Foam is utilized in enhanced oil recovery and CO_(2) sequestration.Surfactant-alternating-gas(SAG)is a preferred approach for placing foam into reservoirs,due to it enhances gas injection and minimizes corrosion in fa...Foam is utilized in enhanced oil recovery and CO_(2) sequestration.Surfactant-alternating-gas(SAG)is a preferred approach for placing foam into reservoirs,due to it enhances gas injection and minimizes corrosion in facilities.Our previous studies with similar permeability cores show that during SAG injection,several banks occupy the area near the well where fluid exhibits distinct behaviour.However,underground reservoirs are heterogeneous,often layered.It is crucial to understand the effect of permeability on fluid behaviour and injectivity in a SAG process.In this work,coreflood experiments are conducted in cores with permeabilities ranging from 16 to 2300 mD.We observe the same sequence of banks in cores with different permeabilities.However,the speed at which banks propagate and their overall mobility can vary depending on permeability.At higher permeabilities,the gas-dissolution bank and the forced-imbibition bank progress more rapidly during liquid injection.The total mobilities of both banks decrease with permeability.By utilizing a bank-propagation model,we scale up our experimental findings and compare them to results obtained using the Peaceman equation.Our findings reveal that the liquid injectivity in a SAG foam process is misestimated by conventional simulators based on the Peaceman equation.The lower the formation permeability,the greater the error.展开更多
It is increasingly important to monitor sliding interfaces within machines,since this is where both energy is lost,and failures occur.Acoustic emission(AE)techniques offer a way to monitor contacts remotely without re...It is increasingly important to monitor sliding interfaces within machines,since this is where both energy is lost,and failures occur.Acoustic emission(AE)techniques offer a way to monitor contacts remotely without requiring transparent or electrically conductive materials.However,acoustic data from sliding contacts is notoriously complex and difficult to interpret.Herein,we simultaneously measure coefficient of friction(with a conventional force transducer)and acoustic emission(with a piezoelectric sensor and high acquisition rate digitizer)produced by a steel‒steel rubbing contact.Acquired data is then used to train machine learning(ML)algorithms(e.g.,Gaussian process regression(GPR)and support vector machine(SVM))to correlated acoustic emission with friction.ML training requires the dense AE data to first be reduced in size and a range of processing techniques are assessed for this(e.g.,down-sampling,averaging,fast Fourier transforms(FFTs),histograms).Next,fresh,unseen AE data is given to the trained model and the resulting friction predictions are compared with the directly measured friction.There is excellent agreement between the measured and predicted friction when the GPR model is used on AE histogram data,with root mean square(RMS)errors as low as 0.03 and Pearson correlation coefficients reaching 0.8.Moreover,predictions remain accurate despite changes in test conditions such as normal load,reciprocating frequency,and stroke length.This paves the way for remote,acoustic measurements of friction in inaccessible locations within machinery to increase mechanical efficiency and avoid costly failure/needless maintenance.展开更多
The Sultani oil shale (OS) deposit is considered as a major fossil fuel source in Jordan. Applying various petrographic and geochemical techniques, this paper aims to study the Sultani OS geochemical and organic petro...The Sultani oil shale (OS) deposit is considered as a major fossil fuel source in Jordan. Applying various petrographic and geochemical techniques, this paper aims to study the Sultani OS geochemical and organic petrographic features. Results show that Sultani OS is a bituminous limestone consisting of very fine-grained matrix with rippled micro-laminated texture and muddy material of cryptocrystalline micrite. The rock is rich in Cretaceous microfossil shells filled in organic matter (OM). The fillingOMis bitumen of the migrabitumen type. TheOMcontent reaches up to 17 wt.% with high oil-yielding capacity (up to 12 wt.%). High TOC values suggest that the Sultani OS has a very good source rock potential. Organic petrography shows lowOMmaturity level and reveals two varieties of vitrinite, namely primary and oxidized vitrinite. The latter is derived from terrestrial plant tissues. Additionally, liptinite macerals including alginite and to a lesser extent cutinite, also participate. Various diagenetic features such as pyrite replacement and bitumen thermal alteration have been recorded. Results suggest that Sultani OS is a marinite formed under marine conditions with limited contribution of terrestrialOMinput.展开更多
