With the emphasis on energy and environmental protection,energy-conservation and emission-reduction become vital issues for industrial development.Moreover,with the development of legislation on marine environment,the...With the emphasis on energy and environmental protection,energy-conservation and emission-reduction become vital issues for industrial development.Moreover,with the development of legislation on marine environment,the marine diesel engine has become focusing on energy saving and emission reduction for ships.For low-speed diesel engines under high load,waste heat from exhaust gas can be recovered by the compact and efficient gas turbine.In this paper,the matching design research between low speed diesel engine and gas turbine is carried out.To balance efficiency and compactness,the impeller was adjusted and generated by ANSYS BLADEGEN,based on 1D thermodynamic design.And the 1D calculation is similar to the ANSYS CFX simulation result:the total-static efficiency is 73.8%compared to 76.7%.Moreover,the flow separation happened at the impeller suction side and created vortex due to the high incidence angle.The off-design operating point simulation of the turbine shows though the pressure ratio increase will cause the efficiency to decline a little,the total shaft power rises.In sum,this paper worked out a power turbine suitable for a low-speed diesel engine according to the turbine character matching design and simulation,which provides foundation to the construction of a steady operation of waste heat recovery system for marine diesel engine.展开更多
Thermochemical recuperation heat recovery is an advanced waste heat utilization technology that can effectively recover exhaust waste heat from oxy-fuel Stirling engines.The novel combustor of a Stirling engine with t...Thermochemical recuperation heat recovery is an advanced waste heat utilization technology that can effectively recover exhaust waste heat from oxy-fuel Stirling engines.The novel combustor of a Stirling engine with thermochemical recuperation heat recovery system is expected to utilize both reformed gas and diesel fuels as sources of combustion.In this research,the effects of various factors,including the H_(2)O addition,fuel distribution ratio(FDR),excess oxygen coefficient,and cyclone structure on the temperature distribution in the combustor,combustion emissions,and external combustion system efficiency of the Stirling engine were experimentally investigated.With the increase of steam-to-carbon ratio(S/C),the temperature difference between the upper and lower heating tubes reduces and the circumferential temperature fluctuation decreases,and the combustion of diesel and reformed gas remains close to complete combustion.At S/C=2,the external combustion efficiency is 80.6%,indicating a 1.6%decrease compared to conventional combustion.With the increase of FDR,the temperature uniformity of the heater tube is improved,and the CO and HC emissions decrease.However,the impact of the FDR on the maximum temperature difference and temperature fluctuation across the heater is insignificant.When the FDR rises from 21%to 38%,the external combustion efficiency increases from 87.4%to92.3%.The excess oxygen coefficient plays a secondary role in influencing temperature uniformity and temperature difference,and the reformed gas and diesel fuel can be burned efficiently at a low excess oxygen coefficient of 1.04.With an increase in the cyclone angle,the heater tube temperature increases,while the maximum temperature difference at the lower part decreases,and the temperature fluctuation increases.Simultaneously,the CO and HC emissions increase,and the external combustion efficiency experiences a decrease.A cyclone angle of 30°is found to be an appropriate value for achieving optimal mixing between reformed gas and diesel fuel.The research findings present valuable new insights that can be utilized to enhance the performance optimization of Stirling engines.展开更多
Alkaline water electrolysis(AWE)is the most mature technology for hydrogen production by water electrolysis.Alkaline water electrolyzer consists of multiple electrolysis cells,and a single cell consists of a diaphragm...Alkaline water electrolysis(AWE)is the most mature technology for hydrogen production by water electrolysis.Alkaline water electrolyzer consists of multiple electrolysis cells,and a single cell consists of a diaphragm,electrodes,bipolar plates and end plates,etc.The existing industrial bipolar plate channel is concave-convex structure,which is manufactured by complicated and high-cost mold punching.This structure still results in uneven electrolyte flow and low current density in the electrolytic cell,further increasing in energy consumption and cost of AWE.Thereby,in this article,the electrochemical and flow model is firstly constructed,based on the existing industrial concave and convex flow channel structure of bipolar plate,to study the current density,electrolyte flow and bubble distribution in the electrolysis cell.The reliability of the model was verified by comparison with experimental data in literature.Among which,the electrochemical current density affects the bubble yield,on the other hand,the generated bubbles cover the electrode surface,affecting the active specific surface area and ohmic resistance,which in turn affects the electrochemical reaction.The result indicates that the flow velocity near the bottom of the concave ball approaches zero,while the flow velocity on the convex ball surface is significantly higher.Additionally,vortices are observed within the flow channel structure,leading to an uneven distribution of electrolyte.Next,modelling is used to optimize the bipolar plate structure of AWE by simulating the electrochemistry and fluid flow performances of four kinds of structures,namely,concave and convex,rhombus,wedge and expanded mesh,in the bipolar plate of alkaline water electrolyzer.The results show that the expanded mesh channel structure has the largest current density of 3330 A/m^(2)and electrolyte flow velocity of 0.507 m/s in the electrolytic cell.Under the same current density,the electrolytic cell with the expanded mesh runner structure has the smallest potential and energy consumption.This work provides a useful guide for the comprehensive understanding and optimization of channel structures,and a theoretical basis for the design of large-scale electrolyzer.展开更多
