Vibration measurements can be used to evaluate the operation status of power equipment and are widely applied in equipment quality inspection and fault identification.Event-sensing technology can sense the change in s...Vibration measurements can be used to evaluate the operation status of power equipment and are widely applied in equipment quality inspection and fault identification.Event-sensing technology can sense the change in surface light intensity caused by object vibration and provide a visual description of vibration behavior.Based on the analysis of the principle underlying the transformation of vibration behavior into event flow data by an event sensor,this paper proposes an algorithm to reconstruct event flow data into a relationship correlating vibration displacement and time to extract the amplitude-frequency characteristics of the vibration signal.A vibration measurement test platform is constructed,and feasibility and effectiveness tests are performed for the vibration motor and other power equipment.The results show that event-sensing technology can effectively perceive the surface vibration behavior of power and provide a wide dynamic range.Furthermore,the vibration measurement and visualization algorithm for power equipment constructed using this technology offers high measurement accuracy and efficiency.The results of this study provide a new noncontact and visual method for locating vibrations and performing amplitude-frequency analysis on power equipment.展开更多
Insulation failure significantly contributes to the unpredictable shutdown of power equipment.Compared to the partial discharge and high-frequency(HF)injection methods,the HF common-mode(CM)leakage current method offe...Insulation failure significantly contributes to the unpredictable shutdown of power equipment.Compared to the partial discharge and high-frequency(HF)injection methods,the HF common-mode(CM)leakage current method offers a non-intrusive and highly sensitive alternative.However,the detection of HF CM currents is susceptible to interference from differential-mode(DM)currents,which exhibit high-amplitude and multifrequency components during normal operation.To address this challenge,this paper proposes a double-ring current sensor based on the principle of magnetic shielding for inverter-fed machine winding insulation monitoring.The inner ring harnesses the magnetic aggregation effect to isolate the DM current magnetic field,whereas the outer ring serves as the magnetic core of the Rogowski current sensor,enabling HF CM current monitoring.First,the magnetic field distributions of the CM and DM currents were analyzed.Then,a correlation between the sensor parameters and signal-to-noise ratio of the target HF CM current was established.Finally,an experimental study was conducted on a 3-kW PMSM for verification.The results indicate that the proposed double-ring HF CM sensor can effectively mitigate DM current interference.Compared to a single-ring sensor,a reduction of approximately 40%in the DM component was achieved,which significantly enhanced the precision of online insulation monitoring.展开更多
With the increase in the power receiving proportion and an insufficient peak regulation capacity of the local units, the receiving-end power grid struggles to achieve peak regulation in valley time. To solve this prob...With the increase in the power receiving proportion and an insufficient peak regulation capacity of the local units, the receiving-end power grid struggles to achieve peak regulation in valley time. To solve this problem while considering the potential of the large-scale charge load of electric vehicles(EVs), an aggregator-based demand response(DR) mechanism for EVs that are participating in the peak regulation in valley time is proposed in this study. In this aggregator-based DR mechanism, the profits for the power grid’s operation and the participation willingness of the EV owners are considered. Based on the characteristics of the EV charging process and the day-ahead unit generation scheduling, a rolling unit commitment model with the DR is established to maximize the social welfare. In addition, to improve the efficiency of the optimization problem solving process and to achieve communication between the independent system operator(ISO) and the aggregators, the clustering algorithm is utilized to extract typical EV charging patterns. Finally, the feasibility and benefits of the aggregator-based DR mechanism for saving the costs and reducing the peak-valley difference of the receiving-end power grid are verified through case studies.展开更多
As the number of power terminals continues to increase and their usage becomes more widespread,the security of power systems is under great threat.In response to the lack of effective trust evaluation methods for term...As the number of power terminals continues to increase and their usage becomes more widespread,the security of power systems is under great threat.In response to the lack of effective trust evaluation methods for terminals,we propose a trust evaluation model based on equipment portraits for power terminals.First,we propose an exception evaluation method based on the network flow order and evaluate anomalous terminals by monitoring the external characteristics of network traffic.Second,we propose an exception evaluation method based on syntax and semantics.The key fields of each message are extracted,and the frequency of keywords in the message is statistically analyzed to obtain the keyword frequency and time-slot threshold for evaluating the status of the terminal.Thus,by combining the network flow order,syntax,and semantic analysis,an equipment portrait can be constructed to guarantee security of the power network terminals.We then propose a trust evaluation method based on an equipment portrait to calculate the trust values in real time.Finally,the experimental results of terminal anomaly detection show that the proposed model has a higher detection rate and lower false detection rate,as well as a higher real-time performance,which is more suitable for power terminals.展开更多
