期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Biomass Carbon Improves the Adsorption Performance of Gangue-Based Ceramsites:Adsorption Kinetics and Mechanism Analysis
1
作者 Haodong Li Huiling Du +5 位作者 Le Kang Yewen Zhang Tong Lu Yuchan Zhang Lan Yang Shijie Song 《Journal of Renewable Materials》 EI 2023年第12期4161-4174,共14页
The large accumulation of coal gangue,a common industrial solid waste,causes severe environmental problems,and green development strategies are required to transform this waste into high-value-added products.In this s... The large accumulation of coal gangue,a common industrial solid waste,causes severe environmental problems,and green development strategies are required to transform this waste into high-value-added products.In this study,low-cost ceramsites adsorbents were prepared from waste gangue,silt coal,and peanut shells and applied to remove the organic dye methylene blue from wastewater.We investigated the microstructure of ceramsites and the effects of the sintering atmosphere,sintering temperature,and solution pH on their adsorption performance.The ceramsites sintered at 800℃under a nitrogen atmosphere exhibited the largest three-dimensional-interconnected hierarchical porous structure among the prepared ceramsites;further,it exhibited the highest methylene blue adsorption performance,with an adsorption capacity of 0.954 mg·g^(−1),adsorption efficiency of over 95%,and adsorption equilibrium time of 1 h at a solution pH of 9.The removal efficiency remained greater than 75%after five adsorption cycles.The adsorption kinetics data were analyzed using various models,including the pseudosecond-order kinetic model and Langmuir equation,and the adsorption was attributed to electrostatic interactions between the dyes and ceramsites,n-interactions,and hydrogen bonds.The prepared coal gangue ceramsites exhibited excellent adsorption capacities,removal rates,and cyclic stabilities,demonstrating their promising application prospects for the comprehensive utilization of solid waste and for wastewater treatment. 展开更多
关键词 Porous ceramsites ADSORPTION biological carbon kinetic analysis adsorption mechanism
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部