There is still a lack of effective lubrication condition monitoring methods in the field of diesel engines.The paper proposes a novel thermoelectric approach to divide the lubrication state of bearings.First,the gener...There is still a lack of effective lubrication condition monitoring methods in the field of diesel engines.The paper proposes a novel thermoelectric approach to divide the lubrication state of bearings.First,the generation mechanism of thermoelectric potential on bearings is clarified.Then,both experimental and simulation studies are done,and a strong correlation between lubrication and thermoelectric potential is shown.The film thickness and temperature are further confirmed as significant factors influencing thermoelectric potential.Generally,the thermoelectric potential increases with temperature.However,a small film thickness ratio(when the film thickness ratio is less than 4)will suppress the thermoelectric potential.Three typical lubrication states of bearings are distinguished through thermoelectric potential and supported by the Stribeck curve results.Moreover,the significant influence of lubrication on the bearing is confirmed through the analysis of surface morphology and composition.展开更多
As drilling operations move into remote locations and extreme water depths, recoil analysis requires more careful considerations and the incidence of emergency disconnect is increased inevitably. To accurately capture...As drilling operations move into remote locations and extreme water depths, recoil analysis requires more careful considerations and the incidence of emergency disconnect is increased inevitably. To accurately capture the recoil dynamics of a deep-water riser in an emergency disconnect scenario, researchers typically focus on modelling the influential subsystems (e.g., the tensioner, the mud discharge and seawater refilling process) which can be solved in the preprocessing, and then the determined parameters are transmitted into an existing global riser analysis software. Distinctively, the current study devotes efforts into the coupling effects resulting from that the suspended riser reacts the platform heave motion via the tensioner system in the course of recoil and the discharging fluid column follows the oscillation of the riser in the mud discharge process. Four simulation models are established based on lumped mass method employing different formulas for the top boundary condition of the riser and the discharging flow acceleration. It demonstrates that the coupling effects discussed above can significantly affect the recoil behavior during the transition phase from initial disconnect to the final hang-off state. It is recommended to develop a fully- coupled integrated model for recoil analysis and anti-recoil control system design before extreme deep-water applications.展开更多
As a promising alternative anode material,silicon(Si)presents a larger capacity than the commercial anode to achieve large capacity lithium-ion batteries.However,the application of pure Si as anode is hampered by limi...As a promising alternative anode material,silicon(Si)presents a larger capacity than the commercial anode to achieve large capacity lithium-ion batteries.However,the application of pure Si as anode is hampered by limitations such as volume expansion,low conductivity and unstable solid electrolyte interphase.To break through these limitations,the core-shell Si@Li4Ti5O12nanocomposite,which was prepared via in-situ self-assembly reaction and decompressive boiling fast concentration method,was proposed in this work.This anode combines the advantages of nano-sized Si particle and pure Li4Ti5O12(LTO)coating layer,improving the performance of the lithium-ion batteries.The Si@Li4Ti5O12 anode displays a high initial discharge/charge specific capacity of 1756/1383 m Ahg^-1 at 500 mAg^-1(representing high initial coulombic efficiency of 78.8%),a large rate capability(specific capacity of 620 mAhg^-1 at4000 mAg^-1),an outstanding cycling stability(reversible specific capacity of 883 mAhg^-1 after 150 cycles)and a low volume expansion rate(only 3.3% after 150 cycles).Moreover,the synthesis process shows the merits of efficiency,simplicity,and economy,providing a reliable method to fabricate large capacity Si@Li4Ti5O12nanocomposite anode materials for practical lithium-ion batteries.展开更多
Thermochemical exhaust heat recovery is a prospective way to improve the thermal performance of Stirling engines. Based on Aspen HYSYS software, the simulation model of a Stirling engine combustor with a thermochemica...Thermochemical exhaust heat recovery is a prospective way to improve the thermal performance of Stirling engines. Based on Aspen HYSYS software, the simulation model of a Stirling engine combustor with a thermochemical recuperation(TCR) reformer was established to calculate the performance of the TCR system. The reforming temperature, fuel distribution ratio, steam-to-carbon ratio(S/C), and reforming pressure were changed to evaluate their effects on the reforming process and system efficiency. With increased reforming temperature, the equilibrium fuel conversion rate and heat recovery amount in the reformer gradually increase. The maximum combustor efficiency is achieved at the temperature of 600℃ and the fuel distribution ratio of 40%. With the S/C ratio increased from 1 to 2.5, the heat recovery rate and combustor efficiency increase significantly. The results show that the increase of fuel distribution ratio and S/C ratio leads to decreased reforming temperature, and external heat is needed to meet the heat balance for steam reforming. At a given reforming temperature and S/C ratio, increased reforming pressure results in decreased equilibrium fuel conversion rate and reforming reaction heat. At 5 MPa reforming pressure and 550℃ reforming temperature, the efficiency of the Stirling engine combustor is 92.7%, proving that the thermochemical recovery system can be applied to the Stirling engine under high pressure conditions.展开更多