A new approach to maintenance scheduling of generating units(MSU)in competitive electricity markets was presented,which was formulated as a noncooperative game with complete information.The payoff of each generating c...A new approach to maintenance scheduling of generating units(MSU)in competitive electricity markets was presented,which was formulated as a noncooperative game with complete information.The payoff of each generating company(Genco)was defined as the profit from the energy auction market minus maintenance cost and risk loss.The compensation fee of interruptible load was a part of the maintenance cost when the permitted maintenance capacity in the system was insufficient.Hourly energy auction was incorporated in the computation of both revenues from energy market and risk loss of maintenance strategy as a nested game.A new heuristic search algorithm for the calculation of the game equilibrium of MSU was presented,which coordinates the solutions of non-equilibrium,unique equilibrium and multiple equilibria.Numerical results for a two-Genco system and a realistic system were used to demonstrate the basic ideas and the applicability of the proposed method,as well as its computational efficiency.展开更多
The market power mitigation method of the supply-side has become one of the key points affecting the stability of the electricity spot market.Different mitigation mechanisms are used in the current mature electricity ...The market power mitigation method of the supply-side has become one of the key points affecting the stability of the electricity spot market.Different mitigation mechanisms are used in the current mature electricity markets of the world.However,the same market power mitigation mechanism shows different effects in different market environments.Every market operator in the world needs the most efficient way to mitigate market power.Considering that there is no relevant literature discussing the market power effects of different mitigation methods in detail,the mitigation effects need to be discussed and further researched.So,we analyze the effects of the most utilized market power mitigation mechanisms while considering different market environments.Firstly,we establish a Nash-Stackelberg interactive game model to simulate the competitive strategies of power suppliers.Secondly,the different market power mitigation approaches are modeled.Then,a multi-agent system(MAS)genetic interior-point algorithm is proposed to solve the problem of suppliers.Finally,through the simulation analysis,the market power mitigation effects of different mechanisms while considering three operation states of the system in two market structures are all analyzed.展开更多
This paper proposes the operation principle and a new flux estimation method for sensorless control strategy for the dual-fed flux modulated electric motor(DFFM).The DFFM is designed based on the flux modulation theor...This paper proposes the operation principle and a new flux estimation method for sensorless control strategy for the dual-fed flux modulated electric motor(DFFM).The DFFM is designed based on the flux modulation theory,it includes two stator windings and one rotor which simplify the mechanical structure.The rotor has only modulation iron and no permanent magnets on it,so there is no cogging torque problem in this motor.With adjustment of the outer and inner stator flux rotating frequency and amplitude,different rotation speed and torque of the sandwiched rotor can be gained for the DFFM.Furthermore,an improved flux estimation based sensorless control strategy is performed on the proposed machine to fit the two winding set control situation.The startup and performance of the proposed control strategy is verified by the simulation and experiments.展开更多
Amidst the swift advancement of new power systems and electric vehicles,inverter-fed machines have progressively materialized as a pivotal apparatus for efficient energy conversion.Stator winding turn insulation failu...Amidst the swift advancement of new power systems and electric vehicles,inverter-fed machines have progressively materialized as a pivotal apparatus for efficient energy conversion.Stator winding turn insulation failure is the root cause of inverter-fed machine breakdown.The online monitoring of turn insulation health can detect potential safety risks promptly,but faces the challenge of weak characteristics of turn insulation degradation.This study proposes an innovative method to evaluate the turn insulation state of inverter-fed machines by utilizing the fractional Fourier transform with a Mel filter(FrFT-Mel).First,the sensitivity of the high-frequency(HF)switching oscillation current to variations in turn insulation was analyzed within the fractional domain.Subsequently,an improved Mel filter is introduced,and its structure and parameters are specifically designed based on the features intrinsic to the common-mode impedance resonance point of the electrical machine.Finally,an evaluation index was proposed for the turn insulation state of inverter-fed machines.Experimental results on a 3kW permanent magnet synchronous machine(PMSM)demonstrate that the proposed FrFT-Mel method significantly enhances the sensitivity of turn insulation state perception by approximately five times,compared to the traditional Fourier transform method.展开更多
The scale of distributed energy resources is increasing,but imperfect business models and value transmission mechanisms lead to low utilization ratio and poor responsiveness.To address this issue,the concept of cleann...The scale of distributed energy resources is increasing,but imperfect business models and value transmission mechanisms lead to low utilization ratio and poor responsiveness.To address this issue,the concept of cleanness value of distributed energy storage(DES)is proposed,and the spatiotemporal distribution mechanism is discussed from the perspectives of electrical energy and cleanness.Based on this,an evaluation system for the environmental benefits of DES is constructed to balance the interests between the aggregator and the power system operator.Then,an optimal low-carbon dispatching for a virtual power plant(VPP)with aggregated DES is constructed,where-in energy value and cleanness value are both considered.To achieve the goal,a green attribute labeling method is used to establish a correlation constraint between the nodal carbon potential of the distribution network(DN)and DES behavior,but as a cost,it brings multiple nonlinear relationships.Subsequently,a solution method based on the convex envelope(CE)linear re-construction method is proposed for the multivariate nonlinear programming problem,thereby improving solution efficiency and feasibility.Finally,the simulation verification based on the IEEE 33-bus DN is conducted.The simulation results show that the multidimensional value recognition of DES motivates the willingness of resource users to respond.Meanwhile,resolving the impact of DES on the nodal carbon potential can effectively alleviate overcompensation of the cleanness value.展开更多