The use of carbon dioxide(CO_(2))and calciumcontaining by-products from industrial activities is receiving increasing interest as a route to valuable carbonate materials while reducing CO_(2) emissions and saving natu...The use of carbon dioxide(CO_(2))and calciumcontaining by-products from industrial activities is receiving increasing interest as a route to valuable carbonate materials while reducing CO_(2) emissions and saving natural resources.In this work,wet-chemical experimental data was assessed,which involved the carbonation of three types of materials in aqueous solutions,namely,1)wollastonite,a calcium silicate mineral,2)steelmaking slag,a by-product of steel production,and 3)paper bottom ash(PBA)from waste paper incineration.Aims were to achieve either a high carbonation degree and/or a pure carbonate product with potential commercial value.Producing a pure precipitated calcium carbonate(PCC)material that may find use in paper industry products puts strong requirements on purity and brightness.The parameters investigated were particle size,CO_(2)pressure,temperature,solid/liquid ratio,and the use of additives that affect the solubilities of CO_(2)and/or calcium carbonate.Temperatures and pressures were varied up to 180℃and 4 MPa.Data obtained with the wollastinite mineral allowed for a comparison between natural resources and the industrial by-product materials,the latter typically being more reactive.With respect to temperature and pressure trends reported by others were largely confirmed,with temperatures above 150℃introducing thermodynamic limitations depending on CO_(2)pressure.The influence of additives showed some promise,although costs may make recycling and reuse of additives a necessity for a largescale process.When using steelmaking slag,magnetic separation may remove some iron-containing material from the process(although this is far from perfect),while the addition of bicarbonate supported the removal of phosphorous,aside from improving calcium extraction.The experiments with paper bottom ash(PBA)gave new data,showing that its reactivity resembles that of steelmaking slag,while its composition results in relatively pure carbonate product.Also,with PBA no additives were needed to achieve this.展开更多
Damping plays a significant role on the maximum amplitude of a vessel’s roll motion,in particular near the resonant frequency.It is a common practice to predict roll damping using a linear radiation-diffraction code ...Damping plays a significant role on the maximum amplitude of a vessel’s roll motion,in particular near the resonant frequency.It is a common practice to predict roll damping using a linear radiation-diffraction code and add that to a linearized viscous damping component,which can be obtained through empirical,semi-empirical equations or free decay tests in calm water.However,it is evident that the viscous roll damping is nonlinear with roll velocity and amplitude.Nonlinear liquid cargo motions inside cargo tanks also contribute to roll damping,which when ignored impedes the accurate prediction of maximum roll motions.In this study,a series of free decay model tests is conducted on a barge-like vessel with two spherical tanks,which allows a better understanding of the nonlinear roll damping components considering the effects of the liquid cargo motion.To examine the effects of the cargo motion on the damping levels,a nonlinear model is adopted to calculate the damping coefficients.The liquid cargo motion is observed to affect both the linear and the quadratic components of the roll damping.The flow memory effect on the roll damping is also studied.The nonlinear damping coefficients of the vessel with liquid cargo motions in spherical tanks are obtained,which are expected to contribute in configurations involving spherical tanks.展开更多
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.U2240210,52279098)the Natural Science Foundation of Jiangsu Province(Grant No.BK20200525)the Fundamental Research Funds for the Central Universities(Grant No.B230201021).We express our gratitude to PETRONAS and Shell Global Solution International B.V.for their support of this work.
文摘Foam is utilized in enhanced oil recovery and CO_(2) sequestration.Surfactant-alternating-gas(SAG)is a preferred approach for placing foam into reservoirs,due to it enhances gas injection and minimizes corrosion in facilities.Our previous studies with similar permeability cores show that during SAG injection,several banks occupy the area near the well where fluid exhibits distinct behaviour.However,underground reservoirs are heterogeneous,often layered.It is crucial to understand the effect of permeability on fluid behaviour and injectivity in a SAG process.In this work,coreflood experiments are conducted in cores with permeabilities ranging from 16 to 2300 mD.We observe the same sequence of banks in cores with different permeabilities.However,the speed at which banks propagate and their overall mobility can vary depending on permeability.At higher permeabilities,the gas-dissolution bank and the forced-imbibition bank progress more rapidly during liquid injection.The total mobilities of both banks decrease with permeability.By utilizing a bank-propagation model,we scale up our experimental findings and compare them to results obtained using the Peaceman equation.Our findings reveal that the liquid injectivity in a SAG foam process is misestimated by conventional simulators based on the Peaceman equation.The lower the formation permeability,the greater the error.