This study investigates the underwater radiated noise(URN)of a manned submersible support mother ship.To this end,a detailed finite element model of the hull and outflow field is established,and the vibration wet mode...This study investigates the underwater radiated noise(URN)of a manned submersible support mother ship.To this end,a detailed finite element model of the hull and outflow field is established,and the vibration wet mode of the scientific research ship is calculated.A combination of finite element and boundary element methods is used to analyze the spectral features of ship low-frequency URN.The URN source is comprehensively analyzed,the vibration energy is considered the basic parameter to describe the vibration,and the medium-and high-frequency URN of the ship are calculated using the statistical energy analysis.To obtain the full frequency-band URN of the ship,the risk position of exceeding the standard is determined,and the contribution of each main noise source in the ship to the URN is analyzed.The URN level of the ship is comprehensively measured in the free navigation state.The accuracy of the URN control evaluation model,and the method of the ship are verified.The data support for the ship to apply for the classification society certificate provides a scheme reference for the URN control of other scientific research ship in the future.展开更多
The unsteady cloud cavitation shedding in fuel nozzles greatly influences the flow characteristics and spray break-up of fuel,thereby causing erosion damage.With the application of high-pressure common rail systems in...The unsteady cloud cavitation shedding in fuel nozzles greatly influences the flow characteristics and spray break-up of fuel,thereby causing erosion damage.With the application of high-pressure common rail systems in diesel engines,this phenomenon frequently occurs in the nozzle;however,cloud cavitation shedding frequency and its mechanism have yet to be studied in detail.In this study,a visualization experiment and proper orthogonal decomposition(POD)method were used to study the variations in the cavitation shedding frequency and analyze the cavitation flow structure in a 3 mm square nozzle.In addition,large eddy simulation(LES)was performed to explore the causes of cavitation shedding,and the relationship between cavitation and vortices.With the increase of the inlet and outlet pressure differences,and fuel temperatures,the degree of cavitation intensified and the frequency of cavitation cloud shedding gradually decreased.LES demonstrated the relationship between the vortices,and the development,shedding,and collapse of the cavitation clouds.Further,the re-entrant jet mechanism was found to be the main reason for the shedding of cavitation clouds.Through comparative experiments,the fluctuation of the vapor volume fraction in the nozzle hole accurately predicted the regions with stable cavitation,re-entrant jet,cavitation cloud shedding,and collapse.The frequency of cavitation shedding can then be calculated.This study employed an instantaneous POD method based on instantaneous cavitation images,which can distinguish the evolution process and characteristics of cavitation in the nozzle hole of diesel engines.展开更多
The reduction of oxygen consumption is a key factor to improve the energy density of underwater Stirling engine.A series of fundamental experiments are carried out to elucidate the spray characteristics of soybean oil...The reduction of oxygen consumption is a key factor to improve the energy density of underwater Stirling engine.A series of fundamental experiments are carried out to elucidate the spray characteristics of soybean oil/2,5-dimethylfuran(DMF)blended fuel in an underwater Stirling engine.Spray characteristics such as spray penetration,spray angle,spray area,and light intensity level under low injection and ambient pressures are obtained using image post-processing method.The results show that the effects of injection pressure,ambient pressure,and nozzle diameter on the transient spray characteristics of underwater Stirling engine are similar to those of diesel engine.However,in the steady spray process,the injection pressure has little effect on spray near angle,and the spray far angle increases with the increase of the injection pressure.Compared with the spray far angle at injection pressure of 3 MPa,the spray far angle at 5 MPa and 7 MPa increased by 11.38%and 18.14%respectively.The addition of DMF can obviously improve the atomization of soybean oil/DMF blended fuel.The spray angle of blended fuel in transient process increases with the increase of the DMF concentration.The spray near angle has exceeded that of diesel(46.21°)when the DMF volume fraction exceeds 25%.The spray far angle is equivalent to that of diesel when the DMF volume fraction reaches 75%.Moreover,the spray with gas ejection no longer keeps conical,the droplet diameter distribution is more dispersed,and the droplet diameter is smaller.展开更多
Increasing the injection pressure has been proven an effective method to enhance performance and reduce pollutant of diesel engine.With the increase of the injection pressure,the cavitation damage problem inside commo...Increasing the injection pressure has been proven an effective method to enhance performance and reduce pollutant of diesel engine.With the increase of the injection pressure,the cavitation damage problem inside common rail fuel injector is more significant,which has direct influences on reliability of diesel engine.While the most studies so far have focused on cavitation occurred in injector nozzle and its atomization characteristics,few researchers studied the cavitation phenomenon in fuel injector control valve.But due to the complexity of flow field and difficulty of experiment,the cavitation in control valve could not be fully described by existing theories.In this paper,the two-dimensional visualization experiment and numerical simulation of control valve was implemented to acquire the image of cavitation intuitively and validate the simulation method and model.Then a new structure design of control valve named convergent model was presented for comparison.The origin model and convergent model with different valve lifts were simulated in three dimensions.The results showed that the sheet cavitation occurred at the surface of seal cone and steel ball then turned to cloud cavitation in downstream area.The intensity of cavitation increased with the increase of valve lift.Convergent model could efficiently reduce the cavitation intensity near the seal area.This research could provide references for engineering optimization design of control valve.展开更多