Acoustic array sensor device for partial discharge detection is widely used in power equipment inspection with the advantages of non-contact and precise positioning compared with partial discharge detection methods su...Acoustic array sensor device for partial discharge detection is widely used in power equipment inspection with the advantages of non-contact and precise positioning compared with partial discharge detection methods such as ultrasonic method and pulse current method.However,due to the sensitivity of the acoustic array sensor and the influence of the equipment operation site interference,the acoustic array sensor device for partial discharge type diagnosis by phase resolved partial discharge(PRPD)map might occasionally presents incorrect results,thus affecting the power equipment operation and maintenance strategy.The acoustic array sensor detection device for power equipment developed in this paper applies the array design model of equal-area multi-arm spiral with machine learning fast fourier transform clean(FFT-CLEAN)sound source localization identification algorithm to avoid the interference factors in the noise acquisition system using a single microphone and conventional beam forming algorithm,improves the spatial resolution of the acoustic array sensor device,and proposes an acoustic array sensor device based on the acoustic spectrogram.The analysis and diagnosis method of discharge type of acoustic array sensor device can effectively reduce the system misjudgment caused by factors such as the resolution of the acoustic imaging device and the time domain pulse of the digital signal,and reduce the false alarm rate of the acoustic array sensor device.The proposed method is tested by selecting power cables as the object,and its effectiveness is proved by laboratory verification and field verification.展开更多
Aiming at the current limit value of six steady-state energy indexes, the current radar method is used for reference. A method of comprehensive evaluation of power quality based on improved radar method is proposed, w...Aiming at the current limit value of six steady-state energy indexes, the current radar method is used for reference. A method of comprehensive evaluation of power quality based on improved radar method is proposed, which improves the power quality index Type radar pattern to represent the steady-state indicator. Each of the main indicators corresponds to a partial ring, and the angle of the annular portion is mainly affected by the size of the weight. Compared with the previous radar map method to maintain the independence of the indicators and a single indicator of the binding data assessment. The method has the advantages of good feasibility.展开更多
The pulse current method,acoustic and ultrasonic partial discharge(PD)detection,and voiceprint PD detection are commonly used detection methods for the PD detection of power equipment.To study the characteristics of P...The pulse current method,acoustic and ultrasonic partial discharge(PD)detection,and voiceprint PD detection are commonly used detection methods for the PD detection of power equipment.To study the characteristics of PD signals of typical discharge models based on the principles of the above three detection methods,an acoustic detection experimental system consisting of a needle-tip model and a surface model was built.Acoustic tests were carried out on needle-tip models with different curvature radii and surface discharge models with different lengths of conductive paste.The experimental results showed that acoustic and ultrasonic PD detection and voiceprint PD detection exhibited different sensitivities to the needle-tip discharge models,and the combination of acoustic and ultrasonic PD and voiceprint PD detection was more beneficial for the comprehensive detection of cable PD signals.Based on voiceprint recognition technology,this study drew FFT(Fast Fourier Transformation)diagrams of different types of PD acoustic signals and analyzed the differences in the ultrasonic signal frequency distribution.The frequency band of the voiceprint PD signal of the needle-tip discharge models was concentrated in the range 17-27 kHz,and the frequency band of the voiceprint PD signal of the conductive paste discharge models was concentrated in the range 20-25 kHz.The measurement of voiceprint PD signals in these frequency bands were strengthened when the PD of a cable was detected on-site,which provides the basis for the use of the cable model for on-site PD detection.展开更多
The AC/DC hybrid distribution network is one of the trends in distribution network development, which poses great challenges to the traditional distribution transformer. In this paper, a new topology suitable for AC/D...The AC/DC hybrid distribution network is one of the trends in distribution network development, which poses great challenges to the traditional distribution transformer. In this paper, a new topology suitable for AC/DC hybrid distribution network is put forward according to the demands of power grid, with advantages of accepting DG and DC loads, while clearing DC fault by blocking the clamping double sub-module(CDSM) of input stage. Then, this paper shows the typical structure of AC/DC distribution network that is hand in hand. Based on the new topology, this paper designs the control and modulation strategies of each stage, where the outer loop controller of input stage is emphasized for its twocontrol mode. At last, the rationality of new topology and the validity of control strategies are verified by the steady and dynamic state simulation. At the same time, the simulation results highlight the role of PET in energy regulation.展开更多
An effective power quality prediction for regional power grid can provide valuable references and contribute to the discovering and solving of power quality problems. So a predicting model for power quality steady sta...An effective power quality prediction for regional power grid can provide valuable references and contribute to the discovering and solving of power quality problems. So a predicting model for power quality steady state index based on chaotic theory and least squares support vector machine (LSSVM) is proposed in this paper. At first, the phase space reconstruction of original power quality data is performed to form a new data space containing the attractor. The new data space is used as training samples for the LSSVM. Then in order to predict power quality steady state index accurately, the particle swarm algorithm is adopted to optimize parameters of the LSSVM model. According to the simulation results based on power quality data measured in a certain distribution network, the model applies to several indexes with higher forecasting accuracy and strong practicability.展开更多
