期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
A data selection method for matrix effects and uncertainty reduction for laser-induced breakdown spectroscopy 被引量:1
1
作者 龙杰 宋惟然 +1 位作者 侯宗余 王哲 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第7期82-89,共8页
Severe matrix effects and high signal uncertainty are two key bottlenecks for the quantitative performance and wide applications of laser-induced breakdown spectroscopy(LIBS).Based on the understanding that the superp... Severe matrix effects and high signal uncertainty are two key bottlenecks for the quantitative performance and wide applications of laser-induced breakdown spectroscopy(LIBS).Based on the understanding that the superposition of both matrix effects and signal uncertainty directly affects plasma parameters and further influences spectral intensity and LIBS quantification performance,a data selection method based on plasma temperature matching(DSPTM)was proposed to reduce both matrix effects and signal uncertainty.By selecting spectra with smaller plasma temperature differences for all samples,the proposed method was able to build up the quantification model to rely more on spectra with smaller matrix effects and signal uncertainty,therefore improving final quantification performance.When applied to quantitative analysis of the zinc content in brass alloys,it was found that both accuracy and precision were improved using either a univariate model or multiple linear regression(MLR).More specifically,for the univariate model,the root-mean-square error of prediction(RMSEP),the determination coefficients(R^(2))and relative standard derivation(RSD)were improved from 3.30%,0.864 and 18.8%to 1.06%,0.986 and 13.5%,respectively;while for MLR,RMSEP,R^(2)and RSD were improved from 3.22%,0.871 and 26.2%to 1.07%,0.986 and 17.4%,respectively.These results prove that DSPTM can be used as an effective method to reduce matrix effects and improve repeatability by selecting reliable data. 展开更多
关键词 laser-induced breakdown spectroscopy(LIBS) quantification UNCERTAINTY univariate/multivariate analysis matrix effects temperature matching
下载PDF
A three-way electrolyte with ternary solvents for high-energy-density and long-cycling lithium-sulfur pouch cells
2
作者 Zheng Li Legeng Yu +11 位作者 Chen-Xi Bi Xi-Yao Li JinMa Xiang Chen Xue-Qiang Zhang Aibing Chen Haoting Chen Zuoru Zhang Li-Zhen Fan Bo-Quan Li Cheng Tang Qiang Zhang 《SusMat》 SCIE EI 2024年第2期1-12,共12页
Lithium–sulfur(Li–S)batteries promise high-energy-density potential to exceed the commercialized lithiumion batteries but suffer from limited cycling lifespan due to the side reactions between lithium polysulfides(L... Lithium–sulfur(Li–S)batteries promise high-energy-density potential to exceed the commercialized lithiumion batteries but suffer from limited cycling lifespan due to the side reactions between lithium polysulfides(LiPSs)and Li metal anodes.Herein,a three-way electrolyte with ternary solvents is proposed to enable high-energy-density and long-cycling Li–S pouch cells.Concretely,ternary solvents composed of 1,2-dimethoxyethane,di-isopropyl sulfide,and 1,3,5-trioxane are employed to guarantee smooth cathode kinetics,inhibit the parasitic reactions,and construct a robust solid electrolyte interphase,respectively.The cycling lifespan of Li–S coin cells with 50μm Li anodes and 4.0 mg cm^(−2) sulfur cathodes is prolonged from88 to 222 cycles using the three-way electrolyte.Nano-heterogeneous solvation structure of LiPSs and organic-rich solid electrolyte interphase are identified to improve the cycling stability of Li metal anodes.Consequently,a 3.0 Ah-level Li–S pouch cell with the three-way electrolyte realizes a high energy density of 405 Wh kg^(−1) and undergoes 27 cycles.Thiswork affords a three-way electrolyte recipe for suppressing the side reactions of LiPSs and inspires rational electrolyte design for practical high-energy-density and long-cycling Li–S batteries. 展开更多
关键词 lithium metal anodes lithium-sulfur batteries pouch cells solid electrolyte interphase three-way electrolyte
原文传递
In-situ determination of onset lithium plating for safe Li-ion batteries 被引量:6
3
作者 Lei Xu Yi Yang +6 位作者 Ye Xiao Wen-Long Cai Yu-Xing Yao Xiao-Ru Chen Chong Yan Hong Yuan Jia-Qi Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第4期255-262,共8页
