An optical manipulation system based on optofiuidic microbubble resonators (MBR) is proposed. As the high-Q whispering gallery modes (WGMs) are excited in an MBR, the buildup of the field intensity inside the reso...An optical manipulation system based on optofiuidic microbubble resonators (MBR) is proposed. As the high-Q whispering gallery modes (WGMs) are excited in an MBR, the buildup of the field intensity inside the resonator is large enough to trap nanoscale particles. The optical gradient forces generated by the WGMs with different radial orders are investigated numeri- cally. The negative effect of the resonance detuning induced by the particles is taken into account to investigate the optical gradient forces exerting on the particles. By the stability analysis, the WGMs with high radial orders show a better trapping stability under Brownian motion since most of the optical fields reside within the water core.展开更多
The magnetic anisotropy manipulation in the Sm_(3)Fe_(5)O_(12)(SmIG)films and its effect on the interfacial spin coupling in the CoFe/SmIG heterostructures were studied carefully.By switching the orientation of the Gd...The magnetic anisotropy manipulation in the Sm_(3)Fe_(5)O_(12)(SmIG)films and its effect on the interfacial spin coupling in the CoFe/SmIG heterostructures were studied carefully.By switching the orientation of the Gd_(3)Ga_(5)O_(12)substrates from(111)to(001),the magnetic anisotropy of obtained SmIG films shifts from in-plane to out-of-plane.Similar results can also be obtained in the films on Gd_(3)Ga_(5)O_(12)substrates,which identifies the universality of such orientation-induced magnetic anisotropy switching.Additionally,the interfacial spin coupling and magnetic anisotropy switching effect on the spin wave in CoFe/SmIG magnetic heterojunctions have also been explored by utilizing the time-resolved magneto-optical Kerr effect technique.It is intriguing to find that both the frequency and effective damping factor of spin precession in CoFe/SmIG heterojunctions can be manipulated by the magnetic anisotropy switching of SmIG films.These findings not only provide a route for the perpendicular magnetic anisotropy acquisition but also give a further path for spin manipulation in magnetic films and heterojunctions.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.61378080,61327008,60907011 and 61177045)the Open Project of State Key Laboratory of Modern Optical Instrumentation,Zhejiang University,China
文摘An optical manipulation system based on optofiuidic microbubble resonators (MBR) is proposed. As the high-Q whispering gallery modes (WGMs) are excited in an MBR, the buildup of the field intensity inside the resonator is large enough to trap nanoscale particles. The optical gradient forces generated by the WGMs with different radial orders are investigated numeri- cally. The negative effect of the resonance detuning induced by the particles is taken into account to investigate the optical gradient forces exerting on the particles. By the stability analysis, the WGMs with high radial orders show a better trapping stability under Brownian motion since most of the optical fields reside within the water core.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2017YFA0303603 and 2016YFA0401803)the National Natural Science Foundation of China(Grant Nos.U2032218,11574316,11874120,61805256,and 11904367)+1 种基金the Plan for Major Provincial Science&Technology Project(Grant No.202003a05020018)the Key Research Program of Frontier Sciences,CAS(Grant No.QYZDB-SSW-SLH011)。
文摘The magnetic anisotropy manipulation in the Sm_(3)Fe_(5)O_(12)(SmIG)films and its effect on the interfacial spin coupling in the CoFe/SmIG heterostructures were studied carefully.By switching the orientation of the Gd_(3)Ga_(5)O_(12)substrates from(111)to(001),the magnetic anisotropy of obtained SmIG films shifts from in-plane to out-of-plane.Similar results can also be obtained in the films on Gd_(3)Ga_(5)O_(12)substrates,which identifies the universality of such orientation-induced magnetic anisotropy switching.Additionally,the interfacial spin coupling and magnetic anisotropy switching effect on the spin wave in CoFe/SmIG magnetic heterojunctions have also been explored by utilizing the time-resolved magneto-optical Kerr effect technique.It is intriguing to find that both the frequency and effective damping factor of spin precession in CoFe/SmIG heterojunctions can be manipulated by the magnetic anisotropy switching of SmIG films.These findings not only provide a route for the perpendicular magnetic anisotropy acquisition but also give a further path for spin manipulation in magnetic films and heterojunctions.