In order to make an intensive study of the development of smart power distribution and utilization technology in China, their research hotspots and frontier technology are selected out through combining the informatic...In order to make an intensive study of the development of smart power distribution and utilization technology in China, their research hotspots and frontier technology are selected out through combining the informatics method, and using the CiteSpace which can take keyword cooccurrence analysis and draw the visualization graph. According to this result, we can infer the development trend of smart power distribution and utilization in the future, and providing reference for the researcher whose engage in this domain. The electric related literature was collected from the CNKI database in China. Under the smart power distribution and utilization domain, we also analyze the development of the power quality and the energy internet in detail.展开更多
Mutual influence may be driven by different models and operating mechanisms of grounding systems in multi-in-one substations.Even equipment damage and personal injury will occur in the event of a short-circuit or ligh...Mutual influence may be driven by different models and operating mechanisms of grounding systems in multi-in-one substations.Even equipment damage and personal injury will occur in the event of a short-circuit or lightning strike.To meet the construction requirements of different multi-in-one substations,two typical application modes of grounding systems in multi-in-one substations are analyzed in this paper:plane and longitudinal layout schemes.First,the safety index and withstand voltage of secondary equipment in multi-in-one substations are introduced.Second,the plane layout scheme of grounding grids is examined.Based on a 35-kV multi-in-one substations in Shanghai,it was verified that the overall grounding grid needs to be laid to meet the safety of secondary equipment in the station.Finally,considering that it is feasible to rebuild the upper layer of a substation,the longitudinal layout scheme of the grounding grid in multi-in-one substations is also examined.Safety assessment is carried out in terms of aspects such as short-circuits and lightning strikes,and relevant optimization construction methods are analyzed.In this study,a real 35-kV substation in Shanghai was selected as an example.Simulation and field tests based on Current Distribution,Electromagnetic Fields,Grounding and Soil Structure Analysis(CDEGS)software verified that the proposed construction scheme can achieve safe operation of multi-in-one substations.This construction idea can also serve as a reference for the future construction of multi-in-one substations.展开更多
To achieve optimal configuration of switching devices in a power distribution system,this paper proposes a repulsive firefly algorithm-based optimal switching device placement method.In this method,the influence of te...To achieve optimal configuration of switching devices in a power distribution system,this paper proposes a repulsive firefly algorithm-based optimal switching device placement method.In this method,the influence of territorial repulsion during firefly courtship is considered.The algorithm is practically applied to optimize the position and quantity of switching devices,while avoiding its convergence to the local optimal solution.The experimental simulation results have showed that the proposed repulsive firefly algorithm is feasible and effective,with satisfying global search capability and convergence speed,holding potential applications in setting value calculation of relay protection and distribution network automation control.展开更多
Substation automation system uses IEC 61850 protocol for the data transmission between different equipment manufacturers. However, the IEC 61850 protocol lacks an authentication security mechanism, which will make the...Substation automation system uses IEC 61850 protocol for the data transmission between different equipment manufacturers. However, the IEC 61850 protocol lacks an authentication security mechanism, which will make the communication face four threats: eavesdropping, interception, forgery, and alteration. In order to verify the IEC 61850 protocol communication problems, we used the simulation software to build the main operating equipment in the IEC 61850 network environment of the communication system. We verified IEC 61850 transmission protocol security defects, under DoS attack and Reply attack. In order to enhance security agreement, an improved algorithm was proposed based on identity authentication (W-EAP, Whitelist Based ECC & AES Protocol). Experimental results showed that the method can enhance the ability to resist attacks.展开更多
The integration of digital twin(DT)and 6G edge intelligence provides accurate forecasting for distributed resources control in smart park.However,the adverse impact of model poisoning attacks on DT model training cann...The integration of digital twin(DT)and 6G edge intelligence provides accurate forecasting for distributed resources control in smart park.However,the adverse impact of model poisoning attacks on DT model training cannot be ignored.To address this issue,we firstly construct the models of DT model training and model poisoning attacks.An optimization problem is formulated to minimize the weighted sum of the DT loss function and DT model training delay.Then,the problem is transformed and solved by the proposed Multi-timescAle endogenouS securiTy-aware DQN-based rEsouRce management algorithm(MASTER)based on DT-assisted state information evaluation and attack detection.MASTER adopts multi-timescale deep Q-learning(DQN)networks to jointly schedule local training epochs and devices.It actively adjusts resource management strategies based on estimated attack probability to achieve endogenous security awareness.Simulation results demonstrate that MASTER has excellent performances in DT model training accuracy and delay.展开更多
基金supported by the National Key Research and Development Program of China(No.2023YFB2604600).