Lithium plating in working batteries has attracted wide attention in the exploration of safe energy storage. Establishing an effective and rapid early-warning method is strongly considered but quite challenging since ... Lithium plating in working batteries has attracted wide attention in the exploration of safe energy storage. Establishing an effective and rapid early-warning method is strongly considered but quite challenging since lithium plating behavior is determined by diverse factors. In this contribution, we present a non-destructive electrochemical detection method based on transient state analysis and threeelectrode cell configuration. Through dividing the iR drop value by the current density, the as-obtained impedance quantity(R_(i)) can serve as a descriptor to describe the change of electrochemical reaction impedance on the graphite anode. The onset of lithium plating can be identified from the sharp drop of R_(i). Once the dendritic plated lithium occurs, the extra electrochemical reactions at the lithium interfaces leads to growing active area and reduced surface resistance of the anode. We proposed a protocol to operate the batteries under the limited capacity, which renders the cell with 98.2% capacity retention after 1000 cycles without lithium plating. The early-warning method has also been validated in in-situ optical microscopy batteries and practical pouch cells, providing a general but effective method for online lithium plating detection towards safe batteries. 展开更多
关键词 Lithium plating In-situ detection method Transient state analysis iR drop Three-electrode battery Lithium-ion batteries
下载PDF
Roadmap for rechargeable batteries:present and beyond 被引量:12
4
作者 Sen Xin Xu Zhang +40 位作者 Lin Wang Haijun Yu Xin Chang Yu-Ming Zhao Qinghai Meng Pan Xu Chen-Zi Zhao Jiahang Chen Huichao Lu Xirui Kong Jiulin Wang Kai Chen Gang Huang Xinbo Zhang Yu Su Yao Xiao Shu-Lei Chou Shilin Zhang Zaiping Guo Aobing Du Guanglei Cui Gaojing Yang Qing Zhao Liubing Dong Dong Zhou Feiyu Kang Hu Hong Chunyi Zhi Zhizhang Yuan Xianfeng Li Yifei Mo Yizhou Zhu Dongfang Yu Xincheng Lei Jianxiong Zhao Jiayi Wang Dong Su Yu-Guo Guo Qiang Zhang Jun Chen Li-Jun Wan 《Science China Chemistry》 SCIE EI CSCD 2024年第1期13-42,共30页
Rechargeable batteries currently hold the largest share of the electrochemical energy storage market,and they play a major role in the sustainable energy transition and industrial decarbonization to respond to global ... Rechargeable batteries currently hold the largest share of the electrochemical energy storage market,and they play a major role in the sustainable energy transition and industrial decarbonization to respond to global climate change.Due to the increased popularity of consumer electronics and electric vehicles,lithium-ion batteries have quickly become the most successful rechargeable batteries in the past three decades,yet growing demands in diversified application scenarios call for new types of rechargeable batteries.Tremendous efforts are made to developing the next-generation post-Li-ion rechargeable batteries,which include,but are not limited to solid-state batteries,lithium–sulfur batteries,sodium-/potassium-ion batteries,organic batteries,magnesium-/zinc-ion batteries,aqueous batteries and flow batteries.Despite the great achievements,challenges persist in precise understandings about the electrochemical reaction and charge transfer process,and optimal design of key materials and interfaces in a battery.This roadmap tends to provide an overview about the current research progress,key challenges and future prospects of various types of rechargeable batteries.New computational methods for materials development,and characterization techniques will also be discussed as they play an important role in battery research. 展开更多
关键词 energy storage rechargeable batteries battery materials ELECTROCHEMISTRY
原文传递
Re-evaluating the nano-sized inorganic protective layer on Cu current collector for anode free lithium metal batteries
5
作者 Shuo Zhang Haitao Liao +2 位作者 Zhi-Qun Liu Chong Yan Jia-Qi Huang 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第7期452-455,共4页
Anode free lithium metal batteries(AF-LMBs)have conspicuous advantages both in energy density and the compatibility of battery manufacturing process.However,the limited cycle life of AF-LMBs is a crucial factor hinder... Anode free lithium metal batteries(AF-LMBs)have conspicuous advantages both in energy density and the compatibility of battery manufacturing process.However,the limited cycle life of AF-LMBs is a crucial factor hindering its practical application.Fluorinated or nitride artificial inorganic solid electrolyte interphase(SEI)has been found as an effective method to prolong the lifespan of AF-LMBs.Herein,by investigating the impact of nano-sized inorganic gradient layers(LiF or Li3N)on initial Li deposition behavior,we notice that the Li^(+) diffusion barrier and the deposition morphology are highly depended on the thickness of inorganic layers.Thicker protective layers cause larger overpotential as well as more aggregated Li^(+) distribution.This study reveals that the ideal SEI should be synthesized thin and uniformly enough and uncontrollable artificial SEI can cause damage to the lifespan of AF-LMBs. 展开更多
