In the background of a new round reform and western development strategy, making suitability evaluation of construction land complex topography area in southwest China scientifically and accurately has an important gu...In the background of a new round reform and western development strategy, making suitability evaluation of construction land complex topography area in southwest China scientifically and accurately has an important guiding significance on the construction of local urban and rural development. We selected economic factor of construction, safety factor of construction, factor of the present situation of land use and ecological protection factor in Tongzi county as evaluation indexes, and ascertained the weight of each elastic indicator using the analytic hierarchy process method. By the support of GIS and RS technology, we combined the single-factor qualitative classification with the multi-factor weighted overlay analysis to make comprehensive suitability evaluation of construction land on the whole study area. And five different types of construction land were divided, namely, ‘excellent', ‘very good', ‘good', ‘moderate' and ‘poor'. The result shows that the area of ‘excellent' construction land is 30.47 km^2(0.95%), 101.46 km^2(3.16%) of ‘very good', 550.34 km^2(17.16%) of ‘good', and 664.69 km^2(20.72%) and 1 860.65 km^2(58.01%) of ‘moderate' and ‘poor', respectively. The land space bearing capacity is a population of 791 600, and the remaining population capacity is 170 900 persons.展开更多
We use the aerosol optical depth (AOD) measured by the moderate resolution imaging spectrometer (MOD1S) onboard the Terra satellite, air pollution index (API) daily data measured by the Shanghai Environmental Mo...We use the aerosol optical depth (AOD) measured by the moderate resolution imaging spectrometer (MOD1S) onboard the Terra satellite, air pollution index (API) daily data measured by the Shanghai Environmental Monitoring Center (SEMC), and the ensemble empirical mode decomposition (EEMD) method to analyze the air quality variability in Shanghai in the recent decade. The results indicate that a trend with amplitude of 1.0 is a dominant component for the AOD variability in the recent decade. During the World Expo 2010, the average AOD level reduced 30% in comparison to the long-term trend. Two dominant annual components decreased 80% and 100%. This implies that the air quality in Shanghai was remarkably improved, and environmental initiatives and comprehensive actions for effective. AOD and API reducing air pollution are variability analysis results indicate that semi-annual and annual signals are dominant components implying that the monsoon weather is a dominant factor in modulating the AOD and API variability. The variability of AOD and API in selected districts located in both downtown and suburban areas shows similar trends; i.e., in 2000 the AOD began a monotonic increase, reached the maxima around 2006, then monotonically decreased to 2011 and from around 2006 the API started to decrease till 2011. This indicates that the air quality in the entire Shanghai area, whether urban or suburban areas, has remarkably been improved. The AOD improved degrees (IDS) in all the selected districts are (8.6±1.9)%, and API IDS are (9.2±7.1)%, ranging from a minimum value of 1.5% for Putuo District to a maximum value of 22% for Xuhui District.展开更多
With the proposition of the Digital Earth(DE)concept,Virtual Geographic Information System(VGIS)has started to play the role of a Digital Earth prototype system.Many core problems involved in VGIS,such as out-of-core ...With the proposition of the Digital Earth(DE)concept,Virtual Geographic Information System(VGIS)has started to play the role of a Digital Earth prototype system.Many core problems involved in VGIS,such as out-of-core management and interactive rendering of very large scale terrain and image data,have been well studied in the past decades.However,the jitter problem,a common problem in VGIS that often causes annoying visual artefacts and deteriorates the output image quality,draws little attention.In this paper,after an intensive analysis of the jitter problem,a comprehensive framework is proposed to address such a problem while accounting for the characteristics of different data types in VGIS,such as terrain or ocean mesh data,vector data and 3-D model data.Specifically,this framework provides an improved dynamic local coordinate system(DLCS)method for terrain or ocean mesh data.For vector data,the framework provides a simple and effective multiple local coordinate systems(MLCS)method.The framework provides a MLCS method for 3-D model data making full use of the existing local coordinate system of the model.The advantages of the proposed methods over current approaches are analysed and highlighted through case studies involving large GIS datasets.展开更多
This work aims to analyze the spatial and temporal variability of aerosol optical depth (AOD) from 2000 to 2012 in the Changjiang River Delta (CRD), China. US Terra satellite moderate resolution imaging spectrorad...This work aims to analyze the spatial and temporal variability of aerosol optical depth (AOD) from 2000 to 2012 in the Changjiang River Delta (CRD), China. US Terra satellite moderate resolution imaging spectroradiometer (MODIS) AOD and Angstrom exponent (a) data constitute a baseline, with the empirical orthogonal functions (EOFs) method used as a major data analysis method. The results show that the maximum value of AOD observed in June is 1.00±0.12, and the lowest value detected in December is 0.40±0.05. AOD in spring and summer is higher than in autumn and winter. On the other hand, the a-value is lowest in spring (0.86±0.10), which are affected by coarse particles. High a-value appears in summer (1.32±0.05), which indicate that aerosols are dominated by fine particles. The spatial distribution of AOD has a close relationship with terrain and population density. Generally, high AODs are distributed in the lowlying plains, and low AODs in the mountainous areas. The spatial and temporal patterns of seasonal AODs show that the first three EOF modes cumulatively account for 77% of the total variance. The first mode that explains 67% of the total variance shows the primary spatial distribution of aerosols, i.e., high AODs are distributed in the northern areas and low AODs in the southern areas. The second mode (7%) shows that the monsoon climate probably plays an important role in modifying the distribution of aerosols, especially in summer and winter. In the third mode (3%), this distribution of aerosols usually occurs in spring and winter when the prevailing northwestern or western winds could bring aerosol particles from the inland areas into thecentral regions of the CRD.展开更多
基金Funded by National Natural Science Foundation of China(No.40771135No.41201546+6 种基金and No 41261038)Special Project for Technological Basic Work of China(No.2011FY110400)Basic and Frontier Research Project in Chongqing of China(No.cstc2014jcyj A1557)Science and Technology Project of Chongqing Municipal Education Commission(No.KJ130625)Science and Technology Planning of Guizhou Province in China(Qiankehe JZ code[2014]200206)Natural Science Foundation of Chongqing in China(No.cstc2012jj A20010)Chongqing Normal University Graduate Student Research Innovation Project(No.YKC14010)
文摘In the background of a new round reform and western development strategy, making suitability evaluation of construction land complex topography area in southwest China scientifically and accurately has an important guiding significance on the construction of local urban and rural development. We selected economic factor of construction, safety factor of construction, factor of the present situation of land use and ecological protection factor in Tongzi county as evaluation indexes, and ascertained the weight of each elastic indicator using the analytic hierarchy process method. By the support of GIS and RS technology, we combined the single-factor qualitative classification with the multi-factor weighted overlay analysis to make comprehensive suitability evaluation of construction land on the whole study area. And five different types of construction land were divided, namely, ‘excellent', ‘very good', ‘good', ‘moderate' and ‘poor'. The result shows that the area of ‘excellent' construction land is 30.47 km^2(0.95%), 101.46 km^2(3.16%) of ‘very good', 550.34 km^2(17.16%) of ‘good', and 664.69 km^2(20.72%) and 1 860.65 km^2(58.01%) of ‘moderate' and ‘poor', respectively. The land space bearing capacity is a population of 791 600, and the remaining population capacity is 170 900 persons.