文摘Vibration measurements can be used to evaluate the operation status of power equipment and are widely applied in equipment quality inspection and fault identification.Event-sensing technology can sense the change in surface light intensity caused by object vibration and provide a visual description of vibration behavior.Based on the analysis of the principle underlying the transformation of vibration behavior into event flow data by an event sensor,this paper proposes an algorithm to reconstruct event flow data into a relationship correlating vibration displacement and time to extract the amplitude-frequency characteristics of the vibration signal.A vibration measurement test platform is constructed,and feasibility and effectiveness tests are performed for the vibration motor and other power equipment.The results show that event-sensing technology can effectively perceive the surface vibration behavior of power and provide a wide dynamic range.Furthermore,the vibration measurement and visualization algorithm for power equipment constructed using this technology offers high measurement accuracy and efficiency.The results of this study provide a new noncontact and visual method for locating vibrations and performing amplitude-frequency analysis on power equipment.
基金supported in part by the National Natural Science Foundation of China under Grant 51907116in part sponsored by Natural Science Foundation of Shanghai 22ZR1425400sponsored by Shanghai Rising-Star Program 23QA1404000。
文摘Insulation failure significantly contributes to the unpredictable shutdown of power equipment.Compared to the partial discharge and high-frequency(HF)injection methods,the HF common-mode(CM)leakage current method offers a non-intrusive and highly sensitive alternative.However,the detection of HF CM currents is susceptible to interference from differential-mode(DM)currents,which exhibit high-amplitude and multifrequency components during normal operation.To address this challenge,this paper proposes a double-ring current sensor based on the principle of magnetic shielding for inverter-fed machine winding insulation monitoring.The inner ring harnesses the magnetic aggregation effect to isolate the DM current magnetic field,whereas the outer ring serves as the magnetic core of the Rogowski current sensor,enabling HF CM current monitoring.First,the magnetic field distributions of the CM and DM currents were analyzed.Then,a correlation between the sensor parameters and signal-to-noise ratio of the target HF CM current was established.Finally,an experimental study was conducted on a 3-kW PMSM for verification.The results indicate that the proposed double-ring HF CM sensor can effectively mitigate DM current interference.Compared to a single-ring sensor,a reduction of approximately 40%in the DM component was achieved,which significantly enhanced the precision of online insulation monitoring.
基金supported by the Science and Technology Project from the State Grid Shanghai Municipal Electric Power Company of China (52094019006U)the Shanghai Rising-Star Program (18QB1400200)。
文摘With the increase in the power receiving proportion and an insufficient peak regulation capacity of the local units, the receiving-end power grid struggles to achieve peak regulation in valley time. To solve this problem while considering the potential of the large-scale charge load of electric vehicles(EVs), an aggregator-based demand response(DR) mechanism for EVs that are participating in the peak regulation in valley time is proposed in this study. In this aggregator-based DR mechanism, the profits for the power grid’s operation and the participation willingness of the EV owners are considered. Based on the characteristics of the EV charging process and the day-ahead unit generation scheduling, a rolling unit commitment model with the DR is established to maximize the social welfare. In addition, to improve the efficiency of the optimization problem solving process and to achieve communication between the independent system operator(ISO) and the aggregators, the clustering algorithm is utilized to extract typical EV charging patterns. Finally, the feasibility and benefits of the aggregator-based DR mechanism for saving the costs and reducing the peak-valley difference of the receiving-end power grid are verified through case studies.
基金supported by the National Key Research and Development Program of China(No.2021YFB2401200)。
文摘As the number of power terminals continues to increase and their usage becomes more widespread,the security of power systems is under great threat.In response to the lack of effective trust evaluation methods for terminals,we propose a trust evaluation model based on equipment portraits for power terminals.First,we propose an exception evaluation method based on the network flow order and evaluate anomalous terminals by monitoring the external characteristics of network traffic.Second,we propose an exception evaluation method based on syntax and semantics.The key fields of each message are extracted,and the frequency of keywords in the message is statistically analyzed to obtain the keyword frequency and time-slot threshold for evaluating the status of the terminal.Thus,by combining the network flow order,syntax,and semantic analysis,an equipment portrait can be constructed to guarantee security of the power network terminals.We then propose a trust evaluation method based on an equipment portrait to calculate the trust values in real time.Finally,the experimental results of terminal anomaly detection show that the proposed model has a higher detection rate and lower false detection rate,as well as a higher real-time performance,which is more suitable for power terminals.