The free piston Stirling engine external combustion system was simulated to investigate the diesel-air combustion characteristics in order to demonstrate its feasibility by computational fluid dynamics(CFD). The diffe...The free piston Stirling engine external combustion system was simulated to investigate the diesel-air combustion characteristics in order to demonstrate its feasibility by computational fluid dynamics(CFD). The different effects on combustion were distinguished by analyzing the combustion burner, the injection position of diesel oil, the front tube arrangement of Stirling heater head and the back fin. The results show that the tilted front tube arrangement of the heater head with the back fin is the best practicable technology while the distance between the diesel nozzle position and the swirler top is 0. Its total heat flux is 15.6 kW, and the average heat transfer coefficients of the front and back tubes are 127 W/(m2· K) and 192 W/(m2· K), respectively. The heat transfer is mainly through convection, and the proportion of radiative heat transfer is only 16.9%. The best combustion efficiency of the free piston Stirling engine external combustion system is 86%.展开更多
Liquefied natural gas (LNG), mainly composed of methane, is in progress to substitute diesel fuel in heavyduty marine engine for practical, economic, and environmental considerations. However, natural gas is relativel...Liquefied natural gas (LNG), mainly composed of methane, is in progress to substitute diesel fuel in heavyduty marine engine for practical, economic, and environmental considerations. However, natural gas is relatively difficult to be ignited in a large bore combustion chamber. A combustion enhancement technique called prechamber turbulent jet ignition (TJI) can permit combustion and flame propagation in a largebore volume. To investigate the effect of air-fuel equivalence ratio and pre-mixed pressure on pre-chamber TJI of methane/air mixtures with multiple orifices in a large bore volume, experimental tests and computational simulations were implemented to study the discharge of hot turbulent jets from six orifices of the pre-chamber. Different initial pressures and air-fuel equivalence ratios were considered to analyze the characteristics of TJI. The asymmetry of the turbulent jet actuated from six different orifices were found due to the asymmetric orientation of the spark plug, resulting in the inhomogeneous distribution of combustion in the constant volume chamber, which should be considered seriously in the marine engine design. Besides,as the premixed pressure increases, it has more effect on the flame propagation and plays a more important role, as it further increases.展开更多
Leveraging advances in shape memory alloys(SMAs)and flexible thermoelectric devices(f-TEDs),this paper presents a structural and functional integrity composite sheet to address the inefficient and bulky activation of ...Leveraging advances in shape memory alloys(SMAs)and flexible thermoelectric devices(f-TEDs),this paper presents a structural and functional integrity composite sheet to address the inefficient and bulky activation of 2-D SMAs.A series of experimental tests were performed to reveal the generation,change,and transfer mechan-isms of different types of electrically-induced heat in the f-TED,as well as the temperature-induced SMA phase transformation beha-viors.The results show that the composite sheet exhibited good bidirectional thermal management capacity.The austenite defor-mation can be completed within 10s at an operating current of 2 A.The cooling recovery,in particular,performs much better than in conventional modes(the temperature declines exponentially with time).Finally,through two functional prototypes,a light switch and a flexible gripper,the application potential of the proposed com-posite was further experimentally demonstrated.展开更多
Rotor clearance is necessary for the safe operation of twin-screw compressors,and it has a major impact on the performance of twin-screw compressors.The purpose of this study was to obtain a rotor tooth profile with r...Rotor clearance is necessary for the safe operation of twin-screw compressors,and it has a major impact on the performance of twin-screw compressors.The purpose of this study was to obtain a rotor tooth profile with reasonable meshing clearance on the rotor end surface,so that the clearance on the rotor contact line would be uniform and the rotor could be smoothly meshed.Under ideal conditions,the rotor of a screw compressor should have no clearance or interference.However,owing to assembly errors,thermal compression,stress deformation,and other factors,a rotor without backlash modification will inevitably produce interference during operation.A new design method based on the Alpha shape solution was proposed to achieve an efficient and high-precision design of the clearance of the twin-screw rotor profile.This method avoids the complex analytical calculations in the traditional envelope principle.The best approximation of the points on the rotor conjugate motion sweeping surface in the points is illuminated using a specific color.The sweeping surface of the screw rotor single-tooth profile is roughly scanned to capture the base point set of the sweeping surface boundary points.The chord length and tilt angle of each interval are calculated using the value of the base point set to adjust the position,phase,and magnification of each interval sweeping surface.Finally,the data point set is converted to the same coordinate system to generate the conjugated rotor profile.An example was used to verify the feasibility and adaptability of this method.Based on the equidistant profile method,the clearance between male and female rotors of a screw compressor was obtained under actual operation conditions.Therefore,this study provides a basis for the meshing clearance design in the machining of twin-screw compressor rotors.展开更多
