期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Combination Effect of Si and P on Tertiary Scale Characteristic of Hot Rolled Strip 被引量:6
1
作者 Yang YU Chang WANG +3 位作者 Lin WANG Jin CHEN Ya-jun HUI Chang-ku SUN 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2015年第3期232-237,共6页
For high strength interstitial free (IF) steel containing P element, the salt and pepper (SP) defects exist on the strip surface and could not be eliminated effectively by optimizing the hot rolling process, such ... For high strength interstitial free (IF) steel containing P element, the salt and pepper (SP) defects exist on the strip surface and could not be eliminated effectively by optimizing the hot rolling process, such as temperature and cooling water. The combination effect of Si and P on the characteristic of tertiary scale has been studied comprehensively by scanning electron microscopy (SEM) and electron probe microanalysis (EPMA), and the concept is proposed firstly that Si and P are of combination effect which can be utilized to eliminate the SP defect. The results show that the SP defects were induced by the rolled-in scale during finish rolling. P can be enriched at the interface between substrate and tertiary scale, which is easy to decrease the adhesion of tertiary scale. However, Si enrichment at the interface between substrate and tertiary scale can increase the adhesion. The SP defects can be eliminated completely, which is attributed to the accompanying enrichment of Si and P. 展开更多
关键词 high strength IF steel containing P salt and pepper defect tertiary scale Si-P combination hot rolling
原文传递
Strain-induced Precipitation in Ti Micro-alloyed Interstitial-free Steel 被引量:3
2
作者 Ya-jun HUI Yang YU +3 位作者 Lin WANG Chang WANG Wen-yuan LI Bin CHEN 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2016年第4期385-392,共8页
Stress relaxation method was carried out on a Ti micro-alloyed interstitial-free (IF) steel at the temperature ranging from 800 to 1000℃. The results show that the softening kinetics curves of deformed austenite ca... Stress relaxation method was carried out on a Ti micro-alloyed interstitial-free (IF) steel at the temperature ranging from 800 to 1000℃. The results show that the softening kinetics curves of deformed austenite can be divided into three stages. At the first stage, the stress has a sharp drop due to the onset of recrystallization. At the second stage, a plateau appears on the relaxation curves indicating the start and finish of strain-induced precipitation. At the third stage, the stress curves begin to descend again because of coarsening of precipitates. Precipitation-time temperature (PTT) diagram exhibited a "C" shape, and the nose point of the PTT diagram is located at 900 ℃ and the start precipitation time of 10 s. The theoretical calculation shows that the strain-induced precipitates were confirmed as almost pure TiC particles. The TiC precipitates were heterogeneously distributed in either a chain-like or cell-like manner observed by transmission electron microscopy (TEM), which indicates the precipitates nucleated on dislocations or dislocation substructures. In addition, a thermodynamic analytical model was presented to describe the precipitation in Ti micro-alloyed IF steel, which shows a good agreement between the experimental observation and the predictions of the model. 展开更多
关键词 Ti micro-alloyed IF steel stress relaxation strain-induced precipitation analytical model
原文传递
Precipitation Strengthening by Nanometer-sized Carbides in Hot-rolled Ferritic Steels 被引量:3
3
作者 Xiao-pei WANG Ai-min ZHAO +3 位作者 Zheng-zhi ZHAO Yao HUANG Zhi-da GENG Yang YU 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2014年第12期1140-1146,共7页
The mechanical properties of the hot-rolled plates of Ti steel and Ti-Mo steel after isothermal transformation in a temperature range of 600 700 ℃ for 60 min have been tested, and the microstructures of the matrix an... The mechanical properties of the hot-rolled plates of Ti steel and Ti-Mo steel after isothermal transformation in a temperature range of 600 700 ℃ for 60 min have been tested, and the microstructures of the matrix and the characteristics of precipitated nanometer-sized carbides have also been examined by scanning electron microscopy and transmission electron microscopy. The precipitation regularity of nanometer-sized carbides has been studied by thermodynamic method and the contributions of corresponding strengthening mechanisms to the total yield strength have been calculated. The tensile strength of hot-rolled Ti-Mo ferritie steel can achieve 780 MPa with an elongation of 20.0% after being isothermally treated at 600 ℃ for 60 rain, and the tensile strength of Ti steel is 605 MPa with an elongation of 22.7%, according to the results of tensile tests. The critical nucleation size of (Ti,Mo)C is smaller than that of TiC at a given isothermal temperature, but the nucleation rate of (Ti, Mo)C is larger than that of TiC. The grainrefinement strengthening and precipitation strengthening contribute the main amount of the total yield strength. The major increase in yield strength with the decrease of isothermal temperature results from the contribution of precipi tation strengthening. The contribution of precipitation strengthening to the yield strength of the steels has been esti mated. The ferrite phase can be strengthened by about 400 MPa through precipitation strengthening in Ti-Mo steel isothermally treated at 600 ℃ for 60 rain, which is about 200 MPa higher than that of Ti steel under the same conditions. 展开更多
关键词 ferritie steel nanometer sized carbide thermodynamic method precipitation strengthening
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部