffic load.By exploiting acknowledgement signals broadcasted from the neighboring devices with successful packet transmissions,NAMA is able to turn itself from a contention-based random access protocol to become a contention-free deterministic access protocol with particular transmission schedules for all neighboring devices after a short transition period.The performance of NAMA is fully evaluated from random state to deterministic state through extensive computer simulations under different network sizes and Contention Window(CW)settings.Compared with traditional IEEE802.11 Distributed Coordination Function(DCF),for a crowded network with 50 devices,NAMA can greatly improve system throughput and energy efficiency by more than 110%and210%,respectively,while reducing average access delay by 53%in the deterministic state.
基金Project supported by the“Strategic Priority Research Program(B)”of the Chinese Academy of Sciences(Grant No.XDB04020200)the Shanghai Municipal Science and Technology Commission Project,China(Grant No.15DZ1940902)
文摘For a practical superconducting quantum interference device(SQUID) based measurement system,the Tesla/volt coefficient must be accurately calibrated.In this paper,we propose a highly efficient method of calibrating a SQUID magnetometer system using three orthogonal Helmholtz coils.The Tesla/volt coefficient is regarded as the magnitude of a vector pointing to the normal direction of the pickup coil.By applying magnetic fields through a three-dimensional Helmholtz coil,the Tesla/volt coefficient can be directly calculated from magnetometer responses to the three orthogonally applied magnetic fields.Calibration with alternating current(AC) field is normally used for better signal-to-noise ratio in noisy urban environments and the results are compared with the direct current(DC) calibration to avoid possible effects due to eddy current.In our experiment,a calibration relative error of about 6.89 × 10-4is obtained,and the error is mainly caused by the non-orthogonality of three axes of the Helmholtz coils.The method does not need precise alignment of the magnetometer inside the Helmholtz coil.It can be used for the multichannel magnetometer system calibration effectively and accurately.
基金Project supported by the Main Direction Program of Knowledge Innovation of the Chinese Academy of Sciences(Grant No.KGCX2-EW-105)the "100 Talents Project" of the Chinese Academy of Sciences and Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant No.XDB04020200)
文摘A dual-washer superconducting quantum interference device (SQUID) with a loop inductance of 350 pH and two on- washer integrated input coils is designed according to conventional niobium technology. In order to obtain a large SQUID flux-to-voltage transfer coefficient, the junction shunt resistance is selected to be 33 Ω. A vertical SQUID gradiometer module with a baseline of 100 mm is constructed by utilizing such a SQUID and a first-order niobium wire-wound antenna. The sensitivity of this module reaches about 0.2 fT/(cm.Hz1/2) in the white noise range using a direct readout scheme, i.e., the SQUID is directly connected to an operational amplifier, in a magnetically shielded room. Some magnetocardiography (MCG) measurements with a sufficiently high signal-to-noise ratio (SNR) are demonstrated.
基金Project supported by National Key R&D Program of China(Grant No.2017YFA0304000)the National Natural Science Foundation of China(NSFC)(Grant Nos.61501442 and 61671438)the Joint Research Fund in Astronomy(U1631240)under Cooperative Agreement between the NSFC and Chinese Academy of Sciences(CAS)
文摘We demonstrate a photon-counting chirped amplitude modulation (CAM) light detection and ranging (lidar) system incorporating a superconducting nanowire single-photon detector (SNSPD) and operated at a wavelength of 1550 nm. The distance accuracy of the lidar system was determined by the CAM bandwidth and signal-to-noise ratio (SNR) of an intermediate frequency (IF) signal. Owing to a short dead time (10 ns) and negligible dark count rate (70 Hz) of the SNSPD, the obtained IF signal attained an SNR of 42 dB and the direct distance accuracy was improved to 3 mm when the modulation bandwidth of the CAM signal was 240 MHz and the modulation period was 1 ms.