文摘With the emphasis on energy and environmental protection,energy-conservation and emission-reduction become vital issues for industrial development.Moreover,with the development of legislation on marine environment,the marine diesel engine has become focusing on energy saving and emission reduction for ships.For low-speed diesel engines under high load,waste heat from exhaust gas can be recovered by the compact and efficient gas turbine.In this paper,the matching design research between low speed diesel engine and gas turbine is carried out.To balance efficiency and compactness,the impeller was adjusted and generated by ANSYS BLADEGEN,based on 1D thermodynamic design.And the 1D calculation is similar to the ANSYS CFX simulation result:the total-static efficiency is 73.8%compared to 76.7%.Moreover,the flow separation happened at the impeller suction side and created vortex due to the high incidence angle.The off-design operating point simulation of the turbine shows though the pressure ratio increase will cause the efficiency to decline a little,the total shaft power rises.In sum,this paper worked out a power turbine suitable for a low-speed diesel engine according to the turbine character matching design and simulation,which provides foundation to the construction of a steady operation of waste heat recovery system for marine diesel engine.
基金supported by the Ministry of Science and Technology of China(Grant No.2022YFE0209000)the Shanghai Rising-Star Program(Grant No.21QB1403900)Shanghai Municipal Commission of Science and Technology(Grant No.22170712600)。
文摘Thermochemical recuperation heat recovery is an advanced waste heat utilization technology that can effectively recover exhaust waste heat from oxy-fuel Stirling engines.The novel combustor of a Stirling engine with thermochemical recuperation heat recovery system is expected to utilize both reformed gas and diesel fuels as sources of combustion.In this research,the effects of various factors,including the H_(2)O addition,fuel distribution ratio(FDR),excess oxygen coefficient,and cyclone structure on the temperature distribution in the combustor,combustion emissions,and external combustion system efficiency of the Stirling engine were experimentally investigated.With the increase of steam-to-carbon ratio(S/C),the temperature difference between the upper and lower heating tubes reduces and the circumferential temperature fluctuation decreases,and the combustion of diesel and reformed gas remains close to complete combustion.At S/C=2,the external combustion efficiency is 80.6%,indicating a 1.6%decrease compared to conventional combustion.With the increase of FDR,the temperature uniformity of the heater tube is improved,and the CO and HC emissions decrease.However,the impact of the FDR on the maximum temperature difference and temperature fluctuation across the heater is insignificant.When the FDR rises from 21%to 38%,the external combustion efficiency increases from 87.4%to92.3%.The excess oxygen coefficient plays a secondary role in influencing temperature uniformity and temperature difference,and the reformed gas and diesel fuel can be burned efficiently at a low excess oxygen coefficient of 1.04.With an increase in the cyclone angle,the heater tube temperature increases,while the maximum temperature difference at the lower part decreases,and the temperature fluctuation increases.Simultaneously,the CO and HC emissions increase,and the external combustion efficiency experiences a decrease.A cyclone angle of 30°is found to be an appropriate value for achieving optimal mixing between reformed gas and diesel fuel.The research findings present valuable new insights that can be utilized to enhance the performance optimization of Stirling engines.
基金financially supported by the National Natural Science Foundation of China(No.52074130)the Engineering Research Center of Resource Utilization of Carbon-containing Waste with Carbon Neutrality,Ministry of Education。
文摘Alkaline water electrolysis(AWE)is the most mature technology for hydrogen production by water electrolysis.Alkaline water electrolyzer consists of multiple electrolysis cells,and a single cell consists of a diaphragm,electrodes,bipolar plates and end plates,etc.The existing industrial bipolar plate channel is concave-convex structure,which is manufactured by complicated and high-cost mold punching.This structure still results in uneven electrolyte flow and low current density in the electrolytic cell,further increasing in energy consumption and cost of AWE.Thereby,in this article,the electrochemical and flow model is firstly constructed,based on the existing industrial concave and convex flow channel structure of bipolar plate,to study the current density,electrolyte flow and bubble distribution in the electrolysis cell.The reliability of the model was verified by comparison with experimental data in literature.Among which,the electrochemical current density affects the bubble yield,on the other hand,the generated bubbles cover the electrode surface,affecting the active specific surface area and ohmic resistance,which in turn affects the electrochemical reaction.The result indicates that the flow velocity near the bottom of the concave ball approaches zero,while the flow velocity on the convex ball surface is significantly higher.Additionally,vortices are observed within the flow channel structure,leading to an uneven distribution of electrolyte.Next,modelling is used to optimize the bipolar plate structure of AWE by simulating the electrochemistry and fluid flow performances of four kinds of structures,namely,concave and convex,rhombus,wedge and expanded mesh,in the bipolar plate of alkaline water electrolyzer.The results show that the expanded mesh channel structure has the largest current density of 3330 A/m^(2)and electrolyte flow velocity of 0.507 m/s in the electrolytic cell.Under the same current density,the electrolytic cell with the expanded mesh runner structure has the smallest potential and energy consumption.This work provides a useful guide for the comprehensive understanding and optimization of channel structures,and a theoretical basis for the design of large-scale electrolyzer.
