This Letter demonstrates the application of dual-output modulation in a photonic analog-to-digital converter (PADC) with a high sampling rate and resolution. The PADC is time-wavelength interleaved and based on an a...This Letter demonstrates the application of dual-output modulation in a photonic analog-to-digital converter (PADC) with a high sampling rate and resolution. The PADC is time-wavelength interleaved and based on an actively mode-locked laser. According to theoretical analysis, the dual-output PADC system shows a better linearity for achieving a higher dynamic range. In the experiment, third-order distortion is significantly sup- pressed by -40 dB when the dual-output modulator is used and the effective number of bits of the PADC has reached 9.0 bits below 0.2 GHz and 6.4 bits at 6.1 GHz in our PADC with a sampling rate of 20 GS/s.展开更多
基金supported by the National Natural Science Foundation of China(Nos.61535006 and 61571292)the Specialized Research Fund within the Doctoral Program through the Ministry of Education(No.20130073130005)the State Key Laboratory Project of Shanghai Jiao Tong University(No.2014ZZ03016)
文摘This Letter demonstrates the application of dual-output modulation in a photonic analog-to-digital converter (PADC) with a high sampling rate and resolution. The PADC is time-wavelength interleaved and based on an actively mode-locked laser. According to theoretical analysis, the dual-output PADC system shows a better linearity for achieving a higher dynamic range. In the experiment, third-order distortion is significantly sup- pressed by -40 dB when the dual-output modulator is used and the effective number of bits of the PADC has reached 9.0 bits below 0.2 GHz and 6.4 bits at 6.1 GHz in our PADC with a sampling rate of 20 GS/s.