关键词 Anode free lithium metal battery Solid electrolyte interphase Nano-sized protective layer Lithium fluoride Li deposition behavior
原文传递
Fertility and biochemical activity in sodic soils 17 years after reclamation with flue gas desulfurization gypsum 被引量:10
6
作者 ZHAO Yong-gan WANG Shu-juan +3 位作者 LIU Jia ZHUO Yu-qun LI Yan ZHANG Wen-chao 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第12期3312-3322,共11页
Previous studies have mainly focused on changes in soil physical and chemical properties to evaluate the reclamation of sodic soils using flue gas desulfurization(FGD)gypsum.However,information on the effects of this ... Previous studies have mainly focused on changes in soil physical and chemical properties to evaluate the reclamation of sodic soils using flue gas desulfurization(FGD)gypsum.However,information on the effects of this reclamation method on microbial-based indicators of soil quality is limited,particularly after many years of FGD gypsum application.This study aimed to investigate the long-term effects of FGD gypsum on soil organic carbon(SOC),nutrients,microbial biomass and enzyme activity.Data were collected from soils of three exchangeable sodium percentage(ESP)classes(i.e.,low-,middle-and hjgh-ESP classes of 6.1-20,20-30 and 30-78.4%,respectively)17 years after FGD gypsum treatment in Inner Mongolia,China.Averaged across the three ESP classes,FGD gypsum application increased the SOC contents at the 0-20 and 20-40-cm soil depths by 18 and 35%,respectively,and increased available potassium at the 0-20-cm soil depth by 51%compared with the no-gypsum controls.The microbial biomass carbon and microbial biomass nitrogen contents at the 20-40-cm soil depth increased by 69 and 194%,respectively,under FGD gypsum.Except in the high-ESP class,urease activities in the 0-40 cm soil profile were significantly higher in the FGD gypsum treatments than in the controls.A significant increase in alkaline phosphatase activity was concentrated in the 20-40 cm soil layer;few classes showed significant increases in catalase and invertase activities in the 0-20 cm soil layer.Pearson correlation analysis showed that increases in soil fertility and biological activity could be attributed to reductions in electrical conductivity,pH and ESP caused by FGD gypsum application.These results confirm that FGD gypsum application is a viable strategy for reclaiming sodic soils due to its positive effects on soil fertility and biochemistry and that it may contribute to soil ecosystem sustainability. 展开更多
关键词 GYPSUM organic carbon nutrient pools microbial biomass enzyme activity
下载PDF
Polar interaction of polymer host-solvent enables stable solid electrolyte interphase in composite lithium metal anodes 被引量:3
7
作者 Peng Shi Ze-Yu Liu +10 位作者 Xue-Qiang Zhang Xiang Chen Nan Yao Jin Xie Cheng-Bin Jin Ying-Xin Zhan Gang Ye Jia-Qi Huang Stephens IfanE L Titirici Maria-Magdalena Qiang Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第1期172-178,I0006,共8页
The lithium(Li) metal anode is an integral component in an emerging high-energy-density rechargeable battery.A composite Li anode with a three-dimensional(3 D) host exhibits unique advantages in suppressing Li dendrit... The lithium(Li) metal anode is an integral component in an emerging high-energy-density rechargeable battery.A composite Li anode with a three-dimensional(3 D) host exhibits unique advantages in suppressing Li dendrites and maintaining dimensional stability.However,the fundamental understanding and regulation of solid electrolyte interphase(SEI),which directly dictates the behavior of Li plating/stripping,are rarely researched in composite Li metal anodes.Herein,the interaction between a polar polymer host and solvent molecules was proposed as an emerging but effective strategy to enable a stable SEI and a uniform Li deposition in a working battery.Fluoroethylene carbonate molecules in electrolytes are enriched in the vicinity of a polar polyacrylonitrile(PAN) host due to a strong dipole-dipole interaction,resulting in a LiF-rich SEI on Li metal to improve the uniformity of Li deposition.A composite Li anode with a PAN host delivers 145 cycles compared with 90 cycles when a non-polar host is employed.Moreover,60 cycles are demonstrated in a 1:0 Ah pouch cell without external pressure.This work provides a fresh guidance for designing practical composite Li anodes by unraveling the vital role of the synergy between a 3 D host and solvent molecules for regulating a robust SEI. 展开更多