基金The National High Technology Research and Development Program of China(863Program)(No.2005AA505101-621)Important Science and Technology Research Project of Shanghai(No.041612012)
文摘A new approach to maintenance scheduling of generating units(MSU)in competitive electricity markets was presented,which was formulated as a noncooperative game with complete information.The payoff of each generating company(Genco)was defined as the profit from the energy auction market minus maintenance cost and risk loss.The compensation fee of interruptible load was a part of the maintenance cost when the permitted maintenance capacity in the system was insufficient.Hourly energy auction was incorporated in the computation of both revenues from energy market and risk loss of maintenance strategy as a nested game.A new heuristic search algorithm for the calculation of the game equilibrium of MSU was presented,which coordinates the solutions of non-equilibrium,unique equilibrium and multiple equilibria.Numerical results for a two-Genco system and a realistic system were used to demonstrate the basic ideas and the applicability of the proposed method,as well as its computational efficiency.
基金This work is supported by the Science and Technology Project of State Grid Corporation of China (Provincial power spot market and power grid dispatching and operation joint deduction technology research and system development).
文摘The market power mitigation method of the supply-side has become one of the key points affecting the stability of the electricity spot market.Different mitigation mechanisms are used in the current mature electricity markets of the world.However,the same market power mitigation mechanism shows different effects in different market environments.Every market operator in the world needs the most efficient way to mitigate market power.Considering that there is no relevant literature discussing the market power effects of different mitigation methods in detail,the mitigation effects need to be discussed and further researched.So,we analyze the effects of the most utilized market power mitigation mechanisms while considering different market environments.Firstly,we establish a Nash-Stackelberg interactive game model to simulate the competitive strategies of power suppliers.Secondly,the different market power mitigation approaches are modeled.Then,a multi-agent system(MAS)genetic interior-point algorithm is proposed to solve the problem of suppliers.Finally,through the simulation analysis,the market power mitigation effects of different mechanisms while considering three operation states of the system in two market structures are all analyzed.
文摘This paper proposes the operation principle and a new flux estimation method for sensorless control strategy for the dual-fed flux modulated electric motor(DFFM).The DFFM is designed based on the flux modulation theory,it includes two stator windings and one rotor which simplify the mechanical structure.The rotor has only modulation iron and no permanent magnets on it,so there is no cogging torque problem in this motor.With adjustment of the outer and inner stator flux rotating frequency and amplitude,different rotation speed and torque of the sandwiched rotor can be gained for the DFFM.Furthermore,an improved flux estimation based sensorless control strategy is performed on the proposed machine to fit the two winding set control situation.The startup and performance of the proposed control strategy is verified by the simulation and experiments.
基金supported in part by the National Natural Science Foundation of China under Grant 51907116in part sponsored by Natural Science Foundation of Shanghai 22ZR1425400sponsored by Shanghai Rising-Star Program 23QA1404000.
文摘Amidst the swift advancement of new power systems and electric vehicles,inverter-fed machines have progressively materialized as a pivotal apparatus for efficient energy conversion.Stator winding turn insulation failure is the root cause of inverter-fed machine breakdown.The online monitoring of turn insulation health can detect potential safety risks promptly,but faces the challenge of weak characteristics of turn insulation degradation.This study proposes an innovative method to evaluate the turn insulation state of inverter-fed machines by utilizing the fractional Fourier transform with a Mel filter(FrFT-Mel).First,the sensitivity of the high-frequency(HF)switching oscillation current to variations in turn insulation was analyzed within the fractional domain.Subsequently,an improved Mel filter is introduced,and its structure and parameters are specifically designed based on the features intrinsic to the common-mode impedance resonance point of the electrical machine.Finally,an evaluation index was proposed for the turn insulation state of inverter-fed machines.Experimental results on a 3kW permanent magnet synchronous machine(PMSM)demonstrate that the proposed FrFT-Mel method significantly enhances the sensitivity of turn insulation state perception by approximately five times,compared to the traditional Fourier transform method.
基金supported by the National Key R&D Program of China(No.2021YFB2401200).
文摘The scale of distributed energy resources is increasing,but imperfect business models and value transmission mechanisms lead to low utilization ratio and poor responsiveness.To address this issue,the concept of cleanness value of distributed energy storage(DES)is proposed,and the spatiotemporal distribution mechanism is discussed from the perspectives of electrical energy and cleanness.Based on this,an evaluation system for the environmental benefits of DES is constructed to balance the interests between the aggregator and the power system operator.Then,an optimal low-carbon dispatching for a virtual power plant(VPP)with aggregated DES is constructed,where-in energy value and cleanness value are both considered.To achieve the goal,a green attribute labeling method is used to establish a correlation constraint between the nodal carbon potential of the distribution network(DN)and DES behavior,but as a cost,it brings multiple nonlinear relationships.Subsequently,a solution method based on the convex envelope(CE)linear re-construction method is proposed for the multivariate nonlinear programming problem,thereby improving solution efficiency and feasibility.Finally,the simulation verification based on the IEEE 33-bus DN is conducted.The simulation results show that the multidimensional value recognition of DES motivates the willingness of resource users to respond.Meanwhile,resolving the impact of DES on the nodal carbon potential can effectively alleviate overcompensation of the cleanness value.
