Little is known about the mechanism and signal transduction by LPS-mediated immunomodulation of murine peritoneal macrophages. It is found that the signal molecules of the down-stream of Ras, Raf-1, MAPK p44, and MAPK...Little is known about the mechanism and signal transduction by LPS-mediated immunomodulation of murine peritoneal macrophages. It is found that the signal molecules of the down-stream of Ras, Raf-1, MAPK p44, and MAPK p42 are phosphorylated, and cPLA2 is activated with a significant increase of the release of [ H3 ] AA by macrophages in response to LPS and PMA. Compared with the very recent finding that LPS and PMA trigger the activation and translocation of PKC-α and PKC-ε, these findings suggest that there is a connection between PKC signaling pathway and the Raf-1/MAPK pathway and that the activation of these main signaling events may be closely related to the secretion of IL-12 during LPS-induced modulation of macrophages.展开更多
The carp retina was examined by NADPH diaphorase histochemistry to determine if the staining pattern of retinal cells was changed depending on the adaptation state of the retina. When dark-adapted for 5 h, ellipsoids ...The carp retina was examined by NADPH diaphorase histochemistry to determine if the staining pattern of retinal cells was changed depending on the adaptation state of the retina. When dark-adapted for 5 h, ellipsoids of inner segments of both rods and cones and some horizontal cells were heavily stained. Staining was also found in subpopulations of amacrine cells and ganglion cells. In addition, Muller cells were strongly positive for NADPH diaphorase. When light-adapted for 5h, ellipsoids of photoreceptors and ganglion cells were less intensely stained, whereas Muller cells and horizontal cells became negative for NADPH diaphorase. Furthermore, rod ON-center bipolar cells were clearly stained. The difference of staining of amacrine cells between dark- and light-adapted retinas was not significant. The differences in diaphorase-staining pattern between dark- and light-adapted retinas suggest that Muller cells, some horizontal cells and rod ON-center bipolar cells contain inducible nitric oxide synthase, whose induction depends on the adaptation state.展开更多
The effects of nitric oxide (NO) on electroretinograms and light responses of horizontal cells intra-cellularly recorded from isolated, superfused carp retinas were studied. Sodium nitroprusside (SNP), an NO donor, su...The effects of nitric oxide (NO) on electroretinograms and light responses of horizontal cells intra-cellularly recorded from isolated, superfused carp retinas were studied. Sodium nitroprusside (SNP), an NO donor, suppressed scotopic b wave, while enhancing photopic b wave, and the effects could be blocked by hemoglobin, an NO chelator. Furthermore, following SNP application, light responses of rod horizontal cells were reduced in size and those of cone horizontal cells were increased. These results suggest that NO suppresses the activity of rod pathway, but enhances that of cone pathway in the outer retina. Moreover, the effects of methylene blue, an inhibitor of soluble guanylate cyclase, on rod and cone horizontal cells were just opposite to those of SNP, implying that the effects of NO may be mediated by cGMP.展开更多
A single-stranded S1 nuclease hypersensitive site which contains a d(AT)18 sequence structure locat-ed in the 5 -non transcription spacer of silkworm A . ricini ribosomal RNA gene has been reported[1] Using starved-re...A single-stranded S1 nuclease hypersensitive site which contains a d(AT)18 sequence structure locat-ed in the 5 -non transcription spacer of silkworm A . ricini ribosomal RNA gene has been reported[1] Using starved-refed silkworms, another S1 nuclease sensitive site was found existing in the rDNA chromatin, while under merely starving, this S1 sensitive site disappeared[2] . Recently this inducible S1 sensitive site has been further determined. It consists of a d(GT)10-d(AT)10 special DNA sequence at the transcription initiation region, and shows a behavior of ease in DNA-unwinding, indicating that S1 nuclease sensitive sites may have an important function in the regulation of rDNA transcription and replication.展开更多
基金Project supported by the National Natural Science Foundation of China, Shanghai Joint Laboratory of Life Science, Shanghai Institute of Cell Biology, and Director's Foundations of Chinese Academy of Sciences and Shanghai Institute of Cell Biology.
文摘Little is known about the mechanism and signal transduction by LPS-mediated immunomodulation of murine peritoneal macrophages. It is found that the signal molecules of the down-stream of Ras, Raf-1, MAPK p44, and MAPK p42 are phosphorylated, and cPLA2 is activated with a significant increase of the release of [ H3 ] AA by macrophages in response to LPS and PMA. Compared with the very recent finding that LPS and PMA trigger the activation and translocation of PKC-α and PKC-ε, these findings suggest that there is a connection between PKC signaling pathway and the Raf-1/MAPK pathway and that the activation of these main signaling events may be closely related to the secretion of IL-12 during LPS-induced modulation of macrophages.
基金Project supported by the State Commission of Science and Technology of China,the National Institutes of Health (USA)(EY 08338) and the International Human Frontier Science Program Organization.
文摘The carp retina was examined by NADPH diaphorase histochemistry to determine if the staining pattern of retinal cells was changed depending on the adaptation state of the retina. When dark-adapted for 5 h, ellipsoids of inner segments of both rods and cones and some horizontal cells were heavily stained. Staining was also found in subpopulations of amacrine cells and ganglion cells. In addition, Muller cells were strongly positive for NADPH diaphorase. When light-adapted for 5h, ellipsoids of photoreceptors and ganglion cells were less intensely stained, whereas Muller cells and horizontal cells became negative for NADPH diaphorase. Furthermore, rod ON-center bipolar cells were clearly stained. The difference of staining of amacrine cells between dark- and light-adapted retinas was not significant. The differences in diaphorase-staining pattern between dark- and light-adapted retinas suggest that Muller cells, some horizontal cells and rod ON-center bipolar cells contain inducible nitric oxide synthase, whose induction depends on the adaptation state.
基金Project supported by the "Climbing Project" of the State Commission of Science and Technology (China) and the National Natural Science Foundation of China.
文摘The effects of nitric oxide (NO) on electroretinograms and light responses of horizontal cells intra-cellularly recorded from isolated, superfused carp retinas were studied. Sodium nitroprusside (SNP), an NO donor, suppressed scotopic b wave, while enhancing photopic b wave, and the effects could be blocked by hemoglobin, an NO chelator. Furthermore, following SNP application, light responses of rod horizontal cells were reduced in size and those of cone horizontal cells were increased. These results suggest that NO suppresses the activity of rod pathway, but enhances that of cone pathway in the outer retina. Moreover, the effects of methylene blue, an inhibitor of soluble guanylate cyclase, on rod and cone horizontal cells were just opposite to those of SNP, implying that the effects of NO may be mediated by cGMP.
基金Project supported by the National Natural Science Foundation of China.
文摘A single-stranded S1 nuclease hypersensitive site which contains a d(AT)18 sequence structure locat-ed in the 5 -non transcription spacer of silkworm A . ricini ribosomal RNA gene has been reported[1] Using starved-refed silkworms, another S1 nuclease sensitive site was found existing in the rDNA chromatin, while under merely starving, this S1 sensitive site disappeared[2] . Recently this inducible S1 sensitive site has been further determined. It consists of a d(GT)10-d(AT)10 special DNA sequence at the transcription initiation region, and shows a behavior of ease in DNA-unwinding, indicating that S1 nuclease sensitive sites may have an important function in the regulation of rDNA transcription and replication.