关键词 Lithium metal Polar interaction Solid electrolyte interphase Lithium plating Composite anode
下载PDF
Electrolyte inhomogeneity induced lithium plating in fast charging lithium-ion batteries 被引量:2
8
作者 Yi Yang Lei Xu +2 位作者 Shi-Jie Yang Chong Yan Jia-Qi Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第10期394-399,I0010,共7页
Fast charging capability of lithium-ion batteries is in urgent need for widespread economic success of electric vehicles. However, the application of the fast charging technology often leads to the inevitable lithium ... Fast charging capability of lithium-ion batteries is in urgent need for widespread economic success of electric vehicles. However, the application of the fast charging technology often leads to the inevitable lithium plating on the graphite anode, which is one of the main culprits that endanger battery safety and shorten battery lifespan. The in-depth understanding of the initiation of lithium metal nucleation and the following plating behavior is a key to the development of fast charging cells. Herein, we investigate the overlooked effect of the non-uniform distribution of electrolyte on lithium plating during fast charging. Prior lithium plating occurs on the saturated lithium-graphite compounds in the anode region with sufficient electrolyte since the lithium-ion transport is blocked in the anode region lacking electrolyte. The uniform distribution of electrolyte is crucial for the construction of safe lithium-ion batteries especially in fast charging scenarios. 展开更多
关键词 Fast charging Lithium-ion batteries Lithium plating Distribution of electrolyte INHOMOGENEITY
下载PDF
The application of molecular simulation in ash chemistry of coal
9
作者 Xin Dai Jin Bai +4 位作者 Ping Yuan Shiyu Du Dongtao Li XiaodongWen Wen Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第11期2723-2732,共10页
One of the crucial issues in modern ash chemistry is the realization of efficient and clean coal conversion.Industrially,large-scale coal gasification technology is well known as the foundation to improve the atom eco... One of the crucial issues in modern ash chemistry is the realization of efficient and clean coal conversion.Industrially,large-scale coal gasification technology is well known as the foundation to improve the atom economy.In practice,the coal ash fusibility is a critical factor to determine steady operation standards of the gasifier,which is also the significant criterion to coal species selection for gasification.Since coal behaviors are resultant from various evolutions in different scales,the multi-scale understanding of the ash chemistry is of significance to guide the fusibility adjustment for coal gasification.Considering important roles of molecular simulation in exploring ash chemistry,this paper reviews the recent studies and developments on modeling of molecular systems for fusibility related ash chemistry for the first time.The discussions are emphasized on those performed by quantum mechanics and molecular mechanics,the two major simulation methods for microscopic systems,which may provide various insights into fusibility mechanism.This review article is expected to present comprehensive information for recent molecular simulations of coal chemistry so that new clues to find strategies controlling the ash fusion behavior can be obtained. 展开更多
关键词 Coal ash Fusibility Molecular simulation Quantum mechanics Ash fusion temperature VISCOSITY
下载PDF
A robust solid electrolyte interphase enabled by solvate ionic liquid for high-performance sulfide-based all-solid-state lithium metal batteries
10
作者 Jingguang Yi Chong Yan +1 位作者 Dan Zhou Li-Zhen Fan 《Nano Research》 SCIE EI CSCD 2023年第6期8411-8416,共6页