基金This work was supported by the science and technology project of State Grid Shanghai Municipal Electric Power Company(No.52090020007F)National Key R&D Program of China(2017YFB0902800).
文摘Acoustic array sensor device for partial discharge detection is widely used in power equipment inspection with the advantages of non-contact and precise positioning compared with partial discharge detection methods such as ultrasonic method and pulse current method.However,due to the sensitivity of the acoustic array sensor and the influence of the equipment operation site interference,the acoustic array sensor device for partial discharge type diagnosis by phase resolved partial discharge(PRPD)map might occasionally presents incorrect results,thus affecting the power equipment operation and maintenance strategy.The acoustic array sensor detection device for power equipment developed in this paper applies the array design model of equal-area multi-arm spiral with machine learning fast fourier transform clean(FFT-CLEAN)sound source localization identification algorithm to avoid the interference factors in the noise acquisition system using a single microphone and conventional beam forming algorithm,improves the spatial resolution of the acoustic array sensor device,and proposes an acoustic array sensor device based on the acoustic spectrogram.The analysis and diagnosis method of discharge type of acoustic array sensor device can effectively reduce the system misjudgment caused by factors such as the resolution of the acoustic imaging device and the time domain pulse of the digital signal,and reduce the false alarm rate of the acoustic array sensor device.The proposed method is tested by selecting power cables as the object,and its effectiveness is proved by laboratory verification and field verification.
文摘Aiming at the current limit value of six steady-state energy indexes, the current radar method is used for reference. A method of comprehensive evaluation of power quality based on improved radar method is proposed, which improves the power quality index Type radar pattern to represent the steady-state indicator. Each of the main indicators corresponds to a partial ring, and the angle of the annular portion is mainly affected by the size of the weight. Compared with the previous radar map method to maintain the independence of the indicators and a single indicator of the binding data assessment. The method has the advantages of good feasibility.
基金supported by the science and technology project of State Grid Shanghai Municipal Electric Power Company (No. 52090020007F)National Key R&D Program of China (2017YFB0902800)。
文摘The pulse current method,acoustic and ultrasonic partial discharge(PD)detection,and voiceprint PD detection are commonly used detection methods for the PD detection of power equipment.To study the characteristics of PD signals of typical discharge models based on the principles of the above three detection methods,an acoustic detection experimental system consisting of a needle-tip model and a surface model was built.Acoustic tests were carried out on needle-tip models with different curvature radii and surface discharge models with different lengths of conductive paste.The experimental results showed that acoustic and ultrasonic PD detection and voiceprint PD detection exhibited different sensitivities to the needle-tip discharge models,and the combination of acoustic and ultrasonic PD and voiceprint PD detection was more beneficial for the comprehensive detection of cable PD signals.Based on voiceprint recognition technology,this study drew FFT(Fast Fourier Transformation)diagrams of different types of PD acoustic signals and analyzed the differences in the ultrasonic signal frequency distribution.The frequency band of the voiceprint PD signal of the needle-tip discharge models was concentrated in the range 17-27 kHz,and the frequency band of the voiceprint PD signal of the conductive paste discharge models was concentrated in the range 20-25 kHz.The measurement of voiceprint PD signals in these frequency bands were strengthened when the PD of a cable was detected on-site,which provides the basis for the use of the cable model for on-site PD detection.
基金supported by National Key Research and Development Program of China (2016YFB0900500,2017YFB0903100)the State Grid Science and Technology Project (SGRI-DL-F1-51-011)
文摘The AC/DC hybrid distribution network is one of the trends in distribution network development, which poses great challenges to the traditional distribution transformer. In this paper, a new topology suitable for AC/DC hybrid distribution network is put forward according to the demands of power grid, with advantages of accepting DG and DC loads, while clearing DC fault by blocking the clamping double sub-module(CDSM) of input stage. Then, this paper shows the typical structure of AC/DC distribution network that is hand in hand. Based on the new topology, this paper designs the control and modulation strategies of each stage, where the outer loop controller of input stage is emphasized for its twocontrol mode. At last, the rationality of new topology and the validity of control strategies are verified by the steady and dynamic state simulation. At the same time, the simulation results highlight the role of PET in energy regulation.