基金supported by Shanghai Municipal Natural Science Foundation(No.22ZR1430600).
文摘There is still a lack of effective lubrication condition monitoring methods in the field of diesel engines.The paper proposes a novel thermoelectric approach to divide the lubrication state of bearings.First,the generation mechanism of thermoelectric potential on bearings is clarified.Then,both experimental and simulation studies are done,and a strong correlation between lubrication and thermoelectric potential is shown.The film thickness and temperature are further confirmed as significant factors influencing thermoelectric potential.Generally,the thermoelectric potential increases with temperature.However,a small film thickness ratio(when the film thickness ratio is less than 4)will suppress the thermoelectric potential.Three typical lubrication states of bearings are distinguished through thermoelectric potential and supported by the Stribeck curve results.Moreover,the significant influence of lubrication on the bearing is confirmed through the analysis of surface morphology and composition.
基金financially supported by the National Natural Science Foundation of China(Grant No.51879161)
文摘As drilling operations move into remote locations and extreme water depths, recoil analysis requires more careful considerations and the incidence of emergency disconnect is increased inevitably. To accurately capture the recoil dynamics of a deep-water riser in an emergency disconnect scenario, researchers typically focus on modelling the influential subsystems (e.g., the tensioner, the mud discharge and seawater refilling process) which can be solved in the preprocessing, and then the determined parameters are transmitted into an existing global riser analysis software. Distinctively, the current study devotes efforts into the coupling effects resulting from that the suspended riser reacts the platform heave motion via the tensioner system in the course of recoil and the discharging fluid column follows the oscillation of the riser in the mud discharge process. Four simulation models are established based on lumped mass method employing different formulas for the top boundary condition of the riser and the discharging flow acceleration. It demonstrates that the coupling effects discussed above can significantly affect the recoil behavior during the transition phase from initial disconnect to the final hang-off state. It is recommended to develop a fully- coupled integrated model for recoil analysis and anti-recoil control system design before extreme deep-water applications.
基金the financial support from the National Natural Science Foundation of China (51876052, 51676128)
文摘As a promising alternative anode material,silicon(Si)presents a larger capacity than the commercial anode to achieve large capacity lithium-ion batteries.However,the application of pure Si as anode is hampered by limitations such as volume expansion,low conductivity and unstable solid electrolyte interphase.To break through these limitations,the core-shell Si@Li4Ti5O12nanocomposite,which was prepared via in-situ self-assembly reaction and decompressive boiling fast concentration method,was proposed in this work.This anode combines the advantages of nano-sized Si particle and pure Li4Ti5O12(LTO)coating layer,improving the performance of the lithium-ion batteries.The Si@Li4Ti5O12 anode displays a high initial discharge/charge specific capacity of 1756/1383 m Ahg^-1 at 500 mAg^-1(representing high initial coulombic efficiency of 78.8%),a large rate capability(specific capacity of 620 mAhg^-1 at4000 mAg^-1),an outstanding cycling stability(reversible specific capacity of 883 mAhg^-1 after 150 cycles)and a low volume expansion rate(only 3.3% after 150 cycles).Moreover,the synthesis process shows the merits of efficiency,simplicity,and economy,providing a reliable method to fabricate large capacity Si@Li4Ti5O12nanocomposite anode materials for practical lithium-ion batteries.
基金supported by the Shanghai Rising-Star Program(Grant No.21QB1403900)the National Natural Science Foundation of China(Grant No.52022058)。
文摘Thermochemical exhaust heat recovery is a prospective way to improve the thermal performance of Stirling engines. Based on Aspen HYSYS software, the simulation model of a Stirling engine combustor with a thermochemical recuperation(TCR) reformer was established to calculate the performance of the TCR system. The reforming temperature, fuel distribution ratio, steam-to-carbon ratio(S/C), and reforming pressure were changed to evaluate their effects on the reforming process and system efficiency. With increased reforming temperature, the equilibrium fuel conversion rate and heat recovery amount in the reformer gradually increase. The maximum combustor efficiency is achieved at the temperature of 600℃ and the fuel distribution ratio of 40%. With the S/C ratio increased from 1 to 2.5, the heat recovery rate and combustor efficiency increase significantly. The results show that the increase of fuel distribution ratio and S/C ratio leads to decreased reforming temperature, and external heat is needed to meet the heat balance for steam reforming. At a given reforming temperature and S/C ratio, increased reforming pressure results in decreased equilibrium fuel conversion rate and reforming reaction heat. At 5 MPa reforming pressure and 550℃ reforming temperature, the efficiency of the Stirling engine combustor is 92.7%, proving that the thermochemical recovery system can be applied to the Stirling engine under high pressure conditions.