All-solid-state lithium metal batteries(ASSLMBs)that incorporate solid electrolyte(SE)and lithium metal anode suggest considerable potential in addressing the security concerns and energy density limitation of convent... All-solid-state lithium metal batteries(ASSLMBs)that incorporate solid electrolyte(SE)and lithium metal anode suggest considerable potential in addressing the security concerns and energy density limitation of conventional lithium-ion batteries(LIBs).However,the practical application of ASSLMBs is always restricted by the interfacial instability of lithium metal anode/electrolyte and inevitable lithium dendrites propagation in SE.Herein,a solvate ionic liquid is adopted to modify the interface stability of lithium metal anode/electrolyte and inhibit the growth of lithium dendrites via an in-situ formation of a robust solid electrolyte interphase(SEI)on the surface of lithium metal anode.Consequently,the ASSLMBs assembled with Li_(6)PS_(5)Cl(LPSCl)electrolyte,lithium metal anode that protected by robust SEI layer,and LiNbO_(3)@NCM622 cathode exhibit high initial capacity of 126.5 mAh·g^(−1)and improved cycling stability with a capacity retention of 80.3%over 60 cycles at 0.1 C.This work helps to provide a facile route for the design of robust SEI in the application of ASSLMBs. 展开更多
关键词 all-solid-state lithium metal batteries solvate ionic liquid robust solid electrolyte interphase Li_(6)PS_(5)Cl(LPSCl)electrolyte
原文传递
A review of solid-state lithium metal batteries through in-situ solidification 被引量:6
11
作者 Pan Xu Zong-Yao Shuang +12 位作者 Chen-Zi Zhao Xue Li Li-Zhen Fan Aibing Chen Haoting Chen Elena Kuzmina Elena Karaseva Vladimir Kolosnitsyn Xiaoyuan Zeng Peng Dong Yingjie Zhang Mingpei Wang Qiang Zhang 《Science China Chemistry》 SCIE EI CSCD 2024年第1期67-86,共20页
High-energy-density lithium metal batteries are the next-generation battery systems of choice,and replacing the flammable liquid electrolyte with a polymer solid-state electrolyte is a prominent conduct towards realiz... High-energy-density lithium metal batteries are the next-generation battery systems of choice,and replacing the flammable liquid electrolyte with a polymer solid-state electrolyte is a prominent conduct towards realizing the goal of high-safety and high-specific-energy devices.Unfortunately,the inherent intractable problems of poor solid-solid contacts between the electrode/electrolyte and the growth of Li dendrites hinder their practical applications.The in-situ solidification has demonstrated a variety of advantages in the application of polymer electrolytes and artificial interphase,including the design of integrated polymer electrolytes and asymmetric polymer electrolytes to enhance the compatibility of solid–solid contact and compatibility between various electrolytes,and the construction of artificial interphase between the Li anode and cathode to suppress the formation of Li dendrites and to enhance the high-voltage stability of polymer electrolytes.This review firstly elaborates the history of in-situ solidification for solid-state batteries,and then focuses on the synthetic methods of solidified electrolytes.Furthermore,the recent progress of in-situ solidification technology from both the design of polymer electrolytes and the construction of artificial interphase is summarized,and the importance of in-situ solidification technology in enhancing safety is emphasized.Finally,prospects,emerging challenges,and practical applications of in-situ solidification are envisioned. 展开更多
关键词 in-situ solidification polymer electrolyte artificial solid electrolyte interphase rechargeable lithium metal batteries dendrite-free lithium metal anode
原文传递
Effect of ambient pressures on laser-induced breakdown spectroscopy signals
12
作者 Kaifan Zhang Weiran Song +1 位作者 Zongyu Hou Zhe Wang 《Frontiers of physics》 SCIE CSCD 2024年第4期243-256,共14页
Laser-induced breakdown spectroscopy(LIBS)is regarded as the future superstar for analytical chemistry and widely applied in various fields.Improving the quality of LIBS signal is fundamental to achieving accurate qua... Laser-induced breakdown spectroscopy(LIBS)is regarded as the future superstar for analytical chemistry and widely applied in various fields.Improving the quality of LIBS signal is fundamental to achieving accurate quantification and large-scale commercialization of LIBS.To propose control methods that improve LIBS signal quality,it is essential to have a comprehensive understanding of the influence of key parameters,such as ambient gas pressure,temperature,and sample temperature on LIBS signals.To date,extensive research has been carried out.However,different researchers often yield significantly different experimental results for LIBS,preventing the formation of consistent conclusions.This greatly prevents the understanding of influencing laws of key parameters and the improvement of LIBS quantitative performance.Taking ambient gas pressure as an example,this paper compares the effects of ambient gas pressure under different optimization conditions,reveals the influence of spatiotemporal window caused by inherent characteristics of LIBS signal sources,i.e.,intense temporal changes and spatial non-uniformity of laser-induced plasmas,on the impact patterns of key parameters.From the perspective of plasma spatiotemporal evolution,the paper elucidates the influence patterns of ambient gas pressure on LIBS signals,clarifying seemingly contradictory research results in the literature. 展开更多