文摘An effective power quality prediction for regional power grid can provide valuable references and contribute to the discovering and solving of power quality problems. So a predicting model for power quality steady state index based on chaotic theory and least squares support vector machine (LSSVM) is proposed in this paper. At first, the phase space reconstruction of original power quality data is performed to form a new data space containing the attractor. The new data space is used as training samples for the LSSVM. Then in order to predict power quality steady state index accurately, the particle swarm algorithm is adopted to optimize parameters of the LSSVM model. According to the simulation results based on power quality data measured in a certain distribution network, the model applies to several indexes with higher forecasting accuracy and strong practicability.
文摘In order to make an intensive study of the development of smart power distribution and utilization technology in China, their research hotspots and frontier technology are selected out through combining the informatics method, and using the CiteSpace which can take keyword cooccurrence analysis and draw the visualization graph. According to this result, we can infer the development trend of smart power distribution and utilization in the future, and providing reference for the researcher whose engage in this domain. The electric related literature was collected from the CNKI database in China. Under the smart power distribution and utilization domain, we also analyze the development of the power quality and the energy internet in detail.
基金supported by National Natural Science Foundation of China(No.92067105)the science and technology project of State Grid Shanghai Municipal Electric Power Company(No.5209211900VD).
文摘Mutual influence may be driven by different models and operating mechanisms of grounding systems in multi-in-one substations.Even equipment damage and personal injury will occur in the event of a short-circuit or lightning strike.To meet the construction requirements of different multi-in-one substations,two typical application modes of grounding systems in multi-in-one substations are analyzed in this paper:plane and longitudinal layout schemes.First,the safety index and withstand voltage of secondary equipment in multi-in-one substations are introduced.Second,the plane layout scheme of grounding grids is examined.Based on a 35-kV multi-in-one substations in Shanghai,it was verified that the overall grounding grid needs to be laid to meet the safety of secondary equipment in the station.Finally,considering that it is feasible to rebuild the upper layer of a substation,the longitudinal layout scheme of the grounding grid in multi-in-one substations is also examined.Safety assessment is carried out in terms of aspects such as short-circuits and lightning strikes,and relevant optimization construction methods are analyzed.In this study,a real 35-kV substation in Shanghai was selected as an example.Simulation and field tests based on Current Distribution,Electromagnetic Fields,Grounding and Soil Structure Analysis(CDEGS)software verified that the proposed construction scheme can achieve safe operation of multi-in-one substations.This construction idea can also serve as a reference for the future construction of multi-in-one substations.
基金supported by the State Grid Science and Technology Project “Research on Technology System and Applications Scenarios of Artificial Intelligence in Power System” (No. SGZJ0000KXJS1800435)Key Technology Project of State Grid Shanghai Municipal Electric Power Company “Research and demonstration of Shanghai power grid reliability analysis platform”Key Technology Project of China Electric Power Research Institute “Research on setting calculation technology of power grid phase protection based on Artificial Intelligence” (JB83-19-007)
文摘To achieve optimal configuration of switching devices in a power distribution system,this paper proposes a repulsive firefly algorithm-based optimal switching device placement method.In this method,the influence of territorial repulsion during firefly courtship is considered.The algorithm is practically applied to optimize the position and quantity of switching devices,while avoiding its convergence to the local optimal solution.The experimental simulation results have showed that the proposed repulsive firefly algorithm is feasible and effective,with satisfying global search capability and convergence speed,holding potential applications in setting value calculation of relay protection and distribution network automation control.
文摘Substation automation system uses IEC 61850 protocol for the data transmission between different equipment manufacturers. However, the IEC 61850 protocol lacks an authentication security mechanism, which will make the communication face four threats: eavesdropping, interception, forgery, and alteration. In order to verify the IEC 61850 protocol communication problems, we used the simulation software to build the main operating equipment in the IEC 61850 network environment of the communication system. We verified IEC 61850 transmission protocol security defects, under DoS attack and Reply attack. In order to enhance security agreement, an improved algorithm was proposed based on identity authentication (W-EAP, Whitelist Based ECC & AES Protocol). Experimental results showed that the method can enhance the ability to resist attacks.
基金supported by the Science and Technology Project of State Grid Corporation of China under Grant Number 52094021N010 (5400-202199534A-05-ZN)。
文摘The integration of digital twin(DT)and 6G edge intelligence provides accurate forecasting for distributed resources control in smart park.However,the adverse impact of model poisoning attacks on DT model training cannot be ignored.To address this issue,we firstly construct the models of DT model training and model poisoning attacks.An optimization problem is formulated to minimize the weighted sum of the DT loss function and DT model training delay.Then,the problem is transformed and solved by the proposed Multi-timescAle endogenouS securiTy-aware DQN-based rEsouRce management algorithm(MASTER)based on DT-assisted state information evaluation and attack detection.MASTER adopts multi-timescale deep Q-learning(DQN)networks to jointly schedule local training epochs and devices.It actively adjusts resource management strategies based on estimated attack probability to achieve endogenous security awareness.Simulation results demonstrate that MASTER has excellent performances in DT model training accuracy and delay.