文摘We use the aerosol optical depth (AOD) measured by the moderate resolution imaging spectrometer (MOD1S) onboard the Terra satellite, air pollution index (API) daily data measured by the Shanghai Environmental Monitoring Center (SEMC), and the ensemble empirical mode decomposition (EEMD) method to analyze the air quality variability in Shanghai in the recent decade. The results indicate that a trend with amplitude of 1.0 is a dominant component for the AOD variability in the recent decade. During the World Expo 2010, the average AOD level reduced 30% in comparison to the long-term trend. Two dominant annual components decreased 80% and 100%. This implies that the air quality in Shanghai was remarkably improved, and environmental initiatives and comprehensive actions for effective. AOD and API reducing air pollution are variability analysis results indicate that semi-annual and annual signals are dominant components implying that the monsoon weather is a dominant factor in modulating the AOD and API variability. The variability of AOD and API in selected districts located in both downtown and suburban areas shows similar trends; i.e., in 2000 the AOD began a monotonic increase, reached the maxima around 2006, then monotonically decreased to 2011 and from around 2006 the API started to decrease till 2011. This indicates that the air quality in the entire Shanghai area, whether urban or suburban areas, has remarkably been improved. The AOD improved degrees (IDS) in all the selected districts are (8.6±1.9)%, and API IDS are (9.2±7.1)%, ranging from a minimum value of 1.5% for Putuo District to a maximum value of 22% for Xuhui District.
基金by the National High Technology Research and Development Program of China(863 Program)(No.2009AA12Z331)and the National Natural Science Foundation of China(No.60972052)supported by the Young Researcher Grant of National Astronomical Observatories,Chinese Academy of Sciences.
文摘With the proposition of the Digital Earth(DE)concept,Virtual Geographic Information System(VGIS)has started to play the role of a Digital Earth prototype system.Many core problems involved in VGIS,such as out-of-core management and interactive rendering of very large scale terrain and image data,have been well studied in the past decades.However,the jitter problem,a common problem in VGIS that often causes annoying visual artefacts and deteriorates the output image quality,draws little attention.In this paper,after an intensive analysis of the jitter problem,a comprehensive framework is proposed to address such a problem while accounting for the characteristics of different data types in VGIS,such as terrain or ocean mesh data,vector data and 3-D model data.Specifically,this framework provides an improved dynamic local coordinate system(DLCS)method for terrain or ocean mesh data.For vector data,the framework provides a simple and effective multiple local coordinate systems(MLCS)method.The framework provides a MLCS method for 3-D model data making full use of the existing local coordinate system of the model.The advantages of the proposed methods over current approaches are analysed and highlighted through case studies involving large GIS datasets.
文摘This work aims to analyze the spatial and temporal variability of aerosol optical depth (AOD) from 2000 to 2012 in the Changjiang River Delta (CRD), China. US Terra satellite moderate resolution imaging spectroradiometer (MODIS) AOD and Angstrom exponent (a) data constitute a baseline, with the empirical orthogonal functions (EOFs) method used as a major data analysis method. The results show that the maximum value of AOD observed in June is 1.00±0.12, and the lowest value detected in December is 0.40±0.05. AOD in spring and summer is higher than in autumn and winter. On the other hand, the a-value is lowest in spring (0.86±0.10), which are affected by coarse particles. High a-value appears in summer (1.32±0.05), which indicate that aerosols are dominated by fine particles. The spatial distribution of AOD has a close relationship with terrain and population density. Generally, high AODs are distributed in the lowlying plains, and low AODs in the mountainous areas. The spatial and temporal patterns of seasonal AODs show that the first three EOF modes cumulatively account for 77% of the total variance. The first mode that explains 67% of the total variance shows the primary spatial distribution of aerosols, i.e., high AODs are distributed in the northern areas and low AODs in the southern areas. The second mode (7%) shows that the monsoon climate probably plays an important role in modifying the distribution of aerosols, especially in summer and winter. In the third mode (3%), this distribution of aerosols usually occurs in spring and winter when the prevailing northwestern or western winds could bring aerosol particles from the inland areas into thecentral regions of the CRD.