关键词 laser-induced breakdown spectroscopy spatiotemporal window pressure condition signal uncertainty plasma modulation
原文传递
Comparison of models to predict air infiltration rate of buildings with different surrounding environments
13
作者 Shu Zheng Xiujiao Song +2 位作者 Lin Duanmu Yu Xue Xudong Yang 《Building Simulation》 SCIE EI CSCD 2024年第6期1007-1021,共15页
The air infiltration rate of buildings strongly influences indoor environment and energy consumption.In this study,several traditional methods for determining the air infiltration rate were compared,and their accuracy... The air infiltration rate of buildings strongly influences indoor environment and energy consumption.In this study,several traditional methods for determining the air infiltration rate were compared,and their accuracy in different scenarios was examined.Additionally,a method combining computational flow dynamics(CFD)with the Swami and Chandra(S-C)model was developed to predict the influence of the surrounding environment on the air infiltration rate.Two buildings in Dalian,China,were selected:one with a simple surrounding environment and the other with a complex surrounding environment;their air infiltration rates were measured.The test results were used to validate the accuracy of the air infiltration rate solution models in different urban environments.For the building with a simple environment,the difference between the simulation and experimental results was 0.86%–22.52%.For the building with a complex environment,this difference ranged from 17.42%to 159.28%.We found that most traditional models provide accurate results for buildings with simple surrounding and that the simulation results widely vary for buildings with complex surrounding.The results of the method of combining CFD with the S-C model were more accurate,and the relative error between the simulation and test results was 10.61%.The results indicate that the environment around the building should be fully considered when calculating the air infiltration rate.The results of this study can guide the application of methods of determining air infiltration rate. 展开更多
关键词 air infiltration rate models CFD simulation building surrounding air infiltration rate test
原文传递
A calibration-free model for laser-induced breakdown spectroscopy using non-gated detectors
14
作者 Zongyu Hou Weilun Gu +5 位作者 Tianqi Li Zhe Wang Liang Li Xiang Yu Yecai Zhang Zijun Liu 《Frontiers of physics》 SCIE CSCD 2022年第6期175-183,共9页
Calibration-free(CF)laser-induced breakdown spectroscopy(LIBS)is normally only applicable for gated detectors due to its dependence on the assumption of a steady-state plasma.However,most currently available LIBS syst... Calibration-free(CF)laser-induced breakdown spectroscopy(LIBS)is normally only applicable for gated detectors due to its dependence on the assumption of a steady-state plasma.However,most currently available LIBS systems are equipped with non-gated detectors such as chargecoupled device(CCD),which degrades the accuracy of CF method.In this paper,the reason for the less satisfactory quantification performance of CF for LIBS with non-gated detectors was clarified and a time-integration calibration-free(TICF)model was proposed for applications with non-gated detectors.It was based on an assumed temporal profile of plasma properties,including temperature and electron density,obtained from another pre-experiment.The line intensity at different time during the signal collection time window was estimated with self-absorption correction according to the temporal profile of the plasma properties.The proposed model was validated on titanium alloys and compared with traditional CF.The accuracy of elemental concentration measurement was improved significantly:the average relative error of aluminum and vanadium decreased from 6.07%and 22.34%to 2.01%and 1.92%,respectively.The quantification results showed that TICF method was able to extend the applicability of CF to LIBS with non-gated detectors. 展开更多
关键词 laser-induced breakdown spectroscopy calibration-free nongated detector self-absorption correction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部