基金The National Key R&D Plan(Grant No.2016YFC03000704)National Key R&D Plan(Grant No.2018YFC03009202).
文摘This study investigates the underwater radiated noise(URN)of a manned submersible support mother ship.To this end,a detailed finite element model of the hull and outflow field is established,and the vibration wet mode of the scientific research ship is calculated.A combination of finite element and boundary element methods is used to analyze the spectral features of ship low-frequency URN.The URN source is comprehensively analyzed,the vibration energy is considered the basic parameter to describe the vibration,and the medium-and high-frequency URN of the ship are calculated using the statistical energy analysis.To obtain the full frequency-band URN of the ship,the risk position of exceeding the standard is determined,and the contribution of each main noise source in the ship to the URN is analyzed.The URN level of the ship is comprehensively measured in the free navigation state.The accuracy of the URN control evaluation model,and the method of the ship are verified.The data support for the ship to apply for the classification society certificate provides a scheme reference for the URN control of other scientific research ship in the future.
基金This work was supported by of the National Natural Science Foundation of China(No.50906041).
文摘The unsteady cloud cavitation shedding in fuel nozzles greatly influences the flow characteristics and spray break-up of fuel,thereby causing erosion damage.With the application of high-pressure common rail systems in diesel engines,this phenomenon frequently occurs in the nozzle;however,cloud cavitation shedding frequency and its mechanism have yet to be studied in detail.In this study,a visualization experiment and proper orthogonal decomposition(POD)method were used to study the variations in the cavitation shedding frequency and analyze the cavitation flow structure in a 3 mm square nozzle.In addition,large eddy simulation(LES)was performed to explore the causes of cavitation shedding,and the relationship between cavitation and vortices.With the increase of the inlet and outlet pressure differences,and fuel temperatures,the degree of cavitation intensified and the frequency of cavitation cloud shedding gradually decreased.LES demonstrated the relationship between the vortices,and the development,shedding,and collapse of the cavitation clouds.Further,the re-entrant jet mechanism was found to be the main reason for the shedding of cavitation clouds.Through comparative experiments,the fluctuation of the vapor volume fraction in the nozzle hole accurately predicted the regions with stable cavitation,re-entrant jet,cavitation cloud shedding,and collapse.The frequency of cavitation shedding can then be calculated.This study employed an instantaneous POD method based on instantaneous cavitation images,which can distinguish the evolution process and characteristics of cavitation in the nozzle hole of diesel engines.
基金the Natural Science Foundation of Jiangsu Province(No.BK20220588)the Initial Scientific Research Fund of Yangzhou University(No.137012553)and the Public Welfare Technology Research Program of Zhejiang Province(Nos.LGG19E060001 and LGG 21E090001)。
文摘The reduction of oxygen consumption is a key factor to improve the energy density of underwater Stirling engine.A series of fundamental experiments are carried out to elucidate the spray characteristics of soybean oil/2,5-dimethylfuran(DMF)blended fuel in an underwater Stirling engine.Spray characteristics such as spray penetration,spray angle,spray area,and light intensity level under low injection and ambient pressures are obtained using image post-processing method.The results show that the effects of injection pressure,ambient pressure,and nozzle diameter on the transient spray characteristics of underwater Stirling engine are similar to those of diesel engine.However,in the steady spray process,the injection pressure has little effect on spray near angle,and the spray far angle increases with the increase of the injection pressure.Compared with the spray far angle at injection pressure of 3 MPa,the spray far angle at 5 MPa and 7 MPa increased by 11.38%and 18.14%respectively.The addition of DMF can obviously improve the atomization of soybean oil/DMF blended fuel.The spray angle of blended fuel in transient process increases with the increase of the DMF concentration.The spray near angle has exceeded that of diesel(46.21°)when the DMF volume fraction exceeds 25%.The spray far angle is equivalent to that of diesel when the DMF volume fraction reaches 75%.Moreover,the spray with gas ejection no longer keeps conical,the droplet diameter distribution is more dispersed,and the droplet diameter is smaller.