文摘It is increasingly important to monitor sliding interfaces within machines,since this is where both energy is lost,and failures occur.Acoustic emission(AE)techniques offer a way to monitor contacts remotely without requiring transparent or electrically conductive materials.However,acoustic data from sliding contacts is notoriously complex and difficult to interpret.Herein,we simultaneously measure coefficient of friction(with a conventional force transducer)and acoustic emission(with a piezoelectric sensor and high acquisition rate digitizer)produced by a steel‒steel rubbing contact.Acquired data is then used to train machine learning(ML)algorithms(e.g.,Gaussian process regression(GPR)and support vector machine(SVM))to correlated acoustic emission with friction.ML training requires the dense AE data to first be reduced in size and a range of processing techniques are assessed for this(e.g.,down-sampling,averaging,fast Fourier transforms(FFTs),histograms).Next,fresh,unseen AE data is given to the trained model and the resulting friction predictions are compared with the directly measured friction.There is excellent agreement between the measured and predicted friction when the GPR model is used on AE histogram data,with root mean square(RMS)errors as low as 0.03 and Pearson correlation coefficients reaching 0.8.Moreover,predictions remain accurate despite changes in test conditions such as normal load,reciprocating frequency,and stroke length.This paves the way for remote,acoustic measurements of friction in inaccessible locations within machinery to increase mechanical efficiency and avoid costly failure/needless maintenance.
文摘The Sultani oil shale (OS) deposit is considered as a major fossil fuel source in Jordan. Applying various petrographic and geochemical techniques, this paper aims to study the Sultani OS geochemical and organic petrographic features. Results show that Sultani OS is a bituminous limestone consisting of very fine-grained matrix with rippled micro-laminated texture and muddy material of cryptocrystalline micrite. The rock is rich in Cretaceous microfossil shells filled in organic matter (OM). The fillingOMis bitumen of the migrabitumen type. TheOMcontent reaches up to 17 wt.% with high oil-yielding capacity (up to 12 wt.%). High TOC values suggest that the Sultani OS has a very good source rock potential. Organic petrography shows lowOMmaturity level and reveals two varieties of vitrinite, namely primary and oxidized vitrinite. The latter is derived from terrestrial plant tissues. Additionally, liptinite macerals including alginite and to a lesser extent cutinite, also participate. Various diagenetic features such as pyrite replacement and bitumen thermal alteration have been recorded. Results suggest that Sultani OS is a marinite formed under marine conditions with limited contribution of terrestrialOMinput.
文摘The use of carbon dioxide(CO_(2))and calciumcontaining by-products from industrial activities is receiving increasing interest as a route to valuable carbonate materials while reducing CO_(2) emissions and saving natural resources.In this work,wet-chemical experimental data was assessed,which involved the carbonation of three types of materials in aqueous solutions,namely,1)wollastonite,a calcium silicate mineral,2)steelmaking slag,a by-product of steel production,and 3)paper bottom ash(PBA)from waste paper incineration.Aims were to achieve either a high carbonation degree and/or a pure carbonate product with potential commercial value.Producing a pure precipitated calcium carbonate(PCC)material that may find use in paper industry products puts strong requirements on purity and brightness.The parameters investigated were particle size,CO_(2)pressure,temperature,solid/liquid ratio,and the use of additives that affect the solubilities of CO_(2)and/or calcium carbonate.Temperatures and pressures were varied up to 180℃and 4 MPa.Data obtained with the wollastinite mineral allowed for a comparison between natural resources and the industrial by-product materials,the latter typically being more reactive.With respect to temperature and pressure trends reported by others were largely confirmed,with temperatures above 150℃introducing thermodynamic limitations depending on CO_(2)pressure.The influence of additives showed some promise,although costs may make recycling and reuse of additives a necessity for a largescale process.When using steelmaking slag,magnetic separation may remove some iron-containing material from the process(although this is far from perfect),while the addition of bicarbonate supported the removal of phosphorous,aside from improving calcium extraction.The experiments with paper bottom ash(PBA)gave new data,showing that its reactivity resembles that of steelmaking slag,while its composition results in relatively pure carbonate product.Also,with PBA no additives were needed to achieve this.
文摘Damping plays a significant role on the maximum amplitude of a vessel’s roll motion,in particular near the resonant frequency.It is a common practice to predict roll damping using a linear radiation-diffraction code and add that to a linearized viscous damping component,which can be obtained through empirical,semi-empirical equations or free decay tests in calm water.However,it is evident that the viscous roll damping is nonlinear with roll velocity and amplitude.Nonlinear liquid cargo motions inside cargo tanks also contribute to roll damping,which when ignored impedes the accurate prediction of maximum roll motions.In this study,a series of free decay model tests is conducted on a barge-like vessel with two spherical tanks,which allows a better understanding of the nonlinear roll damping components considering the effects of the liquid cargo motion.To examine the effects of the cargo motion on the damping levels,a nonlinear model is adopted to calculate the damping coefficients.The liquid cargo motion is observed to affect both the linear and the quadratic components of the roll damping.The flow memory effect on the roll damping is also studied.The nonlinear damping coefficients of the vessel with liquid cargo motions in spherical tanks are obtained,which are expected to contribute in configurations involving spherical tanks.