基金partly supported by the National Science and Technology Major Project(grant no.16510711600)the National Natural Science Foundation of China(grant no.61631013)partly supported by the National Natural Science Foundation of China(grant no.61401440)
文摘The growth of the wireless and mobile communication data traffic has brought severe challenges to the present telecommu- nication systems. To meet the ever-increasing mobile traffic demand in the next 5th generation (SG) communication systems, deploying 5G in the unlicensed spectrum (SG-U), has been regarded as a promising technology. The Third Generation Partnership Project (3GPP) has specified the standardization of the Li- censed Assisted Access (LAA) and its extension enhanced LAA (eLAA), to opportunistically transmit in the unlicensed spectrum. The LAA/eLAA systems share unlicensed spectrum resource with other networks, e.g., the Wi-Fi systems. In this article, we analyze the coexistence between the eLAA and the Wi-Fi systems in the unlicensed spectrum. We firstly establish the system model where the eLAA coexists with the Wi-Fi systems. Then, we theoretically derive and figure out the unfairness in the multi-channel occupancy rate between the eLAA and the Wi-Fi systems. After that, we propose a weight based channel selection method to improve the fairness of the coexistence. The numerical results demonstrate that by avoiding contentions and declining collisions, our method not only enhances the fairness, but also improves the overall unlicensed spectrum usage rate.
基金supported by the Zhejiang Key Research and Development Program(No.2021C01188)the start-up funding from ShanghaiTech Universitythe Shanghai Municipal Science and Technology Major Project(No.2017SHZDZX03)。
文摘An effective way to fabricate high-quality(Q)silicon microcavities on-chip is proposed and studied.Our fabrication technique consists of two significant steps:(1)patterning a special silicon micro-pillar by Bosch processes and(2)subsequent reflow of the pillar into a spherical-like microcavity using a laser pulse at 532 nm.Its shape and surface roughness are characterized using a scanning electron microscope and an atomic force microscope.The root-mean-square roughness of the surface is about 0.6 nm.A representative value for the loaded Q-factors of our silicon spherical-like microcavities is on the order of 10^(5).
基金Supported by the National High Technology Research and Development Program of China(No.2011AA01A109)the National Natural Science Foundation of China(No.61002017,61072076.)the Department of Science and Technology Commission of Shanghai Base Project(No.11DZ2290100)
文摘The energy efficiency and packet delay tradeoffs in long term evolution-advanced(LTE-A) systems are investigated.Analytical expressions are derived to explain the relation of energy efficiency to mean packet delay,arrival rate and component carrier(CC) configurations,from the theoretical respective which reveals that the energy efficiency of multiple CC systems is closely related to the frequency of CCs and the number of active CCs.Based on the theoretical analysis,a CC adjusting scheme for LTE-A systems is proposed to maximize energy efficiency subject to delay constraint by dynamically altering the on/off state of CCs according to traffic variations.Numerical and simulation results show that for CCs in different frequency bands with equal transmit power,the proposed scheme could significantly improve the energy efficiency of users in all aggregation levels within the constraint of mean packet delay.
基金Projects supported by the Main Direction Program of Knowledge Innovation of the Chinese Academy of Sciences(Grant No.KGCX2-EW-105)the"100 Tal-ents Project"of the Chinese Academy of Sciences and Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant No.XDB04020300)
文摘Fetal magnetocardiography (MCG) is a sophisticated non-invasive technique for the fetal heart diagnosis. We constructed a multichannel fetal MCG system based on a novel superconducting quantum interference device (SQUID) direct readout scheme called SQUID bootstrap circuit (SBC). The system incorporates four SBC gradiometers for the signal detection and three SBC magnetometers as the references. The fetal MCG signal at a 28-weeks’ gestation was measured. By the fetal MCG signal separation and average, the P-wave and QRS complex can be clearly identified. These results indicate that the SBC is one of the most promising techniques for the fetal MCG recordings.
基金supported by the National Natural Science Foundation of China(T2322028,62105129,and 62004208)Sichuan Science and Technology Program(2023ZYD0163)+2 种基金the Science and Technology Commission of Shanghai Municipality(22ZR1473200)the Rising-Star Program of the Shanghai 2023 Science and Technology Innovation Action Plan(23QA1411100)the Autonomous Deployment Project of State Key Laboratory of Materials for Integrated Circuits(NKLJC-Z2023ZD01)。
文摘With the gradual progression of the carbon neutrality target,the future of our electricity supply will experience a massive increase in solar generation,and approximately 50%of the global electricity generation will come from solar generation by 2050.This provides the opportunity for researchers to diversify the applications of photovoltaics(PVs)and integrate for daily use in the future.Flexible solar cell technology is the next frontier in solar PV and is the key way to achieve CO_(2)neutrality.The integration of PV technology with other fields will greatly broaden the development areas for the PV industry,providing products with higher added value.In this paper,we reviewed the latest research progress on flexible solar cells(perovskite solar cells,organic solar cells,and flexible silicon solar cells),and proposed the future applications of flexible solar cell technology.