基金supported by the National Natural Science Foundation of China(No.50906041)。
文摘Increasing the injection pressure has been proven an effective method to enhance performance and reduce pollutant of diesel engine.With the increase of the injection pressure,the cavitation damage problem inside common rail fuel injector is more significant,which has direct influences on reliability of diesel engine.While the most studies so far have focused on cavitation occurred in injector nozzle and its atomization characteristics,few researchers studied the cavitation phenomenon in fuel injector control valve.But due to the complexity of flow field and difficulty of experiment,the cavitation in control valve could not be fully described by existing theories.In this paper,the two-dimensional visualization experiment and numerical simulation of control valve was implemented to acquire the image of cavitation intuitively and validate the simulation method and model.Then a new structure design of control valve named convergent model was presented for comparison.The origin model and convergent model with different valve lifts were simulated in three dimensions.The results showed that the sheet cavitation occurred at the surface of seal cone and steel ball then turned to cloud cavitation in downstream area.The intensity of cavitation increased with the increase of valve lift.Convergent model could efficiently reduce the cavitation intensity near the seal area.This research could provide references for engineering optimization design of control valve.
文摘The free piston Stirling engine external combustion system was simulated to investigate the diesel-air combustion characteristics in order to demonstrate its feasibility by computational fluid dynamics(CFD). The different effects on combustion were distinguished by analyzing the combustion burner, the injection position of diesel oil, the front tube arrangement of Stirling heater head and the back fin. The results show that the tilted front tube arrangement of the heater head with the back fin is the best practicable technology while the distance between the diesel nozzle position and the swirler top is 0. Its total heat flux is 15.6 kW, and the average heat transfer coefficients of the front and back tubes are 127 W/(m2· K) and 192 W/(m2· K), respectively. The heat transfer is mainly through convection, and the proportion of radiative heat transfer is only 16.9%. The best combustion efficiency of the free piston Stirling engine external combustion system is 86%.
基金This work was supported by the Natural Science Foundation of Shanghai (Grant No. 18ZR1418700)High Technology Ship Research Program--Marine Low Speed Engine Engineering (Phase I).
文摘Liquefied natural gas (LNG), mainly composed of methane, is in progress to substitute diesel fuel in heavyduty marine engine for practical, economic, and environmental considerations. However, natural gas is relatively difficult to be ignited in a large bore combustion chamber. A combustion enhancement technique called prechamber turbulent jet ignition (TJI) can permit combustion and flame propagation in a largebore volume. To investigate the effect of air-fuel equivalence ratio and pre-mixed pressure on pre-chamber TJI of methane/air mixtures with multiple orifices in a large bore volume, experimental tests and computational simulations were implemented to study the discharge of hot turbulent jets from six orifices of the pre-chamber. Different initial pressures and air-fuel equivalence ratios were considered to analyze the characteristics of TJI. The asymmetry of the turbulent jet actuated from six different orifices were found due to the asymmetric orientation of the spark plug, resulting in the inhomogeneous distribution of combustion in the constant volume chamber, which should be considered seriously in the marine engine design. Besides,as the premixed pressure increases, it has more effect on the flame propagation and plays a more important role, as it further increases.
基金This work was supported by the National Natural Science Foundation of China under Grant No.52075419.
文摘Leveraging advances in shape memory alloys(SMAs)and flexible thermoelectric devices(f-TEDs),this paper presents a structural and functional integrity composite sheet to address the inefficient and bulky activation of 2-D SMAs.A series of experimental tests were performed to reveal the generation,change,and transfer mechan-isms of different types of electrically-induced heat in the f-TED,as well as the temperature-induced SMA phase transformation beha-viors.The results show that the composite sheet exhibited good bidirectional thermal management capacity.The austenite defor-mation can be completed within 10s at an operating current of 2 A.The cooling recovery,in particular,performs much better than in conventional modes(the temperature declines exponentially with time).Finally,through two functional prototypes,a light switch and a flexible gripper,the application potential of the proposed com-posite was further experimentally demonstrated.
文摘Rotor clearance is necessary for the safe operation of twin-screw compressors,and it has a major impact on the performance of twin-screw compressors.The purpose of this study was to obtain a rotor tooth profile with reasonable meshing clearance on the rotor end surface,so that the clearance on the rotor contact line would be uniform and the rotor could be smoothly meshed.Under ideal conditions,the rotor of a screw compressor should have no clearance or interference.However,owing to assembly errors,thermal compression,stress deformation,and other factors,a rotor without backlash modification will inevitably produce interference during operation.A new design method based on the Alpha shape solution was proposed to achieve an efficient and high-precision design of the clearance of the twin-screw rotor profile.This method avoids the complex analytical calculations in the traditional envelope principle.The best approximation of the points on the rotor conjugate motion sweeping surface in the points is illuminated using a specific color.The sweeping surface of the screw rotor single-tooth profile is roughly scanned to capture the base point set of the sweeping surface boundary points.The chord length and tilt angle of each interval are calculated using the value of the base point set to adjust the position,phase,and magnification of each interval sweeping surface.Finally,the data point set is converted to the same coordinate system to generate the conjugated rotor profile.An example was used to verify the feasibility and adaptability of this method.Based on the equidistant profile method,the clearance between male and female rotors of a screw compressor was obtained under actual operation conditions.Therefore,this study provides a basis for the meshing clearance design in the machining of twin-screw compressor rotors.